

Hacet. J. Math. Stat. Volume $XX(x)$ (XXXX), $1-12$ DOI : 10.15672/hujms.xx

RESEARCH ARTICLE

A new class of ideal Connes amenability

Ahmad Minapoor^{∗1}**D**, Ali Rejali²**D**, Mohammad Javad Mehdipour³**D**

¹*Department of Mathematics, Ayatollah Ozma Borujerdi University, Borujerd, Iran* ²*Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran*

³*Department of Mathe[mat](https://orcid.org/0000-0002-1181-3328)ics, Shiraz Uni[ver](https://orcid.org/0000-0001-7270-665X)sity of Technology, Shiraz 71555-313, Ira[n](https://orcid.org/0000-0002-1266-3392)*

Abstract

In this paper, we introduce the notion of σ −ideally Connes amenable for dual Banach algebras and give some hereditary properties for this new notion. We also investigate *σ*[−]ideally Connes amenability of $\ell^1(G, \omega)$. We show that if ω is a diagonally bounded weight function on discrete group *G* and σ is isometrically isomorphism of $\ell^1(G, \omega)$, then $\ell^1(G, \omega)$ is *σ*−ideally Connes amenable and so it is ideally Connes amenable.

Mathematics Subject Classification (2020). 46H20, 46H25, 43A20

Keywords. dual Banach algebra, amenability, ideal Connes amenable, group algebra

1. Introduction

Let A be a dual Banach algebra, that is, $A = (A_*)^*$ for some a closed submodule A_* of A^* . Let X be a dual Banach A-bimodule such that the maps $a \mapsto a.x$ and $a \mapsto x.a$ from A into *X* are *w ∗−*continuous. Dual Banach A-bimodules of this type are said to be *normal*. For a w^* -continuous endomorphism σ of A , a map $D : A \to X$ is called a w^* -continuous *σ−derivation* if it is *w ∗* -continuous and

$$
D(ab) = D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b)
$$

for all $a, b \in A$. Also, *D* is called an *inner* σ *−derivation* if there exists $x \in X$ such that

$$
D(a) = \delta_x^{\sigma}(a) := \sigma(a) \cdot x - x \cdot \sigma(a)
$$

for all $a \in \mathcal{A}$. The space of all *w*^{*}-continuous (inner) σ -derivations from \mathcal{A} into *X* is denoted by $(\mathcal{N}^1_\sigma(A, X),$ respectively) $\mathcal{Z}^1_{\sigma,w^*}(A, X)$. Let

$$
\mathcal{H}^1_{\sigma,w^*}(\mathcal{A},X)=\frac{\mathcal{Z}^1_{\sigma,w^*}(\mathcal{A},X)}{\mathcal{N}^1_\sigma(\mathcal{A},X)}.
$$

Similar to the concept of amenability, A is said to be σ *− Connes amenable* if for every normal dual module *X*,

$$
\mathcal{H}^1_{\sigma,w^*}(\mathcal{A},X) = \{0\};
$$

[∗]Corresponding Author.

Email addresses: shp_np@yahoo.com (A. Minapoor), rejali@sci.ui.ac.ir (A. Rejali),

mehdipour@sutech.ac.ir (M. J. Mehdipour)

Received: 09.10.2023; Accepted: 02.01.2024

or equivalently, every w^* -continuous σ -derivation from A into X is an inner σ -derivation [13]. In this case, if *X* is a w^* -closed two-sided ideal \mathcal{I} in \mathcal{A} , then \mathcal{A} is called $\sigma - \mathcal{I}$ -*Connes amenable*, and if for every w^{*}-closed two-sided ideal J in A, the dual Banach algebra A is σ − J−Connes amenable, then *A* is called σ −*ideally Connes amenable.*

The concept of normal dual Banach bimodule was introduced by Johnson, Kadison, [and](#page-11-0) Ringrose [6]. They also have studied the *n−*dimensional normal cohomology group $\mathcal{H}_{w^*}^n(\mathcal{A}, X)$ and gave conditions that

$$
\mathcal{H}_{w^*}^n(\mathcal{A}, X) = \{0\},\
$$

when A is a un[it](#page-11-1)al *C ∗−*algebra. One can prove that every derivation from a von Neumann algebra generated by an increasing sequence of finite dimensional *∗−*algebras to a normal dual Banach bimodule is a coboundary. The converse of this result was proved by Connes [3]. Also, Connes [2] called a von Neumann algebra A *amenable* if

$$
\mathcal{H}_{w^*}^1(\mathcal{A}, X) = \{0\}
$$

for all normal dual Banach A*−*bimodule *X*. Later, Helemskii [4] used the word "*Connes [am](#page-11-2)enable*" instead [o](#page-11-3)f "*amenable*". He proved that the operator *C ∗−*algebra A is Connes amenable if and only if the Banach A –bimodule \overline{A}_* is injective. The first author, Bodaghi and Ebrahimi Bagha [7] generalized the concept of Connes amenability and introduced the notion of ideally Connes amenability for dual Banach algeb[ra](#page-11-4)s. They proved that von Neumann algebras are ideally Connes amenable; see also [12]; for study of the notion of quotient ideal amenability of Banach algebras see [16].

Let A be a dual Ba[na](#page-11-5)ch algebra and I be a weak*∗* -closed two-sided ideal of A. Then I is a dual Banach algebra and also it is a normal Banach A*−*bimodule. A dual Banach algebra A is J−Connes amenable if $\mathcal{H}_{w^*}^1(\mathcal{A}, J) = \{0\}$ and i[s id](#page-11-6)eally Connes amenable if it is I-Connes amenable for every weak*∗* -closed two-si[ded](#page-11-7) ideal I in A; see [7]. Note that I is a dual Banach space with predual $\mathcal{I}_* = \frac{\mathcal{A}_*}{\perp \mathcal{I}}$. Indeed, \mathcal{I} is the weak^{*}-closed subspace of \mathcal{A} and so

$$
(\mathfrak{I}_*)^* = (\frac{\mathcal{A}_*}{\perp \mathfrak{I}})^* = (\perp \mathfrak{I})^\perp = \mathfrak{I}.
$$

Also, \mathcal{I}_* is a submodule of $\frac{\mathcal{A}^*}{\mathcal{I}^{\perp}} = \mathcal{I}^*$. Thus, \mathcal{I} is a dual Banach algebra. Once more, $\perp \mathcal{I}$ is a submodule of $\mathfrak{I}^{\perp} = \left(\frac{\mathcal{A}}{\mathfrak{I}}\right)$ I *∗* and

$$
({}^{\perp}\mathfrak{I})^*=\frac{(\mathcal{A}_*)^*}{({}^{\perp}\mathfrak{I})^{\perp}}=\frac{\mathcal{A}}{\mathfrak{I}}.
$$

So, $\frac{A}{J}$ is a dual Banach space. On the other hand, multiplication in A and $\frac{A}{J}$ is separately weak^{*}-continuous and thus $\frac{A}{J}$ is a dual Banach algebra. For details on this and other important results, refer to $[5, 8, 10, 11]$ and the references therein.

In this paper, we introduce the notion σ – ideally Connes amenability for dual Banach algebras and investigate it. In Section 2, we prove under certain conditions that the ideally Connes amenability and σ − ideally Connes amenability are equivalent. We also prove some hereditary properties [o](#page-11-8)[f](#page-11-9) σ [−](#page-11-10) [id](#page-11-11)eally Connes amenability of dual Banach algebras. In Section 3, we give some examples to illustrate our results. In Section 4, we study *σ−* ideally Connes amenability of the Banach algebra $\ell^1(G, \omega)$ and show that if ω is diagonally bounded and σ is an isometric isomorphism, then $\ell^1(G, \omega)$ is σ – ideally Connes amenable. In particular, $\ell^1(G, \omega)$ is ideally-Connes amenable.

2. *σ−***ideally Connes amenability**

Throughout this section, σ is a w^* -continuous endomorphism of a dual Banach algebra A. Before we give the first our result, let us recall that a dual Banach algebra A is called *ideally Connes amenable* if it is *id*_A − Connes amenable, where *id*_A is the identity map on A.

Proposition 2.1. *Let* A *be a dual Banach algebra. Then the following statements hold.*

- (i) If A is σ − Connes amenable and σ is onto, then A has an identity.
- (ii) *If* A *be* σ -ideally Connes amenable for a w^* -continuous endomorphism $\sigma : A \to A$ *with w ∗ -dense range, then* A *is ideally Connes amenable.*

Proof. (i) First, note that $X = A$ with the following actions is a normal dual Banach A*−*bimodule.

$$
a \cdot x = 0 \quad \text{and} \quad x \cdot a = xa \tag{2.1}
$$

for all $a \in \mathcal{A}$ and $x \in X$. We define the w^* -continuous σ -derivation $D : \mathcal{A} \to X$ by $D(a) = \sigma(a)$. Since *A* is σ −Connes amenable, there exists $x \in X$ such that $D = \delta_x^{\sigma}$. Using the module actins defined in (2.1), for every $a \in \mathcal{A}$ we have

$$
\sigma(a) = \sigma(a) \cdot x - x \cdot \sigma(a)
$$

$$
= 0 - x\sigma(a)
$$

$$
= -x\sigma(a).
$$

It follows that $\sigma(\mathcal{A}) = \mathcal{A}$ has a left identity. Similarly, \mathcal{A} has a right identity. So (i) holds.

(ii) Assume that A is σ -ideally Connes amenable. Let I be a w^* -closed ideal of A and $D: \mathcal{A} \to \mathcal{I}$ be a w^* *-*continuous derivation. It is easy to see that $D \circ \sigma : \mathcal{A} \to \mathcal{I}$ is a *w*^{*}−continuous σ −derivation. So $D \circ \sigma = \delta_x^{\sigma}$ for some $x \in I$. Now, if $a \in \mathcal{A}$, then there exists a net $(a_{\lambda})_{\lambda}$ in A such that $a = \lim_{\lambda} \sigma(a_{\lambda})$. Hence

$$
D(a) = w^* - \lim_{\lambda} D(\sigma(a_{\lambda}))
$$

= $w^* - \lim_{\lambda} (\sigma(a_{\lambda})x - x\sigma(a_{\lambda}))$
= $ax - xa$
= $\delta_x^{id_A}(a)$.

Thus, D is inner. Therefore, A is ideally Connes amenable. \square

Let I be a w^{*}−closed two sided ideal in dual Banach algebra A. It is clear that I is a dual Banach algebra with predual I*∗*. Then we say that I has *the σ−dual trace extension property* if every $\phi \in \mathcal{I}$ with $\delta_{\phi}^{\sigma} = 0$ has an extension τ to A such that $\delta_{\tau}^{id_A} = 0$.

Theorem 2.2. *Let* I *be a w ∗ -closed two sided ideal in dual Banach algebra* A*, and let* $\sigma(\mathfrak{I}) = \mathfrak{I}$ *. Then the following statements hold.*

- (i) *If* \Im *is* σ −*Connes amenable and* $\frac{A}{\Im}$ *is* $\hat{\sigma}$ −*Connes amenable, where* $\hat{\sigma}(a+ \Im) = \sigma(a) + \Im$ *for all* $a \in \mathcal{A}$ *, then* \mathcal{A} *is* σ *− Connes amenable.*
- (ii) *If* A *is σ-ideally Connes amenable and* I *has the σ-dual trace extension property,* $then \frac{A}{J}$ *is* σ -ideally Connes amenable dual Banach algebra.

Proof. (i) Let *X* be a normal dual Banach A*−*bimodule and *D* : A *→ X* be a *w ∗−*continuous *σ*−derivation. It is obvious that *D*[|]_I is a *w*^{*}−continuous *σ*−derivation from J into *X*. By the σ −Connes amenability of J, there exists $x_0 \in X$ such that $D|_{\mathcal{I}} = \delta_{x_0}^{\sigma}$. Set $D_1 = D - \delta_{x_0}^{\sigma}$. Then D_1 is a w^* −continuous σ −derivation vanishes on J. Now let

$$
X_0 = \overline{\operatorname{span}\{x\sigma(a) + \sigma(b)y : a, b \in A, x, y \in X\}}^{w^*}.
$$

Then $\frac{X}{X_0}$ with the following actions is a normal dual Banach $\frac{A}{J}$ -bimodule.

$$
(a+1)(x+X_0) = \sigma(a)x + X_0
$$
 and $(x+X_0)(a+1) = x\sigma(a) + X_0$

for all $a \in \mathcal{A}$ and $x \in X$. We define the w^* -continuous map $\hat{D} : \frac{\mathcal{A}}{\mathcal{I}} \to \frac{X}{X_0}$ by

$$
\langle g_*, \hat{D}(a+J) \rangle = \langle g_*, D_1(a) \rangle,
$$

where $g_* \in (\frac{X}{X_0})$ $\frac{X}{X_0}$ _{\rangle_*} =[⊥] X_0 . Since $D_1|_{\mathcal{I}} = 0$, it follows that \hat{D} is well-defined. For every $a, b \in \mathcal{A}$, we have

$$
\langle g_*, \hat{D}((a+J)(b+J)) \rangle = \langle g_*, D_1(ab) \rangle
$$

\n
$$
= \langle g_*, \sigma(a)D_1(b) + D_1(a)\sigma(b) \rangle
$$

\n
$$
= \langle g_*\sigma(a), D_1(b) \rangle + \langle \sigma(b)g_*, D_1(a) \rangle
$$

\n
$$
= \langle g_* \cdot (a+J), \hat{D}(b+J) \rangle + \langle (b+J) \cdot g_*, \hat{D}(a+J) \rangle
$$

\n
$$
= \langle g_*, (a+J) \cdot \hat{D}(b+J) \rangle + \langle g_*, \hat{D}(a+J) \cdot (b+J) \rangle.
$$

This shows that \hat{D} is a w^* −continuous $\hat{\sigma}$ −derivation, where $\hat{\sigma}(a+1) = \sigma(a) + 1$ for all $a \in A$. So there exists $t \in \frac{X}{X}$ $\frac{X}{X_0}$, such that $\hat{D} = \delta_t^{\hat{\sigma}}$. Thus we have

$$
\langle g_*, D_1(a) \rangle = \langle g_*, \hat{D}(a+1) \rangle
$$

= $\langle g_*, \hat{\sigma}(a+1) \cdot t - t \cdot \hat{\sigma}(a+1) \rangle$
= $\langle g_* \cdot \sigma(a), t \rangle - \langle \sigma(a) \cdot g_*, t \rangle$
= $\langle g_*, \delta_t^{\sigma}(a) \rangle$.

This implies that $D_1 = D - \delta_t^{\sigma}$, and therefore $D = \delta_{x_0-t}^{\sigma}$.

(ii) Let $\frac{3}{5}$ be a *w*^{*}-closed two sided ideal in $\frac{4}{5}$. Then $\frac{3}{5}$ is a *w*^{*}-closed two sided ideal in A. We shall briefly outline the argument. Let $(a_{\alpha})_{\alpha}$ be a net in β , such that $a_{\alpha} \longrightarrow a$ in w^* topology of β , we must show that *a* is in β . It is clear that $a_{\alpha} + \mathcal{I} \longrightarrow a + \mathcal{I}$, in w^* -topology of $\frac{3}{J}$. Note that $(a_{\alpha}+J)_{\alpha}$ is a net in $\frac{3}{J}$. Since $\frac{3}{J}$ is w^{*}-closed, $a+J$ is in $\frac{3}{J}$. Thus a belongs to β , so β is *w*^{*}-closed. Note that [⊥] β is a predual of $\frac{\beta}{\beta}$ and it is also a closed A-submodule of \mathcal{J}_* . Let $\pi_* : \mathcal{J}_* \to {}^{\perp} \mathcal{I}$ be the natural projection A-bimodule homomorphism and $q: \mathcal{A} \to \frac{\mathcal{A}}{\mathcal{I}}$ be the natural quotient map. Now if $D: \frac{A}{J} \to \frac{J}{J}$ is a w^* -continuous σ -derivation, then $\tilde{D} := (\pi_*)^* \circ D \circ q : A \to \mathcal{J}$ is a w^* -continuous σ -derivation. Indeed, if $a, b \in A$ and $j_* \in \mathcal{J}_*,$ then

$$
\langle j_*, \tilde{D}(ab) \rangle = \langle j_*, (\pi_*)^*(D \circ q(ab)) \rangle
$$

\n
$$
= \langle j_*, (\pi_*)^*(D((a+J)(b+J)))) \rangle
$$

\n
$$
= \langle \pi_*(j_*), (\sigma(a)+J) \cdot D(b+J) + D(a+J).(\sigma(b)+J) \rangle
$$

\n
$$
= \langle \pi_*(j_*) \cdot (\sigma(a)+J), D(b+J) \rangle + \langle (\sigma(b)+J) \cdot \pi_*(j_*), D(a+J) \rangle
$$

\n
$$
= \langle \pi_*(j_*) \cdot \sigma(a), D(b+J) \rangle + \langle \sigma(b) \cdot \pi_*(j_*), D(a+J) \rangle
$$

\n
$$
= \langle \pi_*(j_* \cdot \sigma(a), D(b+J) \rangle + \langle \pi_*(\sigma(b) \cdot j_*), D(a+J) \rangle
$$

\n
$$
= \langle j_*, \sigma(a) \cdot (\pi_*)^*(D \circ q(b)) + (\pi_*)^*(D \circ q(a)) \cdot \sigma(b) \rangle
$$

\n
$$
= \langle j_*, \sigma(a) \cdot \tilde{D}(b) + \tilde{D}(a) \cdot \sigma(b) \rangle.
$$

So $\tilde{D}(a) = \delta_{\lambda}^{\sigma}$ for some $\lambda \in \mathcal{J}$. If $i_* \in \mathcal{J}_* = \frac{\mathcal{A}_*}{\perp \mathcal{J}}$, then $i_* \notin \perp \mathcal{J}$. But π_* is the projection on $[⊥]$ *J*. Thus $π_*(i_*) = 0$. That is, $π_* = 0$ on \mathcal{I}_* . Let *m* be the restriction of λ to \mathcal{I}_* , then</sup> $m \in \mathcal{I}$ and for $i_* \in \mathcal{I}_*$, we have

$$
\langle i_*, \sigma(a) \cdot m - m \cdot \sigma(a) \rangle = \langle i_* \cdot \sigma(a) - \sigma(a) \cdot i_*, m \rangle
$$

\n
$$
= \langle i_* \cdot \sigma(a) - \sigma(a) \cdot i_*, \lambda \rangle
$$

\n
$$
= \langle i_*, \sigma(a) \cdot \lambda - \lambda \cdot \sigma(a) \rangle
$$

\n
$$
= \langle i_*, (\pi_*)^* \circ D \circ q(a) \rangle
$$

\n
$$
= \langle \pi_*(i_*), D \circ q(a) \rangle
$$

\n
$$
= 0.
$$

Therefore $\sigma(a) \cdot m = m \cdot \sigma(a)$ for all $a \in \mathcal{A}$. Since I has the σ -dual trace extension property, there exist a $\kappa \in A$ such that $\kappa|_{\mathcal{I}_*} = m$ and $a \cdot \kappa - \kappa \cdot a = 0$ for all $a \in A$. Let τ

be the restriction of κ to \mathcal{J}_* . Then $\tau \in \mathcal{J}$ and $\lambda - \tau = 0$ on \mathcal{J}_* . Therefore $\lambda - \tau \in \frac{\mathcal{J}}{\mathcal{J}}$ $\frac{\partial}{\partial}$. By the surjectivity of π_* , for every $x \in \left(\frac{3}{5}\right)$ $\frac{1}{2}$ ^{*j*}₂ there exists $j_* \in \mathcal{J}_*$ such that $\pi_*(j_*) = x$. So

$$
\langle x, D(a+J) \rangle = \langle \pi_*(j_*), D(a+J) \rangle
$$

= $\langle j_*, \sigma(a) \cdot \lambda - (\sigma(a) \cdot \tau - \tau \cdot a) - \lambda \cdot \sigma(a) \rangle$
= $\langle j_*, \sigma(a) \cdot \lambda - \sigma(a) \cdot \tau + \tau \cdot \sigma(a) - \lambda \cdot \sigma(a) \rangle$
= $\langle j_*, \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \cdot \rangle$

If $j_* \in \perp \mathcal{I}$, then by the definition of π_* , we have $\pi_*(j_*) = j_*$. Thus

$$
\langle j_*, \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \rangle = \langle \pi_*(j_*), \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \rangle
$$

= $\langle x, \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \rangle$.

Hence

$$
D(a+J) = \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a).
$$

This shows that *D* is an inner *σ*-derivation. If $j_* \notin \perp \emptyset$, then $\pi_*(j_*) = 0$. This implies that *D* is also an inner *σ*-derivation. Therefore, $\frac{A}{J}$ is *σ*-ideally Connes amenable. □

In the following, let A^{\sharp} be the unitization of A. It is easy to see that the map $\tilde{\sigma}: A^{\sharp} \to A^{\sharp}$ defined by

$$
\tilde{\sigma}(a+\alpha) = \sigma(a) + \alpha \quad (a \in \mathcal{A}, \alpha \in \mathbb{C})
$$

is a *w ∗−*continuous endomorphism.

Theorem 2.3. *Let* A *be a dual Banach algebra. Then the following statements hold.*

- (i) *If* A^{\sharp} *is* $\tilde{\sigma}$ −*ideally Connes amenable, then* A *is* σ −*ideally Connes amenable.*
- (ii) *If* $H^1_{\tilde{\sigma},w^*}(\mathcal{A}^\sharp,\mathcal{A}^\sharp) = \{0\}$, then $H^1_{\sigma,w^*}(\mathcal{A},\mathcal{A}) = \{0\}$.
- (iii) If σ *is idempotent and* \mathfrak{I} *is a* w^* *−closed two sided ideal of* \mathcal{A} *with a bounded approximate identity and* $\sigma(\mathcal{I}) = \mathcal{I}$ *, then* $H^1_{\sigma,w^*}(\mathcal{I},\mathcal{I}) = \{0\}$ *if and only if* $H^1_{\sigma,w^*}(\mathcal{A},\mathcal{I}) = \{0\}$ *.*

Proof. (i) Let $D: \mathcal{A} \to \mathcal{I}$ be a w^* −continuous σ −derivation. Define the weak^{*}−continuous $\tilde{\sigma}$ −derivation $\tilde{D}: A^{\sharp} \to \mathcal{I}$ by $\tilde{D}(a + \alpha) = D(a)$. Since A^{\sharp} is $\tilde{\sigma}$ −ideally Connes amenable, it follows that $\tilde{D} = \delta_a^{\tilde{\sigma}}$ for some $a \in \mathcal{A}$. Hence for every $b \in \mathcal{A}$, we have

$$
D(b) = \tilde{D}(b + \alpha)
$$

= $\tilde{\sigma}(b + \alpha) \cdot a - a \cdot \tilde{\sigma}(b + \alpha)$
= $\sigma(b) \cdot a - a \cdot \sigma(b).$ (2.2)

This shows that *D* is σ −inner. Thus *A* is σ −ideally Connes amenable.

(ii) This follows from (i) and the fact that A is a normal \mathcal{A}^{\sharp} −bimodule with the following module action.

$$
(a + \alpha) \cdot b = a \cdot b + \alpha b
$$
 and $b \cdot (a + \alpha) = b \cdot a + \alpha b$,

for all $a, b \in A$ and $\alpha \in \mathbb{C}$.

(iii) Assume that $H^1_{\sigma,w^*}(\mathcal{I},\mathcal{I}) = \{0\}$. Let $D : \mathcal{A} \to \mathcal{I}$ be a w^* -continuous σ -derivation and $i: \mathcal{I} \to \mathcal{A}$ be the inclusion map. Then $d = D | \mathcal{I} : \mathcal{I} \to \mathcal{I}$ is a w^* -continuous *σ*[−]derivation. So there exists $t_0 \in \mathcal{I}$ such that $d = \delta_{t_0}^{\sigma}$. Since \mathcal{I} has a bounded approximate identity and $\sigma(\mathcal{I}) = \mathcal{I}$, we have

$$
\overline{\sigma(\mathfrak{I}^2)} = \overline{\mathfrak{I}^2} = \mathfrak{I}.
$$

On the other hand,

$$
\mathfrak{I} = \sigma(\mathfrak{I}) \cdot \mathfrak{I} \cdot \sigma(\mathfrak{I}).
$$

Thus $\mathcal{I}_* = \sigma(\mathcal{I}) \cdot \mathcal{I}_* \cdot \sigma(\mathcal{I})$. So for every $i, j \in \mathcal{I}$ and $i_* \in \mathcal{I}_*$, we have

$$
\langle \sigma(i)i_*\sigma(j), D(a) \rangle = \langle \sigma(i)i_*, \sigma(j)D(a) \rangle \n= \langle \sigma(i)i_*, D(ja) - D(j)\sigma(a) \rangle \n= \langle \sigma(i)i_*, \sigma(ja)t_0 - t_0\sigma(ja) \rangle \n- \langle \sigma(i)i_*, (\sigma(j)t_0 - t_0\sigma(j))\sigma(a) \rangle \n= \langle \sigma(i)i_*\sigma(j), \sigma(a)t_0 - t_0\sigma(a) \rangle \n= \langle \sigma(i)i_*\sigma(j), \delta_{t_0}^{\sigma}(a) \rangle.
$$

It follows that $D = \delta_{t_0}^{\sigma}$. So *D* is σ −inner.

Conversly, let $\mathcal{H}_{\sigma,w^*}^1(\mathcal{A},I) = \{0\}$, and $D: \mathcal{I} \to \mathcal{I}$ be a w^* -continuous σ -derivation. Note that I is neo-unital Banach I*−*bimodule. So

$$
\mathfrak{I} = \sigma(\mathfrak{I}) \cdot \mathfrak{I} \cdot \sigma(\mathfrak{I}).
$$

In view of [[14], Proposition 4.14], there exists a σ -derivation \hat{D} : A \rightarrow I such that $\hat{D}|_{\mathcal{I}} = D$. From hypothesis we infer that \hat{D} is σ *−*inner. Thus $H^1_{\sigma,w^*}(\mathcal{I},\mathcal{I}) = \{0\}.$ □

Let A be a dual Banach algebra. Recall that A is called *Connes amenable* if it is *id*_A−Connes [am](#page-11-12)enable. Also, A is said to be *weakly amenable* if every continuous derivation from A into A^* is inner; for more details see [15].

Theorem 2.4. Let A and B be dual Banach algebras and $\phi : A \rightarrow B$ be a w^* *-continuous epimorphism. If* A *is either Connes amenable or commutative weakly amenable dual Banach algebra, then* \mathcal{B} *is* $\bar{\sigma}$ −*ideally Connes amena[ble,](#page-11-13) where* $\bar{\sigma}$ *is a weak^{*}*−*continuous endomorphism of* B*.*

Proof. Let J be a w^{*}-closed two sided ideal of B. Then J is a normal dual A−bimodule with the following actions.

$$
a \cdot i = \bar{\sigma}(\phi(a)) \cdot i
$$
 and $i \cdot a = i \cdot \bar{\sigma}(\phi(a))$

for all $a \in \mathcal{A}$ and $i \in \mathcal{I}$. It is easy to check that if $D : \mathcal{B} \to \mathcal{I}$ is a w^* *-*continuous $\bar{\sigma}$ −derivation, then $D \circ \phi : A \to \mathcal{I}$ is a w^* −continuous $\bar{\sigma} \circ \phi$ −derivation.

If A is Connes amenable, then there exists $t \in \mathcal{I}$ such that

$$
D \circ \phi(a) = \delta_t^{id_{\mathcal{A}}}(a) = \delta_t^{\bar{\sigma} \circ \phi}(a) = \delta_t^{\bar{\sigma}}(\phi(a)).
$$

Since ϕ is an epimorphism, $D = \delta_t^{\bar{\sigma}}$. Therefore, *D* is a $\bar{\sigma}$ −inner derivation. Thus B is *σ*−ideally Connes amenable.

If A is commutative weakly amenable, then B is commutative and so J is a symmetric Banach B–bimodule. Hence J is a symmetric Banach A–bimodule and $\mathcal{H}^1(\mathcal{A}, I) = \{0\}.$ So $D \circ \phi = 0$. Consequently $D = 0$. Therefore, B is σ -ideally Connes amenable. □

3. Some examples

In this section, we give some examples to illustrate the new notion of *σ−*ideally Connes amenability introduced in this work. These examples show that the notion of *σ−*ideally Connes amenability is different from ideally Connes amenable. In doing this, we give some examples of *σ−*ideally Connes amenable dual Banach algebras that are not ideally Connes amenable.

Example 3.1. Let A be a dual Banach algebra, and let φ be a non-zero linear functional on *A*. Let A_{φ} be the Banach algebra *A* equipped with the following product.

$$
a \cdot b = \varphi(a)b.
$$

Then (A_{φ}, \cdot) is a Banach algebra. Note that φ is a linear functional on *A* and thus $\varphi(a) \in \mathbb{C}$ for all $a \in A$. Hence

$$
a \cdot (b \cdot c) = a \cdot (\varphi(b)c) = \varphi(a)\varphi(b)c
$$

= $\varphi(\varphi(a)b)c = \varphi(a \cdot b)c$
= $(a \cdot b) \cdot c$

for all $a, b, c \in \mathcal{A}$. This shows that the multiplication is associative. Since the product "*·*" is separately w^* −continuous, \mathcal{A}_{φ} is a dual Banach algebra. It is clear that \mathcal{A}_{φ} has a left identity, say *e*, but it does not have bounded right approximate identity. So A_{φ} is not ideally Connes amenable; see [[7], Proposition 2.3].

We define the w^* -continuous endomorphism $\sigma : A_{\varphi} \to A_{\varphi}$ by

$$
\sigma(a) = \varphi(a)e.
$$

For every $a \in \mathcal{A}$, we have

$$
\sigma^2(a) = \sigma(\varphi(a)e) = \varphi(a)\sigma(e) = \sigma(a).
$$

Thus σ is idempotent. Obviously, *e* is identity for $\sigma(\mathcal{A}_{\varphi})$.

We claim that any non-trivial two-sided ideal of A_{φ} is contained in ker φ , and that any closed subspace of ker φ is a closed two-sided ideal. Indeed, let $\mathcal{I} \leq \mathcal{A}_{\varphi}$ be a non-trivial two-sided ideal, so for $a \in \mathcal{I}$, $b \in \mathcal{A}$ we have $\varphi(a)b = a \cdot b \in \mathcal{I}$. Letting *b* vary and using that $\mathcal{I} \neq \mathcal{A}$ shows that $\varphi(a) = 0$, so $\mathcal{I} \subseteq \text{ker}\varphi$. Conversely, if $\mathcal{I} \subseteq \text{ker}\varphi$ is a closed subspace, then $a \cdot b = 0$ for each $a \in I$, $b \in A$, while $b \cdot a = \varphi(b)a \in I$, showing that I is a two-sided ideal.

Let $\tilde{D}: A_{\varphi} \to A_{\varphi}$ be a non-zero w^* -continuous σ -derivation. Then for every $a, b \in A_{\varphi}$, we have

$$
\tilde{D}(a \cdot b) = \sigma(a) \cdot \tilde{D}(b) + \tilde{D}(a) \cdot \sigma(b).
$$

Hence

$$
\varphi(a) \cdot \tilde{D}(b) = \varphi(a) \cdot e \cdot \tilde{D}(b) + \tilde{D}(a) \cdot \varphi(b) \cdot e
$$

=
$$
\varphi(a) \cdot \tilde{D}(b) + \varphi(b) \cdot \tilde{D}(a) \cdot e.
$$

Thus $\varphi(b)\tilde{D}(a) \cdot e = 0$. Since $\varphi \neq 0$, we have $\tilde{D}(a) \cdot e = 0$. Thus $\varphi(\tilde{D}(a))e = 0$, so we conclude that $e = 0$, that is a contradiction. It means that every σ −derivation is zero, so it is inner. Thus A_{φ} is σ −ideally Connes amenable.

Example 3.2. Let $A = \ell^1(\mathbb{N})$ be equipped with the product

$$
f \cdot g = f(1)g
$$

and the norm $\|.\|_1$; see [18]. It is easy to see that A does not have bounded approximate identity. So A is not ideally Connes amenable [7].

For $f \in \mathcal{A}$, define the mapping $\tilde{f} : \mathbb{N} \to \mathbb{C}$, by $\tilde{f}(1) = 0$ and $\tilde{f}(n) = f(n)$ for $n \geq 2$. Then $f = f \cdot e + \tilde{f}$, whe[re](#page-11-14) $e \in \ell^1(\mathbb{N})$ is defined by

$$
e_n = \begin{cases} 1 & n = 1 \\ 0 & n \neq 1. \end{cases}
$$

Let I be a weak^{*}-closed two-sided ideal of A with $\mathcal{I} \neq \mathcal{A}$. Then I is contained in

$$
\{f \in \mathcal{A} : f(1) = 0\}.
$$

We define the w^* –continuous idempotent endomorphism σ on A , be such that for all $a \in \ell^1(\mathbb{N})$

$$
\sigma(a)(1) = a(1).
$$

Let $D: \mathcal{A} \to \mathcal{I}$ be a weak^{*}-continuous σ -derivation. Then

$$
D(f) = \sigma(f)(1)D(e) + D(f),
$$

Since $D(f) \in \mathcal{I}$ and $D(f)(1) = 0$, it follows that

$$
D(\tilde{f}) \cdot \sigma(e) = D(\tilde{f})(1)\sigma(e) = 0.
$$

So for every $g \in A_*$, we have

$$
\langle D(\widetilde{f}), g \rangle = \langle D(\widetilde{f}), \sigma(e) \cdot g \rangle = \langle D(\widetilde{f}) \cdot \sigma(e), g \rangle = 0.
$$

Hence $D(f) = 0$. From $D(e) \in \mathcal{I}$ and $D(e)(1) = 0$ we infer that $D(e) \cdot \sigma(f) = 0$. So

$$
D(f) = \sigma(f)(1)D(e)
$$

= $\sigma(f) \cdot D(e)$
= $\sigma(f) \cdot D(e) - D(e) \cdot \sigma(f)$.

Therefore $H^1_{\sigma,w^*}(\mathcal{A},\mathcal{I})=\{0\}.$

Let $a \in \ell^1(\mathbb{N})$. Then there is a sequence $\{a_n\}$ in $c_0(\mathbb{N})$ such that $a_n \to a$ in the w^* -topology. For $f \in c_0(\mathbb{N})^*$, define the linear functional $\hat{f} \in \ell^1(\mathbb{N})^*$ by

$$
\langle a, \hat{f} \rangle := w^* - \lim_{n} \langle a_n, f \rangle.
$$

This enables us to define the left and right module actions of $\ell^1(\mathbb{N})$ on $c_0(\mathbb{N})^*$ by

$$
a \cdot f = \langle a, \hat{f} \rangle e
$$
 and $f \cdot a = a(1)f$.

It is easy to prove that $c_0(\mathbb{N})^*$ is an $\ell^1(\mathbb{N})$ -bimodule. Let *D* be a weak^{*}-continuous *σ*[−]derivation from $\ell^1(\mathbb{N})$ to $\ell^1(\mathbb{N}) \cong c_0(\mathbb{N})^*$. For all $a \in \ell^1(\mathbb{N})$, we have

$$
a(1)D(a) = D(a2)
$$

= D(a) · \sigma(a) + \sigma(a) · D(a)
= \sigma(a)(1)D(a) + \langle \sigma(a), D(a) \rangle e.

This shows that

$$
\langle \sigma(a), D(a) \rangle = 0.
$$

So for every $a, b \in \ell^1(\mathbb{N})$, we have

$$
0 = \langle \sigma(ab), D(ab) \rangle
$$

\n
$$
= \langle \sigma(ab), D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b) \rangle
$$

\n
$$
= \langle \sigma(a). \sigma(b), \sigma(b)(1)D(a)
$$

\n
$$
+ \langle \sigma(a). D(b)e \rangle
$$

\n
$$
= \langle \sigma(a). \sigma(b), \sigma(b)(1)D(a) \rangle
$$

\n
$$
+ \langle \sigma(a). D(b) \rangle \langle \sigma(a) \sigma(b), e \rangle
$$

\n
$$
= \sigma(b)(1) \langle \sigma(a). \sigma(b), D(a) \rangle
$$

\n
$$
+ \sigma(a)(1) \sigma(b)(1) \langle \sigma(a). D(b) \rangle
$$

\n
$$
= \sigma(b)(1). \sigma(a)(1) \langle \sigma(b). D(a) \rangle
$$

\n
$$
+ \sigma(a)(1) \sigma(b)(1) \langle \sigma(a). D(b) \rangle.
$$

It follows that

$$
\langle \sigma(a), D(b) \rangle = -\langle \sigma(b), D(a) \rangle.
$$

Let $t \in \sigma(\mathcal{A})$. Then there exists $b \in \ell^1(\mathbb{N})$ such that $t = \sigma(b) = \sigma^2(b)$. Thus

$$
\langle t, D(a) \rangle = \langle t, D(ea) \rangle
$$

\n
$$
= \langle t, D(e) \cdot \sigma(a) \rangle + \langle t, \sigma(e) \cdot D(a) \rangle
$$

\n
$$
= \langle \sigma(a).t, D(e) \rangle + \langle t. \sigma(e), D(a) \rangle
$$

\n
$$
= \langle \sigma(a). \sigma^2(b), D(e) \rangle + \langle \sigma^2(b). \sigma(e), D(a) \rangle
$$

\n
$$
= \langle \sigma(a). \sigma(b), D(e) \rangle + \langle \sigma(\sigma(b).e), D(a) \rangle
$$

\n
$$
= \langle \sigma(a). \sigma(b), D(e) \rangle - \langle \sigma(a). D(\sigma(b).e) \rangle
$$

\n
$$
= \langle \sigma(a). \sigma(b), D(e) \rangle - \langle \sigma(a). \sigma(b)(1) D(e) \rangle
$$

\n
$$
= \langle \sigma(b). D(e) \cdot \sigma(a) \rangle - \langle \sigma(a). D(e) \cdot \sigma(b) \rangle
$$

\n
$$
= \langle \sigma(b). D(e) \cdot \sigma(a) \rangle - \langle \sigma(b). \sigma(a). D(e) \rangle
$$

\n
$$
= \langle t, D(e) \cdot \sigma(a) - \sigma(a) \cdot D(e) \rangle.
$$

Hence

$$
D(a) = D(e) \cdot \sigma(a) - \sigma(a) \cdot D(e) = \delta_{-D(e)}^{\sigma}(a).
$$

Therefore, $\ell^1(\mathbb{N})$ is σ −ideally Connes amenable.

Example 3.3. Let A be a non-ideally Connes amenable Banach algebra with a right approximate identity. It is known from [7] that A^{\sharp} is not ideally Connes amenable. Define the w^* –continuous map $\sigma : \mathcal{A}^{\sharp} \to \mathcal{A}^{\sharp}$ by

$$
\sigma(a+\alpha)=\alpha.
$$

Let $(e_{\alpha})_{\alpha \in \Lambda}$ be a right approximate iden[ti](#page-11-5)ty for A, and let I be a w^* -closed two-sided ideal in A^{\sharp} . If $D : A^{\sharp} \to \mathcal{I}$ is a w^* *-continuous* σ -derivation, then a simple calculation shows that $D(ae_{\alpha}) = 0$, for all $a \in \mathcal{A}$ and $\alpha \in \Lambda$. Consequently, $D(a) = 0$. If $e_{\mathcal{A}^{\sharp}}$ denotes the identity element of A^{\sharp} , then

$$
D(a + \alpha e_{\mathcal{A}^{\sharp}}) = D(a) + \alpha D(e_{\mathcal{A}^{\sharp}}) = 0.
$$

That is, $D = 0$ and so \mathcal{A}^{\sharp} is σ -ideally Connes amenable.

4. σ −ideally Connes amenability of $\ell^1(G, \omega)$

Let us recall that a Banach space *E* is called an *L−embedded Banach space* if it is an *l* ¹*−* summand in its bidual.

The following theorem is proved in [1] is needed to prove the main result of this section.

Theorem 4.1. *Let E be an L−embedded Banach space and F be a non-empty bounded subset of E. Then the family of isometry maps of E preserving F has a common fixed point in F.*

Let *G* be a discrete group and ω : $G \to [1, \infty)$ be a weight function, i.e, $\omega(e) = 1$ and

$$
\omega(xy) \le \omega(x)\omega(y)
$$

for all $x, y \in G$. Let us recall that a weight function ω on G is called *diagonally bounded* if $\sup_{x \in G} (\omega(x) \omega(x^{-1}))$ is finite. Also, recall that $\ell^1(G, \omega)$ denotes the space of all complexvalued functions on *G* such that $\omega f \in \ell^1(G)$. For details on these algebras, refer to [9] and the references therein.

We know that $\ell^1(G)$ is *L*−embedded, and since $\ell^1(G, \omega)$ is isometrically isomorphic to *`* 1 (*G*) as a Banach space (although not as a Banach algebra), it too must be *L−*embedded. We show that a weak^{*}-closed linear subspace of $\ell^1(G)$ is *L*−embedded. We shall brie[fly](#page-11-15) outline the argument. Let $i : c_0(G) \hookrightarrow \ell^{\infty}(G)$ be the canonical embedding, and let $p = i^*$. Then *p* is the projection $\ell^1(G)^{**} \longrightarrow \ell^1(G)$ witnessing its *L*−embeddedness, that is to say

$$
\|\Phi\| = \|p(\Phi)\| + \|(id - p)(\Phi)\| \ (\Phi \in \ell^1(G)^{**}).\tag{4.1}
$$

Let *I* be a weak^{*}-closed linear subspace of $\ell^1(G)$, and let $j : c_0(G)/I_{\perp} \longrightarrow l^{\infty}(G)/I^{\perp}$ be the map

$$
j: x + I_{\perp} \longmapsto i(x) + I^{\perp} \quad (x \in c_0(G)).
$$

Then *j* can be thought of an embedding $I_* \hookrightarrow I^*$. Let $q = j^* : I^{\perp \perp} \longrightarrow I$. Canonically *I*^{⊥⊥} \cong *I*^{**} (isometrically) and we can check that $p|_{I^{\perp\perp}} = q$. A simple calculation using Equation (4.1) then shows that

$$
\|\Phi\| = \|q(\Phi)\| + \|(id - q)(\Phi)\| \quad (\Phi \in I^{\perp \perp}),
$$

so that *I* is *L−*embedded.

Theorem [4.2](#page-9-0). Let ω be a diagonally bounded weight function on a discrete group G and *σ* be an isometric isomorphism of $\ell^1(G, \omega)$. Then $\ell^1(G, \omega)$ is σ -ideally Connes amenable.

Proof. Let ω be a weight function on *G*. Fix $a \in G$ and define the weight function ω_a on *G* by

$$
\omega_a(x) = \omega(axa^{-1})
$$

for all $x \in G$. Then for every $x \in G$, we have $\omega_a(x) \leq \omega(a)\omega(a^{-1})\omega(x)$ and

$$
\omega(x) = \omega(a^{-1}(axa^{-1})a)
$$

\n
$$
\leq \omega(a^{-1})\omega(a)\omega(axa^{-1}) = \omega(a^{-1})\omega(a)\omega_a(x).
$$

Now, define the weight function ω' on *G* by $\omega'(x) = \sup_{a \in G} \omega(axa^{-1})$. Since ω is diagonally bounded, there is a constant $m > 0$ such that $\omega(a)\omega(a^{-1}) \leq m$ for every $a \in G$. Hence $\omega(axa^{-1}) \leq \omega(x)\omega(a)\omega(a^{-1}) \leq m\omega(x)$ for every $a \in G$. Thus $\sup_{a \in G} \omega(axa^{-1}) \leq m\omega(x)$, therefore

$$
\omega'(x) \le m\omega(x) \tag{4.2}
$$

On the other hand

$$
\omega(x) = \omega(exe^{-1}) \le \sup_{a \in G} \omega(axa^{-1}) = \omega'(x) \tag{4.3}
$$

Due to relations (4.2) and (4.3) we conclude that ω and ω' are equivalent. Thus $\ell^1(G, \omega)$ and $\ell^1(G, \omega')$ are isometrically isomorphic.

Let *D* be a w^* -continuous derivation from $\ell^1(G, \omega')$ into w^* -closed two sided ideal J of $\ell^1(G, \omega')$. Define the function $h : G \to \mathcal{I}$ by $h(t) = D(\delta_t) * \sigma(\delta_{t-1})$. Since ω is diagonally bounded, ω' does [so.](#page-9-1) T[h](#page-9-2)us *h* is bounded. Indeed, for every $t \in G$, we have

$$
\begin{array}{rcl} \| h(t) \| & = & \| D(\delta_t) * \sigma(\delta_{t^{-1}}) \| \\ & \leq & \| D \parallel \| \delta_t \parallel_{w'} \| \delta_{t^{-1}} \parallel_{w'} \\ & = & \| D \parallel w'(t) w'(t^{-1}). \end{array}
$$

For $t \in G$ and $g \in \mathcal{I}$, define the action

$$
t \cdot g = \sigma(\delta_t) * g * \sigma(\delta_{t^{-1}}).
$$

Then

$$
h(st) = D(\delta_{st}) * \sigma(\delta_{(st)^{-1}}) = D(\delta_s * \delta_t) * \sigma(\delta_{t^{-1}} * \delta_{s^{-1}})
$$

\n
$$
= D(\delta_s) * \sigma(\delta_t) + \sigma(\delta_s) * D(\delta_t) * \sigma(\delta_{t^{-1}}) * \sigma(\delta_{s^{-1}})
$$

\n
$$
= D(\delta_s) * \sigma(\delta_{s^{-1}}) + \sigma(\delta_s) * D(\delta_t) * \sigma(\delta_{t^{-1}}) * \sigma(\delta_{s^{-1}})
$$

\n
$$
= h(s) + s \cdot h(t).
$$

Using *h* we can define another action of *G* on I as follows.

$$
t \bullet g = t \cdot g + h(t) = \sigma(\delta_t) * g * \sigma(\delta_{t^{-1}}) + h(t)
$$

for all $t \in G$ and $g \in \mathcal{I}$. Since σ is an isometric isomorphism of $\ell^1(G, w')$, there exist a continuous character γ : $G \to \mathbb{T}$ and an automorphism ψ on G such that for every $t \in G$,

$$
\sigma(\delta_t) = \frac{w(t)\gamma(t)}{w(\psi(t))}\delta_{\psi(t)};
$$

see [[17] Theorem 2.4]. This implies that " \bullet " is isometry. Thus for every $g_1, g_2 \in \ell^1(G, w'),$ we have

$$
\begin{aligned}\n\parallel t \bullet (g_1 - g_2) \parallel_{1,w'} &= \parallel t \cdot (g_1 - g_2) \parallel_{1,w'} \\
&= \parallel \sigma(\delta_t) * (g_1 - g_2) * \sigma(\delta_{t-1}) \parallel_{1,w'} \\
&= \parallel \frac{w(t)\gamma(t)}{w(\psi(t))} \mid \parallel \frac{w(t^{-1})\gamma(t^{-1})}{w(\psi(t^{-1}))} \mid \sum_{x \in G} (\parallel (g_1 - g_2)(x) \parallel w'(\psi(t^{-1})x\psi(t))) \\
&= \sum_{x \in G} \parallel (g_1 - g_2)(x) \parallel w'(x) \\
&= \parallel g_1 - g_2 \parallel_{1,w'} .\n\end{aligned}
$$

But, for $t \in G$, we have

$$
t \bullet h(G) = \{t \bullet h(s) : s \in G\}
$$

= $\{t \cdot h(s) + h(t) : h \in G\}$
= $\{h(ts) : s \in G\}$
= $h(G)$.

These facts let us to apply Theorem 4.1 to $E = \mathcal{I}$ and $F = h(G)$. So there exists $g \in \mathcal{I}$ such that $t \bullet q = q$ for all $t \in G$. It follows that

$$
D(\delta_t) * \sigma(\delta_{t^{-1}}) = h(t)
$$

= $t \bullet g - t \cdot g$
= $g - t \cdot g$
= $g - \sigma(\delta_t) * g * \sigma(\delta_{t^{-1}}).$

This shows that

$$
D(\delta_t) = g * \sigma(\delta_t) - \sigma(\delta_t) * g.
$$

Since span $\{\delta_t; t \in G\}$ is weak^{*} dense in $\ell^1(G, w')$, we conclude that

$$
D(f) = g * \sigma(f) - \sigma(f) * g = \delta_g^{\sigma}(f)
$$

for all $f \in \ell^1(G, w')$. Thus $\ell^1(G, w')$ is σ -ideally Connes amenable. □

We finish this section with the following result which is an immediate consequence of Theorem 4.2.

Corollary 4.3. Let ω be a diagonally bounded weight function on a discrete group G . *Then* $\ell^1(G, \omega)$ *is ideally Connes amenable.*

5. Conclusion

In this paper, we introduced the concept of σ −ideally Connes amenable for dual Banach algebras. We gave some examples to illustrate this notion and showed that it is different from ideally Connes amenable. We also determined relation between *σ−*ideally Connes amenability of a dual Banach algebra with its unitization, quotient spaces and homomorphic images. Finally, we studied *σ−*ideally Connes amenability of weighted group algebra $\ell^1(G, \omega)$ and proved that if ω is a diagonally bounded weight function on discrete group *G* and σ is isometrically isomorphism of $\ell^1(G, \omega)$, then $\ell^1(G, \omega)$ is σ -ideally Connes

amenable.

Acknowledgment. The authors would like to thank the referee of the paper for invaluable comments.

References

- [1] U. Bader, T. Gelander and N. Monod, *A fixed point theorem for L* 1 *spaces*, Invent. Math. **189** (1), 143-148, 2012.
- [2] A. Connes, *Classification of injective factors. Cases* II_1 , II_∞ , III_λ , $\lambda \neq 1$, Ann. of Math. **104** (1), 73-115, 1976.
- [3] A. Connes, *On the cohomology of operator algebras*, J. Functional Analysis **28** (2), 248-253, 1978.
- [4] A. Y. Helemskii, *Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule*, (Russian); translated from Mat. Sb. **180** (12) (1989), 1680–1690, 1728 Math. USSR-Sb. **68** (2), 555-566, 1991.
- [5] B. E. Johnson, *Cohomology in Banach algebras*, Memoirs of the American Mathematical Society **127**, American Mathematical Society, Providence, R.I., 1972.
- [6] B. E. Johnson, R.V. Kadison and J. R. Ringrose, *Cohomology of operator algebras, III. Reduction to normal cohomology*, Bull. Soc. Math. France **100**, 73-96, 1972.
- [7] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, *Ideal Connes-amenability of dual Banach algebras*, Mediterr. J. Math. **14** (4), Paper No. 174, 12 pp, 2017.
- [8] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, *Derivations on the tensor product of Banach algebras*, J. Math. Ext. **11**, 117-125, 2017.
- [9] A. Minapoor and O.T. Mewomo, *Zero set of ideals in Beurling algebras*, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. **82** (3), 129-138, 2020.
- [10] A. Minapoor, *Approximate ideal Connes amenability of dual Banach algebras and ideal Connes amenability of discrete Beurling algebras*, Eurasian Math. J. **11** (2), 72-85, 2020.
- [11] A. Minapoor, *Ideal Connes amenability of l* 1 *-Munn algebras and its application to semigroup algebras*, Semigroup Forum **102** (3), 756-764, 2021.
- [12] A. Minapoor and A. Zivari-Kazempour, *Ideal Connes-amenability of certain dual Banach algebras*, Complex. Anal. Oper. Th. **17**, 27, 2023.
- [13] M. Mirzavaziri and M. S. Moslehian, *σ-amenability of Banach algebras*, Southeast Asian Bull. Math. **33** (1), 89-99, 2009.
- [14] M. Momeni, T. Yazdanpanah and M. R. Mardanbeigi, *σ-approximately contractible Banach algebras*, Abstr. Appl. Anal. **2012**, Art. ID 653140, 2012.
- [15] V. Runde, *Lectures on Amenability, Lecture Notes in Mathematics*, Springer-Verlag, Berlin-Heidelberg-New York, 2002.
- [16] A. Teymouri, A. Bodaghi and D. E. Bagha, *Derivations into annihilators of the ideals of Banach algebras*, Demonstr. Math. **52** (1), 20–28, 2019.
- [17] S. Zadeh, *Isometric isomorphisms of Beurling algebras*, J. Math. Anal. Appl. **438** (1), 1-13, 2016.
- [18] Y. Zhang, *Weak amenability of a class of Banach algebras*, Canad. Math. Bull. **44**, 504–508, 2001.