$\begin{array}{c} {\rm Hacet.~J.~Math.~Stat.} \\ {\rm Volume~XX\left(x\right)~(XXXX),~1-12} \\ {\rm DOI:10.15672/hujms.xx} \end{array}$ RESEARCH ARTICLE # A new class of ideal Connes amenability Ahmad Minapoor*¹, Ali Rejali², Mohammad Javad Mehdipour³ ¹Department of Mathematics, Ayatollah Ozma Borujerdi University, Borujerd, Iran ²Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran #### Abstract In this paper, we introduce the notion of σ -ideally Connes amenable for dual Banach algebras and give some hereditary properties for this new notion. We also investigate σ -ideally Connes amenability of $\ell^1(G,\omega)$. We show that if ω is a diagonally bounded weight function on discrete group G and σ is isometrically isomorphism of $\ell^1(G,\omega)$, then $\ell^1(G,\omega)$ is σ -ideally Connes amenable and so it is ideally Connes amenable. Mathematics Subject Classification (2020). 46H20, 46H25, 43A20 **Keywords.** dual Banach algebra, amenability, ideal Connes amenable, group algebra ## 1. Introduction Let \mathcal{A} be a dual Banach algebra, that is, $\mathcal{A}=(\mathcal{A}_*)^*$ for some a closed submodule \mathcal{A}_* of \mathcal{A}^* . Let X be a dual Banach \mathcal{A} -bimodule such that the maps $a\mapsto a.x$ and $a\mapsto x.a$ from \mathcal{A} into X are w^* -continuous. Dual Banach \mathcal{A} -bimodules of this type are said to be normal. For a w^* -continuous endomorphism σ of \mathcal{A} , a map $D:\mathcal{A}\to X$ is called a w^* -continuous σ -derivation if it is w^* -continuous and $$D(ab) = D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b)$$ for all $a, b \in \mathcal{A}$. Also, D is called an inner σ -derivation if there exists $x \in X$ such that $$D(a) = \delta_x^{\sigma}(a) := \sigma(a) \cdot x - x \cdot \sigma(a)$$ for all $a \in \mathcal{A}$. The space of all w^* -continuous (inner) σ -derivations from \mathcal{A} into X is denoted by $(\mathcal{N}^1_{\sigma}(\mathcal{A},X),$ respectively) $\mathcal{Z}^1_{\sigma,w^*}(\mathcal{A},X)$. Let $$\mathcal{H}^1_{\sigma,w^*}(\mathcal{A},X) = \frac{\mathcal{I}^1_{\sigma,w^*}(\mathcal{A},X)}{\mathcal{N}^1_{\sigma}(\mathcal{A},X)}.$$ Similar to the concept of amenability, \mathcal{A} is said to be σ -Connes amenable if for every normal dual module X, $$\mathcal{H}^1_{\sigma,w^*}(\mathcal{A},X) = \{0\};$$ Email addresses: shp_np@yahoo.com (A. Minapoor), rejali@sci.ui.ac.ir (A. Rejali), mehdipour@sutech.ac.ir (M. J. Mehdipour) Received: 09.10.2023; Accepted: 02.01.2024 ³Department of Mathematics, Shiraz University of Technology, Shiraz 71555-313, Iran ^{*}Corresponding Author. or equivalently, every w^* -continuous σ -derivation from \mathcal{A} into X is an inner σ -derivation [13]. In this case, if X is a w^* -closed two-sided ideal \mathcal{I} in \mathcal{A} , then \mathcal{A} is called $\sigma - \mathcal{I} - Connes$ amenable, and if for every w^* -closed two-sided ideal \mathcal{I} in \mathcal{A} , the dual Banach algebra \mathcal{A} is $\sigma - \mathcal{I}$ -Connes amenable, then \mathcal{A} is called σ -ideally Connes amenable. The concept of normal dual Banach bimodule was introduced by Johnson, Kadison, and Ringrose [6]. They also have studied the n-dimensional normal cohomology group $\mathcal{H}_{nr}^n(\mathcal{A},X)$ and gave conditions that $$\mathcal{H}_{w^*}^n(\mathcal{A}, X) = \{0\},\$$ when \mathcal{A} is a unital C^* -algebra. One can prove that every derivation from a von Neumann algebra generated by an increasing sequence of finite dimensional *-algebras to a normal dual Banach bimodule is a coboundary. The converse of this result was proved by Connes [3]. Also, Connes [2] called a von Neumann algebra \mathcal{A} amenable if $$\mathcal{H}^1_{w^*}(\mathcal{A}, X) = \{0\}$$ for all normal dual Banach \mathcal{A} -bimodule X. Later, Helemskii [4] used the word "Connes amenable" instead of "amenable". He proved that the operator C^* -algebra \mathcal{A} is Connes amenable if and only if the Banach \mathcal{A} -bimodule $\bar{\mathcal{A}}_*$ is injective. The first author, Bodaghi and Ebrahimi Bagha [7] generalized the concept of Connes amenability and introduced the notion of ideally Connes amenability for dual Banach algebras. They proved that von Neumann algebras are ideally Connes amenable; see also [12]; for study of the notion of quotient ideal amenability of Banach algebras see [16]. Let \mathcal{A} be a dual Banach algebra and \mathcal{I} be a weak*-closed two-sided ideal of \mathcal{A} . Then \mathcal{I} is a dual Banach algebra and also it is a normal Banach \mathcal{A} -bimodule. A dual Banach algebra \mathcal{A} is \mathcal{I} -Connes amenable if $\mathcal{H}^1_{w^*}(\mathcal{A}, \mathcal{I}) = \{0\}$ and is ideally Connes amenable if it is \mathcal{I} -Connes amenable for every weak*-closed two-sided ideal \mathcal{I} in \mathcal{A} ; see [7]. Note that \mathcal{I} is a dual Banach space with predual $\mathcal{I}_* = \frac{\mathcal{A}_*}{\perp \mathcal{I}}$. Indeed, \mathcal{I} is the weak*-closed subspace of \mathcal{A} and so $$(\mathfrak{I}_*)^* = (\frac{\mathcal{A}_*}{\perp \mathfrak{I}})^* = (^{\perp} \mathfrak{I})^{\perp} = \mathfrak{I}.$$ Also, \mathcal{I}_* is a submodule of $\frac{\mathcal{A}^*}{\mathcal{I}^{\perp}} = \mathcal{I}^*$. Thus, \mathcal{I} is a dual Banach algebra. Once more, $^{\perp}\mathcal{I}$ is a submodule of $\mathcal{I}^{\perp} = \left(\frac{\mathcal{A}}{\mathcal{I}}\right)^*$ and $$({}^{\perp}\mathfrak{I})^* = \frac{(\mathcal{A}_*)^*}{({}^{\perp}\mathfrak{I})^{\perp}} = \frac{\mathcal{A}}{\mathfrak{I}}.$$ So, $\frac{A}{J}$ is a dual Banach space. On the other hand, multiplication in A and $\frac{A}{J}$ is separately weak*-continuous and thus $\frac{A}{J}$ is a dual Banach algebra. For details on this and other important results, refer to [5,8,10,11] and the references therein. In this paper, we introduce the notion $\sigma-$ ideally Connes amenability for dual Banach algebras and investigate it. In Section 2, we prove under certain conditions that the ideally Connes amenability and $\sigma-$ ideally Connes amenability are equivalent. We also prove some hereditary properties of $\sigma-$ ideally Connes amenability of dual Banach algebras. In Section 3, we give some examples to illustrate our results. In Section 4, we study $\sigma-$ ideally Connes amenability of the Banach algebra $\ell^1(G,\omega)$ and show that if ω is diagonally bounded and σ is an isometric isomorphism, then $\ell^1(G,\omega)$ is $\sigma-$ ideally Connes amenable. In particular, $\ell^1(G,\omega)$ is ideally-Connes amenable. ### 2. σ -ideally Connes amenability Throughout this section, σ is a w^* -continuous endomorphism of a dual Banach algebra \mathcal{A} . Before we give the first our result, let us recall that a dual Banach algebra \mathcal{A} is called *ideally Connes amenable* if it is $id_{\mathcal{A}}$ -Connes amenable, where $id_{\mathcal{A}}$ is the identity map on \mathcal{A} . **Proposition 2.1.** Let A be a dual Banach algebra. Then the following statements hold. - (i) If A is σ -Connes amenable and σ is onto, then A has an identity. - (ii) If \mathcal{A} be σ -ideally Connes amenable for a w^* -continuous endomorphism $\sigma: \mathcal{A} \to \mathcal{A}$ with w^* -dense range, then \mathcal{A} is ideally Connes amenable. **Proof.** (i) First, note that $X = \mathcal{A}$ with the following actions is a normal dual Banach \mathcal{A} -bimodule. $$a \cdot x = 0$$ and $x \cdot a = xa$ (2.1) for all $a \in \mathcal{A}$ and $x \in X$. We define the w^* -continuous σ -derivation $D : \mathcal{A} \to X$ by $D(a) = \sigma(a)$. Since \mathcal{A} is σ -Connes amenable, there exists $x \in X$ such that $D = \delta_x^{\sigma}$. Using the module actins defined in (2.1), for every $a \in \mathcal{A}$ we have $$\sigma(a) = \sigma(a) \cdot x - x \cdot \sigma(a) = 0 - x\sigma(a) = -x\sigma(a).$$ It follows that $\sigma(A) = A$ has a left identity. Similarly, A has a right identity. So (i) holds. (ii) Assume that \mathcal{A} is σ -ideally Connes amenable. Let \mathcal{I} be a w^* -closed ideal of \mathcal{A} and $D: \mathcal{A} \to \mathcal{I}$ be a w^* -continuous derivation. It is easy to see that $D \circ \sigma: \mathcal{A} \to \mathcal{I}$ is a w^* -continuous σ -derivation. So $D \circ \sigma = \delta_x^{\sigma}$ for some $x \in \mathcal{I}$. Now, if $a \in \mathcal{A}$, then there exists a net $(a_{\lambda})_{\lambda}$ in \mathcal{A} such that $a = \lim_{\lambda} \sigma(a_{\lambda})$. Hence $$D(a) = w^* - \lim_{\lambda} D(\sigma(a_{\lambda}))$$ $$= w^* - \lim_{\lambda} (\sigma(a_{\lambda})x - x\sigma(a_{\lambda}))$$ $$= ax - xa$$ $$= \delta_x^{id_{A}}(a).$$ Thus, D is inner. Therefore, A is ideally Connes amenable. Let \mathcal{I} be a w^* -closed two sided ideal in dual Banach algebra \mathcal{A} . It is clear that \mathcal{I} is a dual Banach algebra with predual \mathcal{I}_* . Then we say that \mathcal{I} has the σ -dual trace extension property if every $\phi \in \mathcal{I}$ with $\delta^{\sigma}_{\phi} = 0$ has an extension τ to \mathcal{A} such that $\delta^{id_{\mathcal{A}}}_{\tau} = 0$. **Theorem 2.2.** Let \mathfrak{I} be a w^* -closed two sided ideal in dual Banach algebra \mathcal{A} , and let $\sigma(\mathfrak{I}) = \mathfrak{I}$. Then the following statements hold. - (i) If \Im is σ -Connes amenable and $\frac{A}{\Im}$ is $\hat{\sigma}$ -Connes amenable, where $\hat{\sigma}(a+\Im) = \sigma(a)+\Im$ for all $a \in A$, then A is σ -Connes amenable. - (ii) If A is σ -ideally Connes amenable and I has the σ -dual trace extension property, then $\frac{A}{I}$ is σ -ideally Connes amenable dual Banach algebra. **Proof.** (i) Let X be a normal dual Banach \mathcal{A} -bimodule and $D: \mathcal{A} \to X$ be a w^* -continuous σ -derivation. It is obvious that $D|_{\mathcal{I}}$ is a w^* -continuous σ -derivation from \mathcal{I} into X. By the σ -Connes amenability of \mathcal{I} , there exists $x_0 \in X$ such that $D|_{\mathcal{I}} = \delta_{x_0}^{\sigma}$. Set $D_1 = D - \delta_{x_0}^{\sigma}$. Then D_1 is a w^* -continuous σ -derivation vanishes on \mathcal{I} . Now let $$X_0 = \overline{\operatorname{span}\{x\sigma(a) + \sigma(b)y : a, b \in A, x, y \in X\}}^{w^*}.$$ Then $\frac{X}{X_0}$ with the following actions is a normal dual Banach $\frac{A}{J}$ –bimodule. $$(a+\mathfrak{I})(x+X_0) = \sigma(a)x + X_0$$ and $(x+X_0)(a+\mathfrak{I}) = x\sigma(a) + X_0$ for all $a \in \mathcal{A}$ and $x \in X$. We define the w^* -continuous map $\hat{D}: \frac{\mathcal{A}}{\mathcal{I}} \to \frac{X}{X_0}$ by $$\langle g_*, \hat{D}(a+\mathfrak{I}) \rangle = \langle g_*, D_1(a) \rangle,$$ where $g_* \in (\frac{X}{X_0})_* = ^{\perp} X_0$. Since $D_1|_{\mathfrak{I}} = 0$, it follows that \hat{D} is well-defined. For every $a, b \in \mathcal{A}$, we have $$\langle g_*, \hat{D}((a+\Im)(b+\Im)) \rangle = \langle g_*, D_1(ab) \rangle$$ $$= \langle g_*, \sigma(a)D_1(b) + D_1(a)\sigma(b) \rangle$$ $$= \langle g_*\sigma(a), D_1(b) \rangle + \langle \sigma(b)g_*, D_1(a) \rangle$$ $$= \langle g_* \cdot (a+\Im), \hat{D}(b+\Im) \rangle + \langle (b+\Im) \cdot g_*, \hat{D}(a+\Im) \rangle$$ $$= \langle g_*, (a+\Im) \cdot \hat{D}(b+\Im) \rangle + \langle g_*, \hat{D}(a+\Im) \cdot (b+\Im) \rangle.$$ This shows that \hat{D} is a w^* -continuous $\hat{\sigma}$ -derivation, where $\hat{\sigma}(a+\mathfrak{I})=\sigma(a)+\mathfrak{I}$ for all $a\in A$. So there exists $t\in\frac{X}{X_0}$, such that $\hat{D}=\delta_t^{\hat{\sigma}}$. Thus we have $$\langle g_*, D_1(a) \rangle = \langle g_*, \hat{D}(a+\Im) \rangle$$ $$= \langle g_*, \hat{\sigma}(a+\Im) \cdot t - t \cdot \hat{\sigma}(a+\Im) \rangle$$ $$= \langle g_* \cdot \sigma(a), t \rangle - \langle \sigma(a) \cdot g_*, t \rangle$$ $$= \langle g_*, \delta_t^{\sigma}(a) \rangle.$$ This implies that $D_1 = D - \delta_t^{\sigma}$, and therefore $D = \delta_{x_0 - t}^{\sigma}$. (ii) Let $\frac{\mathcal{J}}{\mathcal{J}}$ be a w^* -closed two sided ideal in $\frac{\mathcal{J}}{\mathcal{J}}$. Then \mathcal{J} is a w^* -closed two sided ideal in \mathcal{A} . We shall briefly outline the argument. Let $(a_{\alpha})_{\alpha}$ be a net in \mathcal{J} , such that $a_{\alpha} \longrightarrow a$ in w^* -topology of \mathcal{J} , we must show that a is in \mathcal{J} . It is clear that $a_{\alpha} + \mathcal{I} \longrightarrow a + \mathcal{I}$, in w^* -topology of $\frac{\mathcal{J}}{\mathcal{J}}$. Note that $(a_{\alpha} + \mathcal{I})_{\alpha}$ is a net in $\frac{\mathcal{J}}{\mathcal{J}}$. Since $\frac{\mathcal{J}}{\mathcal{J}}$ is w^* -closed, $a + \mathcal{I}$ is in $\frac{\mathcal{J}}{\mathcal{J}}$. Thus a belongs to \mathcal{J} , so \mathcal{J} is w^* -closed. Note that ${}^{\perp}\mathcal{I}$ is a predual of $\frac{\mathcal{J}}{\mathcal{J}}$ and it is also a closed \mathcal{J} -submodule of \mathcal{J}_* . Let $\pi_* : \mathcal{J}_* \to {}^{\perp}\mathcal{I}$ be the natural projection \mathcal{J} -bimodule homomorphism and $q : \mathcal{J} \to \frac{\mathcal{J}}{\mathcal{J}}$ be the natural quotient map. Now if $D : \frac{\mathcal{J}}{\mathcal{J}} \to \frac{\mathcal{J}}{\mathcal{J}}$ is a w^* -continuous σ -derivation, then $\tilde{\mathcal{J}} := (\pi_*)^* \circ D \circ q : \mathcal{J} \to \mathcal{J}$ is a w^* -continuous σ -derivation. Indeed, if $a, b \in \mathcal{J}$ and $j_* \in \mathcal{J}_*$, then $$\langle j_*, \tilde{D}(ab) \rangle = \langle j_*, (\pi_*)^* (D \circ q(ab)) \rangle$$ $$= \langle j_*, (\pi_*)^* (D((a+\Im)(b+\Im))) \rangle$$ $$= \langle \pi_*(j_*), (\sigma(a)+\Im) \cdot D(b+\Im) + D(a+\Im).(\sigma(b)+\Im) \rangle$$ $$= \langle \pi_*(j_*) \cdot (\sigma(a)+\Im), D(b+\Im) \rangle + \langle (\sigma(b)+\Im) \cdot \pi_*(j_*), D(a+\Im) \rangle$$ $$= \langle \pi_*(j_*) \cdot \sigma(a), D(b+\Im) \rangle + \langle \sigma(b) \cdot \pi_*(j_*), D(a+\Im) \rangle$$ $$= \langle \pi_*(j_* \cdot \sigma(a), D(b+\Im) \rangle + \langle \pi_*(\sigma(b) \cdot j_*), D(a+\Im) \rangle$$ $$= \langle j_*, \sigma(a) \cdot (\pi_*)^* (D \circ q(b)) + (\pi_*)^* (D \circ q(a)) \cdot \sigma(b) \rangle$$ $$= \langle j_*, \sigma(a) \cdot \tilde{D}(b) + \tilde{D}(a) \cdot \sigma(b) \rangle.$$ So $\tilde{D}(a) = \delta_{\lambda}^{\sigma}$ for some $\lambda \in \mathcal{J}$. If $i_* \in \mathcal{I}_* = \frac{\mathcal{A}_*}{\perp \mathcal{I}}$, then $i_* \notin^{\perp} \mathcal{I}$. But π_* is the projection on $\perp \mathcal{I}$. Thus $\pi_*(i_*) = 0$. That is, $\pi_* = 0$ on \mathcal{I}_* . Let m be the restriction of λ to \mathcal{I}_* , then $m \in \mathcal{I}$ and for $i_* \in \mathcal{I}_*$, we have $$\begin{aligned} \langle i_*, \sigma(a) \cdot m - m \cdot \sigma(a) \rangle &= \langle i_* \cdot \sigma(a) - \sigma(a) \cdot i_*, m \rangle \\ &= \langle i_* \cdot \sigma(a) - \sigma(a) \cdot i_*, \lambda \rangle \\ &= \langle i_*, \sigma(a) \cdot \lambda - \lambda \cdot \sigma(a) \rangle \\ &= \langle i_*, (\pi_*)^* \circ D \circ q(a) \rangle \\ &= \langle \pi_*(i_*), D \circ q(a) \rangle \\ &= 0. \end{aligned}$$ Therefore $\sigma(a) \cdot m = m \cdot \sigma(a)$ for all $a \in \mathcal{A}$. Since \mathcal{I} has the σ -dual trace extension property, there exist a $\kappa \in \mathcal{A}$ such that $\kappa|_{\mathcal{I}_*} = m$ and $a \cdot \kappa - \kappa \cdot a = 0$ for all $a \in \mathcal{A}$. Let τ be the restriction of κ to \mathcal{J}_* . Then $\tau \in \mathcal{J}$ and $\lambda - \tau = 0$ on \mathcal{I}_* . Therefore $\lambda - \tau \in \frac{\mathcal{J}}{\mathcal{I}}$. By the surjectivity of π_* , for every $x \in (\frac{\mathcal{J}}{\mathcal{I}})_*$ there exists $j_* \in \mathcal{J}_*$ such that $\pi_*(j_*) = x$. So $$\langle x, D(a+\Im) \rangle = \langle \pi_*(j_*), D(a+\Im) \rangle$$ $$= \langle j_*, \sigma(a) \cdot \lambda - (\sigma(a) \cdot \tau - \tau \cdot a) - \lambda \cdot \sigma(a) \rangle$$ $$= \langle j_*, \sigma(a) \cdot \lambda - \sigma(a) \cdot \tau + \tau \cdot \sigma(a) - \lambda \cdot \sigma(a) \rangle$$ $$= \langle j_*, \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \cdot \rangle$$ If $j_* \in {}^{\perp} \mathcal{I}$, then by the definition of π_* , we have $\pi_*(j_*) = j_*$. Thus $$\langle j_*, \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \rangle = \langle \pi_*(j_*), \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \rangle$$ $$= \langle x, \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \rangle.$$ Hence $$D(a + \Im) = \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a).$$ This shows that D is an inner σ -derivation. If $j_* \notin^{\perp} \mathcal{I}$, then $\pi_*(j_*) = 0$. This implies that D is also an inner σ -derivation. Therefore, $\frac{\mathcal{A}}{\mathcal{I}}$ is σ -ideally Connes amenable. In the following, let \mathcal{A}^{\sharp} be the unitization of \mathcal{A} . It is easy to see that the map $\tilde{\sigma}: A^{\sharp} \to A^{\sharp}$ defined by $$\tilde{\sigma}(a+\alpha) = \sigma(a) + \alpha \quad (a \in \mathcal{A}, \alpha \in \mathbb{C})$$ is a w^* -continuous endomorphism. **Theorem 2.3.** Let A be a dual Banach algebra. Then the following statements hold. - (i) If A^{\sharp} is $\tilde{\sigma}$ -ideally Connes amenable, then A is σ -ideally Connes amenable. - (ii) If $H^1_{\tilde{\sigma},w^*}(\mathcal{A}^{\sharp},\mathcal{A}^{\sharp}) = \{0\}$, then $H^1_{\sigma,w^*}(\mathcal{A},\mathcal{A}) = \{0\}$. - (iii) If σ is idempotent and \mathfrak{I} is a w^* -closed two sided ideal of \mathcal{A} with a bounded approximate identity and $\sigma(\mathfrak{I}) = \mathfrak{I}$, then $H^1_{\sigma,w^*}(\mathfrak{I},\mathfrak{I}) = \{0\}$ if and only if $H^1_{\sigma,w^*}(\mathcal{A},\mathfrak{I}) = \{0\}$. **Proof.** (i) Let $D: \mathcal{A} \to \mathcal{I}$ be a w^* -continuous σ -derivation. Define the weak*-continuous $\tilde{\sigma}$ -derivation $\tilde{D}: A^{\sharp} \to \mathcal{I}$ by $\tilde{D}(a+\alpha) = D(a)$. Since \mathcal{A}^{\sharp} is $\tilde{\sigma}$ -ideally Connes amenable, it follows that $\tilde{D} = \delta_a^{\tilde{\sigma}}$ for some $a \in \mathcal{A}$. Hence for every $b \in \mathcal{A}$, we have $$D(b) = \tilde{D}(b+\alpha)$$ $$= \tilde{\sigma}(b+\alpha) \cdot a - a \cdot \tilde{\sigma}(b+\alpha)$$ $$= \sigma(b) \cdot a - a \cdot \sigma(b).$$ (2.2) This shows that D is σ -inner. Thus \mathcal{A} is σ -ideally Connes amenable. (ii) This follows from (i) and the fact that \mathcal{A} is a normal \mathcal{A}^{\sharp} —bimodule with the following module action. $$(a + \alpha) \cdot b = a \cdot b + \alpha b$$ and $b \cdot (a + \alpha) = b \cdot a + \alpha b$, for all $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$. (iii) Assume that $H^1_{\sigma,w^*}(\mathfrak{I},\mathfrak{I})=\{0\}$. Let $D:\mathcal{A}\to\mathfrak{I}$ be a w^* -continuous σ -derivation and $i:\mathfrak{I}\to\mathcal{A}$ be the inclusion map. Then $d=D|_{\mathfrak{I}}:\mathfrak{I}\to\mathfrak{I}$ is a w^* -continuous σ -derivation. So there exists $t_0\in\mathfrak{I}$ such that $d=\delta^{\sigma}_{t_0}$. Since \mathfrak{I} has a bounded approximate identity and $\sigma(\mathfrak{I})=\mathfrak{I}$, we have $$\overline{\sigma(\mathfrak{I}^2)}=\overline{\mathfrak{I}^2}=\mathfrak{I}.$$ On the other hand, $$\mathfrak{I} = \sigma(\mathfrak{I}) \cdot \mathfrak{I} \cdot \sigma(\mathfrak{I}).$$ Thus $\mathfrak{I}_* = \sigma(\mathfrak{I}) \cdot \mathfrak{I}_* \cdot \sigma(\mathfrak{I})$. So for every $i, j \in \mathfrak{I}$ and $i_* \in \mathfrak{I}_*$, we have $$\langle \sigma(i)i_*\sigma(j), D(a) \rangle = \langle \sigma(i)i_*, \sigma(j)D(a) \rangle$$ $$= \langle \sigma(i)i_*, D(ja) - D(j)\sigma(a) \rangle$$ $$= \langle \sigma(i)i_*, \sigma(ja)t_0 - t_0\sigma(ja) \rangle$$ $$- \langle \sigma(i)i_*, (\sigma(j)t_0 - t_0\sigma(j))\sigma(a) \rangle$$ $$= \langle \sigma(i)i_*\sigma(j), \sigma(a)t_0 - t_0\sigma(a) \rangle$$ $$= \langle \sigma(i)i_*\sigma(j), \delta_{t_0}^{\sigma}(a) \rangle.$$ It follows that $D = \delta_{t_0}^{\sigma}$. So D is σ -inner. Conversly, let $\mathcal{H}^1_{\sigma,w^*}(\mathcal{A},I)=\{0\}$, and $D:\mathcal{I}\to\mathcal{I}$ be a w^* -continuous σ -derivation. Note that \mathcal{I} is neo-unital Banach \mathcal{I} -bimodule. So $$\mathfrak{I} = \sigma(\mathfrak{I}) \cdot \mathfrak{I} \cdot \sigma(\mathfrak{I}).$$ In view of [[14], Proposition 4.14], there exists a σ -derivation $\hat{D}: \mathcal{A} \to \mathcal{I}$ such that $\hat{D}|_{\mathcal{I}} = D$. From hypothesis we infer that \hat{D} is σ -inner. Thus $H^1_{\sigma,w^*}(\mathcal{I},\mathcal{I}) = \{0\}$. Let \mathcal{A} be a dual Banach algebra. Recall that \mathcal{A} is called *Connes amenable* if it is $id_{\mathcal{A}}$ —Connes amenable. Also, \mathcal{A} is said to be weakly amenable if every continuous derivation from \mathcal{A} into \mathcal{A}^* is inner; for more details see [15]. **Theorem 2.4.** Let A and B be dual Banach algebras and $\phi: A \to B$ be a w^* -continuous epimorphism. If A is either Connes amenable or commutative weakly amenable dual Banach algebra, then B is $\bar{\sigma}$ -ideally Connes amenable, where $\bar{\sigma}$ is a weak*-continuous endomorphism of B. **Proof.** Let \mathcal{I} be a w^* -closed two sided ideal of \mathcal{B} . Then \mathcal{I} is a normal dual \mathcal{A} -bimodule with the following actions. $$a \cdot i = \bar{\sigma}(\phi(a)) \cdot i$$ and $i \cdot a = i \cdot \bar{\sigma}(\phi(a))$ for all $a \in \mathcal{A}$ and $i \in \mathcal{I}$. It is easy to check that if $D : \mathcal{B} \to \mathcal{I}$ is a w^* -continuous $\bar{\sigma}$ -derivation, then $D \circ \phi : \mathcal{A} \to \mathcal{I}$ is a w^* -continuous $\bar{\sigma} \circ \phi$ -derivation. If \mathcal{A} is Connes amenable, then there exists $t \in \mathcal{I}$ such that $$D \circ \phi(a) = \delta_t^{id_{\mathcal{A}}}(a) = \delta_t^{\bar{\sigma} \circ \phi}(a) = \delta_t^{\bar{\sigma}}(\phi(a)).$$ Since ϕ is an epimorphism, $D = \delta_t^{\bar{\sigma}}$. Therefore, D is a $\bar{\sigma}$ -inner derivation. Thus \mathcal{B} is $\bar{\sigma}$ -ideally Connes amenable. If \mathcal{A} is commutative weakly amenable, then \mathcal{B} is commutative and so \mathcal{I} is a symmetric Banach \mathcal{B} -bimodule. Hence \mathcal{I} is a symmetric Banach \mathcal{A} -bimodule and $\mathcal{H}^1(\mathcal{A}, I) = \{0\}$. So $D \circ \phi = 0$. Consequently D = 0. Therefore, \mathcal{B} is σ -ideally Connes amenable. \square #### 3. Some examples In this section, we give some examples to illustrate the new notion of σ -ideally Connes amenability introduced in this work. These examples show that the notion of σ -ideally Connes amenability is different from ideally Connes amenable. In doing this, we give some examples of σ -ideally Connes amenable dual Banach algebras that are not ideally Connes amenable. **Example 3.1.** Let \mathcal{A} be a dual Banach algebra, and let φ be a non-zero linear functional on A. Let \mathcal{A}_{φ} be the Banach algebra \mathcal{A} equipped with the following product. $$a \cdot b = \varphi(a)b$$. Then $(\mathcal{A}_{\varphi}, \cdot)$ is a Banach algebra. Note that φ is a linear functional on A and thus $\varphi(a) \in \mathbb{C}$ for all $a \in A$. Hence $$a \cdot (b \cdot c) = a \cdot (\varphi(b)c) = \varphi(a)\varphi(b)c$$ $$= \varphi(\varphi(a)b)c = \varphi(a \cdot b)c$$ $$= (a \cdot b) \cdot c$$ for all $a, b, c \in \mathcal{A}$. This shows that the multiplication is associative. Since the product "·" is separately w^* —continuous, \mathcal{A}_{φ} is a dual Banach algebra. It is clear that \mathcal{A}_{φ} has a left identity, say e, but it does not have bounded right approximate identity. So \mathcal{A}_{φ} is not ideally Connes amenable; see [[7], Proposition 2.3]. We define the w^* -continuous endomorphism $\sigma: \mathcal{A}_{\varphi} \to \mathcal{A}_{\varphi}$ by $$\sigma(a) = \varphi(a)e.$$ For every $a \in \mathcal{A}$, we have $$\sigma^2(a) = \sigma(\varphi(a)e) = \varphi(a)\sigma(e) = \sigma(a).$$ Thus σ is idempotent. Obviously, e is identity for $\sigma(\mathcal{A}_{\varphi})$. We claim that any non-trivial two-sided ideal of \mathcal{A}_{φ} is contained in $\ker \varphi$, and that any closed subspace of $\ker \varphi$ is a closed two-sided ideal. Indeed, let $\mathfrak{I} \subseteq \mathcal{A}_{\varphi}$ be a non-trivial two-sided ideal, so for $a \in \mathfrak{I}$, $b \in \mathcal{A}$ we have $\varphi(a)b = a \cdot b \in \mathfrak{I}$. Letting b vary and using that $\mathfrak{I} \neq \mathcal{A}$ shows that $\varphi(a) = 0$, so $\mathfrak{I} \subseteq \ker \varphi$. Conversely, if $\mathfrak{I} \subseteq \ker \varphi$ is a closed subspace, then $a \cdot b = 0$ for each $a \in \mathfrak{I}$, $b \in \mathcal{A}$, while $b \cdot a = \varphi(b)a \in \mathfrak{I}$, showing that \mathfrak{I} is a two-sided ideal. Let $\tilde{D}: \mathcal{A}_{\varphi} \to \mathcal{A}_{\varphi}$ be a non-zero w^* -continuous σ -derivation. Then for every $a, b \in \mathcal{A}_{\varphi}$, we have $$\tilde{D}(a \cdot b) = \sigma(a) \cdot \tilde{D}(b) + \tilde{D}(a) \cdot \sigma(b).$$ Hence $$\varphi(a) \cdot \tilde{D}(b) = \varphi(a) \cdot e \cdot \tilde{D}(b) + \tilde{D}(a) \cdot \varphi(b) \cdot e$$ $$= \varphi(a) \cdot \tilde{D}(b) + \varphi(b) \cdot \tilde{D}(a) \cdot e.$$ Thus $\varphi(b)\tilde{D}(a)\cdot e=0$. Since $\varphi\neq 0$, we have $\tilde{D}(a)\cdot e=0$. Thus $\varphi(\tilde{D}(a))e=0$, so we conclude that e=0, that is a contradiction. It means that every σ -derivation is zero, so it is inner. Thus \mathcal{A}_{φ} is σ -ideally Connes amenable. **Example 3.2.** Let $\mathcal{A} = \ell^1(\mathbb{N})$ be equipped with the product $$f \cdot g = f(1)g$$ and the norm $\|.\|_1$; see [18]. It is easy to see that \mathcal{A} does not have bounded approximate identity. So \mathcal{A} is not ideally Connes amenable [7]. For $f \in \mathcal{A}$, define the mapping $\widetilde{f} : \mathbb{N} \to \mathbb{C}$, by $\widetilde{f}(1) = 0$ and $\widetilde{f}(n) = f(n)$ for $n \geq 2$. Then $f = f \cdot e + \widetilde{f}$, where $e \in \ell^1(\mathbb{N})$ is defined by $$e_n = \left\{ \begin{array}{ll} 1 & n = 1 \\ 0 & n \neq 1. \end{array} \right.$$ Let \mathcal{I} be a weak*-closed two-sided ideal of \mathcal{A} with $\mathcal{I} \neq \mathcal{A}$. Then \mathcal{I} is contained in $$\{f \in \mathcal{A} : f(1) = 0\}.$$ We define the w^* -continuous idempotent endomorphism σ on \mathcal{A} , be such that for all $a \in \ell^1(\mathbb{N})$ $$\sigma(a)(1) = a(1).$$ Let $D: \mathcal{A} \to \mathcal{I}$ be a weak*-continuous σ -derivation. Then $$D(f) = \sigma(f)(1)D(e) + D(\widetilde{f}),$$ Since $D(\widetilde{f}) \in \mathcal{I}$ and $D(\widetilde{f})(1) = 0$, it follows that $$D(\widetilde{f}) \cdot \sigma(e) = D(\widetilde{f})(1)\sigma(e) = 0.$$ So for every $g \in \mathcal{A}_*$, we have $$\langle D(\widetilde{f}),g\rangle = \langle D(\widetilde{f}),\sigma(e)\cdot g\rangle = \langle D(\widetilde{f})\cdot \sigma(e),g\rangle = 0.$$ Hence $D(\widetilde{f}) = 0$. From $D(e) \in \mathcal{I}$ and D(e)(1) = 0 we infer that $D(e) \cdot \sigma(f) = 0$. So $$D(f) = \sigma(f)(1)D(e)$$ $$= \sigma(f) \cdot D(e)$$ $$= \sigma(f) \cdot D(e) - D(e) \cdot \sigma(f).$$ Therefore $H^1_{\sigma,w^*}(\mathcal{A},\mathfrak{I})=\{0\}.$ Let $a \in \ell^{\dot{1}}(\mathbb{N})$. Then there is a sequence $\{a_n\}$ in $c_0(\mathbb{N})$ such that $a_n \to a$ in the w^* -topology. For $f \in c_0(\mathbb{N})^*$, define the linear functional $\hat{f} \in \ell^1(\mathbb{N})^*$ by $$\langle a, \hat{f} \rangle := w^* - \lim_n \langle a_n, f \rangle.$$ This enables us to define the left and right module actions of $\ell^1(\mathbb{N})$ on $c_0(\mathbb{N})^*$ by $$a \cdot f = \langle a, \hat{f} \rangle e$$ and $f \cdot a = a(1)f$. It is easy to prove that $c_0(\mathbb{N})^*$ is an $\ell^1(\mathbb{N})$ -bimodule. Let D be a weak*-continuous σ -derivation from $\ell^1(\mathbb{N})$ to $\ell^1(\mathbb{N}) \cong c_0(\mathbb{N})^*$. For all $a \in \ell^1(\mathbb{N})$, we have $$a(1)D(a) = D(a^{2})$$ $$= D(a) \cdot \sigma(a) + \sigma(a) \cdot D(a)$$ $$= \sigma(a)(1)D(a) + \langle \sigma(a), D(a) \rangle e.$$ This shows that $$\langle \sigma(a), D(a) \rangle = 0.$$ So for every $a, b \in \ell^1(\mathbb{N})$, we have $$0 = \langle \sigma(ab), D(ab) \rangle$$ $$= \langle \sigma(ab), D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b) \rangle$$ $$= \langle \sigma(a).\sigma(b), \sigma(b)(1)D(a) \rangle$$ $$+ \langle \sigma(a), D(b)e \rangle$$ $$= \langle \sigma(a).\sigma(b), \sigma(b)(1)D(a) \rangle$$ $$+ \langle \sigma(a), D(b) \rangle \langle \sigma(a)\sigma(b), e \rangle$$ $$= \sigma(b)(1)\langle \sigma(a).\sigma(b), D(a) \rangle$$ $$+ \sigma(a)(1)\sigma(b)(1)\langle \sigma(a), D(b) \rangle$$ $$= \sigma(b)(1).\sigma(a)(1)\langle \sigma(a), D(b) \rangle$$ $$+ \sigma(a)(1)\sigma(b)(1)\langle \sigma(a), D(b) \rangle.$$ It follows that $$\langle \sigma(a), D(b) \rangle = -\langle \sigma(b), D(a) \rangle.$$ Let $t \in \sigma(A)$. Then there exists $b \in \ell^1(\mathbb{N})$ such that $t = \sigma(b) = \sigma^2(b)$. Thus $$\begin{split} \langle t, D(a) \rangle &= \langle t, D(ea) \rangle \\ &= \langle t, D(e) \cdot \sigma(a) \rangle + \langle t, \sigma(e) \cdot D(a) \rangle \\ &= \langle \sigma(a).t, D(e) \rangle + \langle t.\sigma(e), D(a) \rangle \\ &= \langle \sigma(a).\sigma^2(b), D(e) \rangle + \langle \sigma^2(b).\sigma(e), D(a) \rangle \\ &= \langle \sigma(a).\sigma(b), D(e) \rangle + \langle \sigma(\sigma(b).e), D(a) \rangle \\ &= \langle \sigma(a).\sigma(b), D(e) \rangle - \langle \sigma(a), D(\sigma(b).e) \rangle \\ &= \langle \sigma(a).\sigma(b), D(e) \rangle - \langle \sigma(a), \sigma(b)(1)D(e) \rangle \\ &= \langle \sigma(b), D(e) \cdot \sigma(a) \rangle - \langle \sigma(a), D(e) \cdot \sigma(b) \rangle \\ &= \langle \sigma(b), D(e) \cdot \sigma(a) \rangle - \langle \sigma(b).\sigma(a), D(e) \rangle \\ &= \langle \sigma(b), D(e) \cdot \sigma(a) \rangle - \langle \sigma(b), \sigma(a) \cdot D(e) \rangle \\ &= \langle t, D(e) \cdot \sigma(a) - \sigma(a) \cdot D(e) \rangle. \end{split}$$ Hence $$D(a) = D(e) \cdot \sigma(a) - \sigma(a) \cdot D(e) = \delta^{\sigma}_{-D(e)}(a).$$ Therefore, $\ell^1(\mathbb{N})$ is σ -ideally Connes amenable. **Example 3.3.** Let \mathcal{A} be a non-ideally Connes amenable Banach algebra with a right approximate identity. It is known from [7] that \mathcal{A}^{\sharp} is not ideally Connes amenable. Define the w^* -continuous map $\sigma: \mathcal{A}^{\sharp} \to \mathcal{A}^{\sharp}$ by $$\sigma(a+\alpha)=\alpha.$$ Let $(e_{\alpha})_{\alpha \in \Lambda}$ be a right approximate identity for \mathcal{A} , and let \mathcal{I} be a w^* -closed two-sided ideal in \mathcal{A}^{\sharp} . If $D: \mathcal{A}^{\sharp} \to \mathcal{I}$ is a w^* -continuous σ -derivation, then a simple calculation shows that $D(ae_{\alpha}) = 0$, for all $a \in \mathcal{A}$ and $\alpha \in \Lambda$. Consequently, D(a) = 0. If $e_{\mathcal{A}^{\sharp}}$ denotes the identity element of \mathcal{A}^{\sharp} , then $$D(a + \alpha e_{A\sharp}) = D(a) + \alpha D(e_{A\sharp}) = 0.$$ That is, D = 0 and so \mathcal{A}^{\sharp} is σ -ideally Connes amenable. ## 4. σ -ideally Connes amenability of $\ell^1(G,\omega)$ Let us recall that a Banach space E is called an L-embedded Banach space if it is an l^1- summand in its bidual. The following theorem is proved in [1] is needed to prove the main result of this section. **Theorem 4.1.** Let E be an L-embedded Banach space and F be a non-empty bounded subset of E. Then the family of isometry maps of E preserving F has a common fixed point in F. Let G be a discrete group and $\omega:G\to [1,\infty)$ be a weight function, i.e, $\omega(e)=1$ and $$\omega(xy) < \omega(x)\omega(y)$$ for all $x,y \in G$. Let us recall that a weight function ω on G is called diagonally bounded if $\sup_{x \in G} (\omega(x)\omega(x^{-1}))$ is finite. Also, recall that $\ell^1(G,\omega)$ denotes the space of all complex-valued functions on G such that $\omega f \in \ell^1(G)$. For details on these algebras, refer to [9] and the references therein. We know that $\ell^1(G)$ is L-embedded, and since $\ell^1(G,\omega)$ is isometrically isomorphic to $\ell^1(G)$ as a Banach space (although not as a Banach algebra), it too must be L-embedded. We show that a weak*-closed linear subspace of $\ell^1(G)$ is L-embedded. We shall briefly outline the argument. Let $i: c_0(G) \hookrightarrow \ell^{\infty}(G)$ be the canonical embedding, and let $p = i^*$. Then p is the projection $\ell^1(G)^{**} \longrightarrow \ell^1(G)$ witnessing its L-embeddedness, that is to say $$\|\Phi\| = \|p(\Phi)\| + \|(id - p)(\Phi)\| \ (\Phi \in \ell^1(G)^{**}). \tag{4.1}$$ Let I be a weak*-closed linear subspace of $\ell^1(G)$, and let $j: c_0(G)/I_{\perp} \longrightarrow l^{\infty}(G)/I^{\perp}$ be the map $$j: x + I_{\perp} \longmapsto i(x) + I^{\perp} \quad (x \in c_0(G)).$$ Then j can be thought of an embedding $I_* \hookrightarrow I^*$. Let $q = j^* : I^{\perp \perp} \longrightarrow I$. Canonically $I^{\perp \perp} \cong I^{**}$ (isometrically) and we can check that $p|_{I^{\perp \perp}} = q$. A simple calculation using Equation (4.1) then shows that $$\|\Phi\| = \|q(\Phi)\| + \|(id - q)(\Phi)\| \quad (\Phi \in I^{\perp \perp}),$$ so that I is L-embedded. **Theorem 4.2.** Let ω be a diagonally bounded weight function on a discrete group G and σ be an isometric isomorphism of $\ell^1(G,\omega)$. Then $\ell^1(G,\omega)$ is σ -ideally Connes amenable. *Proof.* Let ω be a weight function on G. Fix $a \in G$ and define the weight function ω_a on G by $$\omega_a(x) = \omega(axa^{-1})$$ for all $x \in G$. Then for every $x \in G$, we have $\omega_a(x) \leq \omega(a)\omega(a^{-1})\omega(x)$ and $$\begin{array}{lcl} \omega(x) & = & \omega(a^{-1}(axa^{-1})a) \\ & \leq & \omega(a^{-1})\omega(a)\omega(axa^{-1}) = \omega(a^{-1})\omega(a)\omega_a(x). \end{array}$$ Now, define the weight function ω' on G by $\omega'(x) = \sup_{a \in G} \omega(axa^{-1})$. Since ω is diagonally bounded, there is a constant m > 0 such that $\omega(a)\omega(a^{-1}) \leq m$ for every $a \in G$. Hence $\omega(axa^{-1}) \leq \omega(x)\omega(a)\omega(a^{-1}) \leq m\omega(x)$ for every $a \in G$. Thus $\sup_{a \in G} \omega(axa^{-1}) \leq m\omega(x)$, therefore $$\omega'(x) \le m\omega(x) \tag{4.2}$$ On the other hand $$\omega(x) = \omega(exe^{-1}) \le \sup_{a \in C} \omega(axa^{-1}) = \omega'(x) \tag{4.3}$$ Due to relations (4.2) and (4.3) we conclude that ω and ω' are equivalent. Thus $\ell^1(G,\omega)$ and $\ell^1(G,\omega')$ are isometrically isomorphic. Let D be a w^* -continuous derivation from $\ell^1(G, \omega')$ into w^* -closed two sided ideal \mathbb{F} of $\ell^1(G, \omega')$. Define the function $h: G \to \mathbb{F}$ by $h(t) = D(\delta_t) * \sigma(\delta_{t^{-1}})$. Since ω is diagonally bounded, ω' does so. Thus h is bounded. Indeed, for every $t \in G$, we have $$|| h(t) || = || D(\delta_t) * \sigma(\delta_{t-1}) ||$$ $$\leq || D || || \delta_t ||_{w'} || \delta_{t-1} ||_{w'}$$ $$= || D || w'(t)w'(t^{-1}).$$ For $t \in G$ and $g \in \mathcal{I}$, define the action $$t \cdot g = \sigma(\delta_t) * g * \sigma(\delta_{t-1}).$$ Then $$h(st) = D(\delta_{st}) * \sigma(\delta_{(st)^{-1}}) = D(\delta_s * \delta_t) * \sigma(\delta_{t^{-1}} * \delta_{s^{-1}})$$ $$= D(\delta_s) * \sigma(\delta_t) + \sigma(\delta_s) * D(\delta_t) * \sigma(\delta_{t^{-1}}) * \sigma(\delta_{s^{-1}})$$ $$= D(\delta_s) * \sigma(\delta_{s^{-1}}) + \sigma(\delta_s) * D(\delta_t) * \sigma(\delta_{t^{-1}}) * \sigma(\delta_{s^{-1}})$$ $$= h(s) + s \cdot h(t).$$ Using h we can define another action of G on \mathfrak{I} as follows. $$t \bullet q = t \cdot q + h(t) = \sigma(\delta_t) * q * \sigma(\delta_{t-1}) + h(t)$$ for all $t \in G$ and $g \in \mathcal{I}$. Since σ is an isometric isomorphism of $\ell^1(G, w')$, there exist a continuous character $\gamma : G \to \mathbb{T}$ and an automorphism ψ on G such that for every $t \in G$, $$\sigma(\delta_t) = \frac{w(t)\gamma(t)}{w(\psi(t))}\delta_{\psi(t)};$$ see [[17] Theorem 2.4]. This implies that " \bullet " is isometry. Thus for every $g_1, g_2 \in \ell^1(G, w')$, we have $$\| t \bullet (g_{1} - g_{2}) \|_{1,w'} = \| t \cdot (g_{1} - g_{2}) \|_{1,w'}$$ $$= \| \sigma(\delta_{t}) * (g_{1} - g_{2}) * \sigma(\delta_{t-1}) \|_{1,w'}$$ $$= \left| \frac{w(t)\gamma(t)}{w(\psi(t))} \right| \left| \frac{w(t^{-1})\gamma(t^{-1})}{w(\psi(t^{-1}))} \right| \sum_{x \in G} (|(g_{1} - g_{2})(x)| w'(\psi(t^{-1})x\psi(t)))$$ $$= \sum_{x \in G} |(g_{1} - g_{2})(x)| w'(x)$$ $$= \| g_{1} - g_{2} \|_{1,w'} .$$ But, for $t \in G$, we have $$t \bullet h(G) = \{t \bullet h(s) : s \in G\}$$ $$= \{t \cdot h(s) + h(t) : h \in G\}$$ $$= \{h(ts) : s \in G\}$$ $$= h(G).$$ These facts let us to apply Theorem 4.1 to $E = \mathcal{I}$ and F = h(G). So there exists $g \in \mathcal{I}$ such that $t \bullet g = g$ for all $t \in G$. It follows that $$D(\delta_t) * \sigma(\delta_{t-1}) = h(t)$$ $$= t \bullet g - t \cdot g$$ $$= g - t \cdot g$$ $$= g - \sigma(\delta_t) * g * \sigma(\delta_{t-1}).$$ This shows that $$D(\delta_t) = g * \sigma(\delta_t) - \sigma(\delta_t) * g.$$ Since span $\{\delta_t; t \in G\}$ is weak* dense in $\ell^1(G, w')$, we conclude that $$D(f) = g * \sigma(f) - \sigma(f) * g = \delta_g^{\sigma}(f)$$ for all $f \in \ell^1(G, w')$. Thus $\ell^1(G, w')$ is σ -ideally Connes amenable. We finish this section with the following result which is an immediate consequence of Theorem 4.2. Corollary 4.3. Let ω be a diagonally bounded weight function on a discrete group G. Then $\ell^1(G,\omega)$ is ideally Connes amenable. #### 5. Conclusion In this paper, we introduced the concept of σ -ideally Connes amenable for dual Banach algebras. We gave some examples to illustrate this notion and showed that it is different from ideally Connes amenable. We also determined relation between σ -ideally Connes amenability of a dual Banach algebra with its unitization, quotient spaces and homomorphic images. Finally, we studied σ -ideally Connes amenability of weighted group algebra $\ell^1(G,\omega)$ and proved that if ω is a diagonally bounded weight function on discrete group G and σ is isometrically isomorphism of $\ell^1(G,\omega)$, then $\ell^1(G,\omega)$ is σ -ideally Connes amenable. **Acknowledgment.** The authors would like to thank the referee of the paper for invaluable comments. #### References - [1] U. Bader, T. Gelander and N. Monod, A fixed point theorem for L^1 spaces, Invent. Math. **189** (1), 143-148, 2012. - [2] A. Connes, Classification of injective factors. Cases II_1 , II_{∞} , III_{λ} , $\lambda \neq 1$, Ann. of Math. 104 (1), 73-115, 1976. - [3] A. Connes, On the cohomology of operator algebras, J. Functional Analysis 28 (2), 248-253, 1978. - [4] A. Y. Helemskii, Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule, (Russian); translated from Mat. Sb. **180** (12) (1989), 1680–1690, 1728 Math. USSR-Sb. **68** (2), 555-566, 1991. - [5] B. E. Johnson, *Cohomology in Banach algebras*, Memoirs of the American Mathematical Society **127**, American Mathematical Society, Providence, R.I., 1972. - [6] B. E. Johnson, R.V. Kadison and J. R. Ringrose, Cohomology of operator algebras, III. Reduction to normal cohomology, Bull. Soc. Math. France 100, 73-96, 1972. - [7] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, *Ideal Connes-amenability of dual Banach algebras*, Mediterr. J. Math. **14** (4), Paper No. 174, 12 pp, 2017. - [8] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Derivations on the tensor product of Banach algebras, J. Math. Ext. 11, 117-125, 2017. - [9] A. Minapoor and O.T. Mewomo, Zero set of ideals in Beurling algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82 (3), 129-138, 2020. - [10] A. Minapoor, Approximate ideal Connes amenability of dual Banach algebras and ideal Connes amenability of discrete Beurling algebras, Eurasian Math. J. 11 (2), 72-85, 2020. - [11] A. Minapoor, Ideal Connes amenability of l¹-Munn algebras and its application to semigroup algebras, Semigroup Forum **102** (3), 756-764, 2021. - [12] A. Minapoor and A. Zivari-Kazempour, *Ideal Connes-amenability of certain dual Banach algebras*, Complex. Anal. Oper. Th. 17, 27, 2023. - [13] M. Mirzavaziri and M. S. Moslehian, σ -amenability of Banach algebras, Southeast Asian Bull. Math. **33** (1), 89-99, 2009. - [14] M. Momeni, T. Yazdanpanah and M. R. Mardanbeigi, σ-approximately contractible Banach algebras, Abstr. Appl. Anal. 2012, Art. ID 653140, 2012. - [15] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2002. - [16] A. Teymouri, A. Bodaghi and D. E. Bagha, Derivations into annihilators of the ideals of Banach algebras, Demonstr. Math. 52 (1), 20–28, 2019. - [17] S. Zadeh, Isometric isomorphisms of Beurling algebras, J. Math. Anal. Appl. 438 (1), 1-13, 2016. - [18] Y. Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. 44, 504–508, 2001.