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Abstract
This paper concentrates on studying convergence and data dependence of AK iteration for the class of maps
which was introduced by Berinde. Also, we will support our results with an example.
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1. Introduction

Fixed point theory has been built on the solutions of Tx =
x. One of most famous theorems of this theory is Banach
contraction theorem. This theorem states that if T: X — X
provides contraction condition such that

d(Tx,Ty) < kd(x,y)

where k € (0, 1], then it is a unique fixed point in the comp-
lete metric space. Successive approximations method called
iteration which used in the proof of this theorem has inspi-
red many researchers to approach the fixed point of maps
classes with different properties. Finding the iterations that
converge to the fixed point of a map has turned into a re-
markably interesting field in the fixed point theory (see [6-
14)).

On the other hand, it is not always possible to find fixed
point of a map analytically. In such situations, fixed point
of a approximate operator of T can be regarded as the app-
roximate solution of Tx = x. In this context, estimating the
distance between the fixed points of T and its a approximate
operator is an important problem. There exist many papers
on this subject in the literature. Some of them can be listed
as [15-19].

Let's give some preliminary informations to understand our
purpose in this article.

Definition 1 [5] Let (X, d) be a metric space. T is called a
Zamfirescu map if there exist a; € (0,1), a,, a3 €
(0%) such that at least one of the followings is true for each
x,y € X.

I) d(Tx:TY) S ald(x,y)

i) d(Tx,Ty) < a,[d(x,Tx) +d(y,Ty)]

iii) (Tx, Ty) < az[d(x,Ty) + d(y, Tx)]

In [5], it was shown that Picard iteration related with Zam-
firescu map is convergent to a unique fixed point of T.
Zamfirescu's theorem is very important since it generalizes
Banach contraction theorem to non-continuous map. Then,
in [1], Berinde proved that Ishikawa iteration for Zamfi-
rescu map is convergent to its fixed point. In the proof, he
showed that a Zamfirescu map can be written as the fol-
lows:

d(Tx,Ty) < 8d(x,y) + 28d(x, Tx). (1.1)
We can write (1.1) as (1.2) in the normed spaces:
ITx — Tyll < 6llx — yll + 26lx — Txll.  (1.2)

If you pay attention, the class of maps satisfying (1.2) is
more general than the class of contraction maps.

Recently, Ullah and Arshad [4] introduced the following
new iteration process known as AK iteration process to app-
roximate fixed point of contraction maps:

Xn+1 = Tyn
Vo = T((l —ap)z, + anTzn)
Zn = T((l - :Bn)xn + ﬁnTxn)

(1.3)

Our first target in this article is to approach the fixed point
of the class of maps satisfying (1.2) by means of AK itera-
tion method. The second is to estimate distance between the
fixed points of a map satisfying (1.2) and its any app-
roximate operator with the help of AK iteration. In addition,
we will give an example that illustrate our results.

2. Main Results
In this section, we give the convergence and data results of
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iterative sequence (1.3) in the normed space. Furthermore,
we will concretize our results with an examples. First, let's
give the following lemma to shorten proofs of our theorems.

Lemma 1 Let X be a normed space, T: X — X be an opera-
tor satisfying (1.2) with fixed point x*. Then

[|Tx — x*|| < 6llx — x*||. (2.1)
Proof It is easly seen that
[ITx —x*|| < S8llx —x*|| + 28]|x* — Tx*|| = §llx — x*||.

Theorem 1 Let T: X — X be an operator satisfying (1.2)
and {x,}n=, be the iterative sequence (1.3) with real sequ-
ences {an}n=o and {Bn}=o in [0,1] satisfying Y3 By =
oo, Then {x,};-, converges strongly to unique fixed point
x* of T.

Proof Using (1.2), (1.3) and (2.1), we obtain that

lxnsr — x| = I Tym — 7| < Sllyn — 71, (2.2)
”yn - X*” = ”T((l - an)zn + anTZn) —-x"
<61 —ay)z, + a,Tz, — x*|| (2.3)
< 6(1 - an)"Zn - X*”
+ 6a,||Tz, — x|
< 5(1 - an)"Zn - X*”
+ 8%ayl|z, — x*||
< 5(1 - an(l - 6))”Zn - x*||,
And
lzn = 2l = |IT((L = Bn + BuTn) = || (24)
< Ol = Bp)xn + BrTx, — x7||
< 6(1 - ﬁn)”xn - X*”
+ 8Bl Txy — x|
<861 = Bllxn — x*|
+ 62 Byl — x*|
=6(1—=Bn(1=8))llx, —x7I.
Substituting (2.4) and (2.3) in (2.2), we obtain
ll2tn 41 — "l (2.5)

< 83 (1~ ap(1— §))(1 ~ B — &)l — x°1l

By using the factthat 1 — a,,(1 — §) < 1, we re-write (2.5)
as follows:

lonss = %Il < 83(1 = Bp(1 = 8)llxy —x7Il. (26)
Considering (2.6), we have

i1 = %Il < 83(1 = B (1 = &)l —x*ll (2.7
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<831 =1 = 8))6%(1 = Bpoa(1 = &) llxp—y — x"|l

<
< SR = Be(1 = 8)] llxo — %7l
It is well-known from the classical analysis that 1 — x <
e~* for all x € [0,1]. Taking into account these facts toget-
her with (2.7), we obtain

1241 — x| < 83+ V== Zkmobi||xy — x*[|.  (2.8)
Taking the limit of both sides of inequality (2.8) yields
lim ||x,41 — x*|| = 0, i.e. x, & x* for n - oo, as required.
n—-oo

Now, we show that x* is unique fixed point of T. Assume
that x7 is another fixed point of T. If we write x := x7 in
Lemma 1, we obtain

i —xIl = ITx; —x"|| < Sllx; —x"I. (2.9)
(2.9) is only possible in the case of x* = x; . This means
that x* is unique fixed point of T.

Remark 1 Indeed, Theorem 1 is also true while only one of
control sequences {a,}n=o and {B}n=o in iterative sequ-
ence (1.3) satisfies Yo @, = 00 Or Yeo Br = .

Definition 2 [2] Let T, T: X — X be operators. T is called an
approximate operator for T if there exist some € > 0 such
that

|Tx — Tx|| < €, vx € X. (2.10)
Lemma 2 [3] Let {#n}%ozo ) {Vn}%ozo and {fn};o:o be non-
negative real sequences with v, € (0,1) for alln €
N, Y7oV, = . Suppose there exists n, € N such that for
all n = n, one has the inequality

Hne1 = (1 - Vn):un'i_vnén-

Then the following inequality holds:

0 < limsup u,, < limsup &,.

n—-oo n—-co

Theorem 2 Let T:X — X be an operator satisfying (1.2)

with the fixed point x*, T:X — X be an approximate ope-

rator of T for given €, and £ be the fixed points of T. As-

sume that {x,, }o—, is the sequence in (1.3) and {%X ..}, iS
a sequence defined by

Xn1=T9n
yn =T((1_an)2n+an7\12n)
Zy= T((l - B‘n)f nt ﬁan n)

(2.11)

756



/

) Celal Bayar University Journal of Science

Volume 13, Issue 3, p 755-759 M. Ertirk
where {a,}o-, and {B,}m-, are real sequences in [0,1] 6[ —a )z, — 2 4l + a,bllz, — 2 4l ]
satisfying lim a,, = lim 8, =0 and Yy ,a, = or +2an6||TZn — x| + 2a,6]lx* — z L) + ane

n—-oo n—-oo
¥% o B = . If {x,}%_, converges to £ , then we have +26(8 + DI = ap)liz, — x7|l

+ a, 6|z, — x*||]] + €

”X —X” S— 5[ an)”Zn_Zn”+an5”Zn_Zn” ]
=6 +2a,6%||z,, — x*|| + 2a,6]|z, — x*||+a,€
Proof Using (1.2), (1.3), (2.1) and (2.10), we get iifll(it DIA = an) + and]liz,
<501 — B '
1 = 2 sall = [T, = D= = Ol =7l
= T3]l (2.12) [+25(5 +1)(1—ay) +28(5 + Da 5] Iz = x
~ n n
< ”Tyn_Tj;n”'i_”Tj}n_Tyn” +an€(5+€
< g”yn - ﬁn” + 2§”Tyn - yn” +e€ <81 —a,(1 =8z, — 2 4l
S 68llyn =V ull + 26Ty, — x7 28%a, + 28a, + (26% + 26) X
+26lx" — yoll + € T 262, — 26a, +25(5 + 1)an6] Izn ="l + aned
< Sllyn = 9 ull + 28|y, — x7|| +e
+2001x" — yull + € = 8(1 - ay(1 = 8)llz, — 2,
= S8llyn — 9 ull + (262 + 28) llyn, — x| +26(8 + D1 + a8z, — x|l
Te + €6 + €
and and

I 5 1l = || T(A-ay)z, +a,Tz,)
I =Yl = _p1 - a2, +a,T2,)
T(A-ay)z, + a,Tz,)

T((l - :Bn)xn + ﬁnTxn)
T((1 =B o+ Bal% )

| ||Zn_2n|| =

< X - T((1 = Bn)xn + BnTxy)
-T ((1 - an)z ntanlz n) " ,\n " A‘Z (2.14)
T((1 = ap)2 n + ayT2 ) (1= B% 0 + BT )
S YRR, (2.13) T((1 = B % o + BuTR 1)
((1—an)zn+anTzn) + —A((l—ﬁ)A LT )
<5 | —ap)zy, + a,Tz, ”)x . ”T X
~(1- a2, anf(z* ; | 5| /;n % ﬁg g
T((1—-ay)z, + a,Tz nJAn " Pn
+26 Sk |
ol o K
6[(1_an)|lzn_2n||+an||TZn_TZAn”] (1_3 )”x —% ” nion nton
”T((l — )z, + anTZn) - x*” g ; i .
T2 = (1 = @)z — anT HBal[Toxn = T2
+ € e o +268 [”T((l _ﬁn)xn+ﬁnTxn)_x*” +e
s 1 —a)llz, — 2 4l +Hlx™ = (1 = Bn)xn — BuT Xyl
= Ut anllTz, = T2 oIl + an||T2 , — T2 | < [ ¢! —Aﬂn)llxn—xﬁll -
SI(1 — ap)zn + an Tz, — x°|| FBallToy = TR pll + Bo||TR o — TR |
+26 :
[+||x* - (1 - an)zn - (XnTZn” + 26 [6”(1 - ﬁn)xn + .BnTxn -X ”]
+ € +Hlx*— (1 - ﬁn)xn + ﬁnTxn”
<5[ (1_an)|lzn_2n|| ] +((:-1 ﬁ )” N ”
= 2 s 75 - X, — X
FallTen =12l + anl[12, = 12, =0 [-1—[)’ Gl — 2 1]l + 26]1x  — Tx ) + B J
+28(6+ Dlx* — (1 — ay)z, e S+ Dl — (L By
1—anTzn||+eA C B Txllfe n/on
— — n n
<6[1 0 ol gt e ) <o, (= Bl = 2ol Aol 24l
+28(8 + D1 — ap)llz, — x"|l +2Bnllx" = Tx ol + ZBnt(Slllan—)x”JICI + /3; ”
+ayllxt — Tz, |l + € +28(6+1) +p (g”x "_x*” ]+e
n n
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<4 (1 = Blxn — % nll + Bubllxy — % ol |
=01 428,820x" — x ll + 2Bn8lx0 — x°1| + B
(1 - ﬁn)”xn - x*”

+25(6+1 S M +e
@CH+D] 1 8lx, — 2l

= [6(1 - ﬁn) + ﬁntgz]”xn -x n”
26,63 + 2B,,6%
+[+28(06 + DA - B | llxn —x7I
+25(8 + 1)B,06
+ pped+e
< 8(1 = u(1 = 8))llxy — 2
282, +26B, + (26% + 26)
—2682B, — 26B, +286(8 + 1)B,
+e€
= 6(1 = Bu(1 = 8))llxn = 2
+28(6 + DA+ Bud)llxy — x7|
+ Bn€0 + €

o] 10 = 711+ e

Substituting (2.14) in (2.13), we have

lyn — 9 ull (2.15)

) 8(1 = Bl = 8))llxy — 2 4l

<6 (—an(l _ 5)) +28(5 + DA + B, 8)|lx, — x|
+5,€6 + €

+ 256+ 1D+ a,0)llz, — x*|| + ae6 + €

Now, substitute (2.15) in (2.12), we get

”xn+1 -x n+1”

/ (1 = Bu(1 = 8)llxy — 2 \
<5 5(1 - a,(1-9)) <+25(5 + D+ Bu®)llxy, — x*||> I
- +£n€6 + €
\ +26(6 + DA + a, )|z, — x*|| + aped + € /
+(28%+28)|ly, —x*|| + € (2.16)
<831 - ay(1 = 8)(1 = Bu(1 = 8))llay — £ 4l
+283(6 + 1)(1 — a, (1 — 81 + B, 0)|lx,, — x*|
+6%(1— ap,(1 - 8))Br€d + 6%(1 — ap,(1 - 8))e
+282(1 + 81 + a,8)|z,, — x*|| + a,,€6% + €6
+ 262+ 20|y, — x*|| + €
Since 83 € (0,1), there exists a real number p € (0,1) such
that

§3=1-p. (2.17)
Regarding (2.17) and using the factsof 1 — a,,(1 — §) < 1
and 1 — B8,(1 — &) < 1, we can re-write (2.16) as

”xn+1 -x n+1”

< (1 - p)llxy — 2 ll
/ 2636 + DA + B llxy, — %71l \
| e+ -l
\+252(1 +8)1 + a,0)|lz, — x*||/

(2.18)

+a €62 + €85 + Pred + €62 + €
p

+p

Denote
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Mo = %41 — X il
Vn =P,
/ 2838 + DA + BrO)llx, — x|
_| @820l =l
bn = \+262(1 +6)A+ a,0)|lz, — x*||/'

+a,e6% + €85 + P + €62+ €

It is now easy to check that (2.18) provide the requirements
in Lemma 2 and so, we have

" ~ €
ll™ — & < Y

Example 1 Let X = [0,1] and consider abso absolute value
normon [0,1]. LetT:X — X be the map defined by

sinx? 1
—054+e*+ ,  XE [0,—)
Tx = 2 2
cosx3 N x? c [1 1]
7 "6 FCl2

Fixed point of T isx* = 0.2901809. T satisfies condition
(1.2) with 8§ = 0.69509. So, from Theorem 2, we say that
(1.3) iterative sequence is convergent to x* = 0.2901809.
Now, define T: X — X by

Tx
0.25 + 0.056656e5™* + 0.002351vx 1
3.97105x3 3.18243coshx , XE€ [0,5)
- 105 1021716
— 5
- / 0.13 + 0.68197¢™* + 7'30137’&\ 1
. . e 1013 ' Ye [_'1]
3.21895sinh(1.5708x) 2
- 1034111

By using Wolfram Mathematica 9 software package, we get
|Tx — Tx|| < 0.193344

for all x € X. This means that is T is an approximate oper-

ator of T for a fixed e = 0.193344. On the other hand, fixed
point of T is £ = 0.329663. Indeed, if we put a,, = — ,

n+10
B, = ﬁ foralln € N in (2.11), then we have

£n+1=T9n'
7.=7((1 ! )2+ LI
Yn = n+10/°"Th¥10 “")  (218)
| . A( 1 )A -
=7((1-—— -
kZ" ( 213/t

The following table shows that the sequence {X .}, gen-
erated by (2.18) converges to the fixed point X =
0.329663 € X .
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Number of Iterations | Iterative method (2.18)

0 0.4

1 0.329834
2 0.329663
3 0.329663
4

0.329663

Hence, we obtain

[lx* — %] = 0.0394821.
Actually, without knowing and computing the fixed point
%, we find the following estimate via Theorem 2,

lx* — %] < ﬁ = 0.63410186.
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