Hacet. J. Math. Stat. Volume 53 (6) (2024), 1686 – 1697 DOI: 10.15672/hujms.1372448

RESEARCH ARTICLE

A new class of ideal Connes amenability

Ahmad Minapoor*¹, Ali Rejali², Mohammad Javad Mehdipour³

¹Department of Mathematics, Ayatollah Ozma Borujerdi University, Borujerd, Iran ²Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran

³Department of Mathematics, Shiraz University of Technology, Shiraz 71555-313, Iran

Abstract

In this paper, we introduce the notion of σ -ideally Connes amenable for dual Banach algebras and give some hereditary properties for this new notion. We also investigate σ -ideally Connes amenability of $\ell^1(G,\omega)$. We show that if ω is a diagonally bounded weight function on discrete group G and σ is isometrically isomorphism of $\ell^1(G,\omega)$, then $\ell^1(G,\omega)$ is σ -ideally Connes amenable and so it is ideally Connes amenable.

Mathematics Subject Classification (2020). 46H20, 46H25, 43A20

Keywords. dual Banach algebra, amenability, ideal Connes amenable, group algebra

1. Introduction

Let \mathcal{A} be a dual Banach algebra, that is, $\mathcal{A}=(\mathcal{A}_*)^*$ for some a closed submodule \mathcal{A}_* of \mathcal{A}^* . Let X be a dual Banach \mathcal{A} -bimodule such that the maps $a\mapsto a.x$ and $a\mapsto x.a$ from \mathcal{A} into X are w^* -continuous. Dual Banach \mathcal{A} -bimodules of this type are said to be normal. For a w^* -continuous endomorphism σ of \mathcal{A} , a map $D:\mathcal{A}\to X$ is called a w^* -continuous σ -derivation if it is w^* -continuous and

$$D(ab) = D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b)$$

for all $a, b \in \mathcal{A}$. Also, D is called an inner σ -derivation if there exists $x \in X$ such that

$$D(a) = \delta_x^{\sigma}(a) := \sigma(a) \cdot x - x \cdot \sigma(a)$$

for all $a \in \mathcal{A}$. The space of all w^* -continuous (inner) σ -derivations from \mathcal{A} into X is denoted by $(\mathcal{N}^1_{\sigma}(\mathcal{A},X),$ respectively) $\mathcal{Z}^1_{\sigma,w^*}(\mathcal{A},X)$. Let

$$\mathcal{H}^1_{\sigma,w^*}(\mathcal{A},X) = \frac{\mathcal{I}^1_{\sigma,w^*}(\mathcal{A},X)}{\mathcal{N}^1_{\sigma}(\mathcal{A},X)}.$$

Similar to the concept of amenability, \mathcal{A} is said to be σ -Connes amenable if for every normal dual module X,

$$\mathcal{H}^1_{\sigma,w^*}(\mathcal{A},X) = \{0\};$$

Email addresses: shp_np@yahoo.com (A. Minapoor), rejali@sci.ui.ac.ir (A. Rejali), mehdipour@sutech.ac.ir (M. J. Mehdipour)

Received: 09.10.2023; Accepted: 02.01.2024

^{*}Corresponding Author.

or equivalently, every w^* -continuous σ -derivation from \mathcal{A} into X is an inner σ -derivation [13]. In this case, if X is a w^* -closed two-sided ideal \mathcal{I} in \mathcal{A} , then \mathcal{A} is called $\sigma - \mathcal{I} - Connes$ amenable, and if for every w^* -closed two-sided ideal \mathcal{I} in \mathcal{A} , the dual Banach algebra \mathcal{A} is $\sigma - \mathcal{I}$ -Connes amenable, then \mathcal{A} is called σ -ideally Connes amenable.

The concept of normal dual Banach bimodule was introduced by Johnson, Kadison, and Ringrose [6]. They also have studied the n-dimensional normal cohomology group $\mathcal{H}_{n*}^n(\mathcal{A},X)$ and gave conditions that

$$\mathcal{H}_{w^*}^n(\mathcal{A}, X) = \{0\},\$$

when \mathcal{A} is a unital C^* -algebra. One can prove that every derivation from a von Neumann algebra generated by an increasing sequence of finite dimensional *-algebras to a normal dual Banach bimodule is a coboundary. The converse of this result was proved by Connes [3]. Also, Connes [2] called a von Neumann algebra \mathcal{A} amenable if

$$\mathcal{H}^1_{w^*}(\mathcal{A}, X) = \{0\}$$

for all normal dual Banach \mathcal{A} -bimodule X. Later, Helemskii [4] used the word "Connes amenable" instead of "amenable". He proved that the operator C^* -algebra \mathcal{A} is Connes amenable if and only if the Banach \mathcal{A} -bimodule $\bar{\mathcal{A}}_*$ is injective. The first author, Bodaghi and Ebrahimi Bagha [7] generalized the concept of Connes amenability and introduced the notion of ideally Connes amenability for dual Banach algebras. They proved that von Neumann algebras are ideally Connes amenable; see also [12]; for study of the notion of quotient ideal amenability of Banach algebras see [16].

Let \mathcal{A} be a dual Banach algebra and \mathcal{I} be a weak*-closed two-sided ideal of \mathcal{A} . Then \mathcal{I} is a dual Banach algebra and also it is a normal Banach \mathcal{A} -bimodule. A dual Banach algebra \mathcal{A} is \mathcal{I} -Connes amenable if $\mathcal{H}^1_{w^*}(\mathcal{A}, \mathcal{I}) = \{0\}$ and is ideally Connes amenable if it is \mathcal{I} -Connes amenable for every weak*-closed two-sided ideal \mathcal{I} in \mathcal{A} ; see [7]. Note that \mathcal{I} is a dual Banach space with predual $\mathcal{I}_* = \frac{\mathcal{A}_*}{\perp \mathcal{I}}$. Indeed, \mathcal{I} is the weak*-closed subspace of \mathcal{A} and so

$$(\mathfrak{I}_*)^* = (\frac{\mathcal{A}_*}{\perp \mathfrak{I}})^* = (^{\perp} \mathfrak{I})^{\perp} = \mathfrak{I}.$$

Also, \mathcal{I}_* is a submodule of $\frac{\mathcal{A}^*}{\mathcal{I}^{\perp}} = \mathcal{I}^*$. Thus, \mathcal{I} is a dual Banach algebra. Once more, $^{\perp}\mathcal{I}$ is a submodule of $\mathcal{I}^{\perp} = \left(\frac{\mathcal{A}}{\mathcal{I}}\right)^*$ and

$$({}^{\perp}\mathfrak{I})^* = \frac{(\mathcal{A}_*)^*}{({}^{\perp}\mathfrak{I})^{\perp}} = \frac{\mathcal{A}}{\mathfrak{I}}.$$

So, $\frac{A}{J}$ is a dual Banach space. On the other hand, multiplication in A and $\frac{A}{J}$ is separately weak*-continuous and thus $\frac{A}{J}$ is a dual Banach algebra. For details on this and other important results, refer to [5, 8, 10, 11] and the references therein.

In this paper, we introduce the notion $\sigma-$ ideally Connes amenability for dual Banach algebras and investigate it. In Section 2, we prove under certain conditions that the ideally Connes amenability and $\sigma-$ ideally Connes amenability are equivalent. We also prove some hereditary properties of $\sigma-$ ideally Connes amenability of dual Banach algebras. In Section 3, we give some examples to illustrate our results. In Section 4, we study $\sigma-$ ideally Connes amenability of the Banach algebra $\ell^1(G,\omega)$ and show that if ω is diagonally bounded and σ is an isometric isomorphism, then $\ell^1(G,\omega)$ is $\sigma-$ ideally Connes amenable. In particular, $\ell^1(G,\omega)$ is ideally-Connes amenable.

2. σ -ideally Connes amenability

Throughout this section, σ is a w^* -continuous endomorphism of a dual Banach algebra \mathcal{A} . Before we give the first our result, let us recall that a dual Banach algebra \mathcal{A} is called *ideally Connes amenable* if it is $id_{\mathcal{A}}$ -Connes amenable, where $id_{\mathcal{A}}$ is the identity map on \mathcal{A} .

Proposition 2.1. Let A be a dual Banach algebra. Then the following statements hold.

- (i) If A is σ -Connes amenable and σ is onto, then A has an identity.
- (ii) If \mathcal{A} be σ -ideally Connes amenable for a w^* -continuous endomorphism $\sigma: \mathcal{A} \to \mathcal{A}$ with w^* -dense range, then \mathcal{A} is ideally Connes amenable.

Proof. (i) First, note that $X = \mathcal{A}$ with the following actions is a normal dual Banach \mathcal{A} -bimodule.

$$a \cdot x = 0$$
 and $x \cdot a = xa$ (2.1)

for all $a \in \mathcal{A}$ and $x \in X$. We define the w^* -continuous σ -derivation $D : \mathcal{A} \to X$ by $D(a) = \sigma(a)$. Since \mathcal{A} is σ -Connes amenable, there exists $x \in X$ such that $D = \delta_x^{\sigma}$. Using the module actins defined in (2.1), for every $a \in \mathcal{A}$ we have

$$\sigma(a) = \sigma(a) \cdot x - x \cdot \sigma(a)
= 0 - x\sigma(a)
= -x\sigma(a).$$

It follows that $\sigma(A) = A$ has a left identity. Similarly, A has a right identity. So (i) holds.

(ii) Assume that \mathcal{A} is σ -ideally Connes amenable. Let \mathcal{I} be a w^* -closed ideal of \mathcal{A} and $D: \mathcal{A} \to \mathcal{I}$ be a w^* -continuous derivation. It is easy to see that $D \circ \sigma: \mathcal{A} \to \mathcal{I}$ is a w^* -continuous σ -derivation. So $D \circ \sigma = \delta_x^{\sigma}$ for some $x \in \mathcal{I}$. Now, if $a \in \mathcal{A}$, then there exists a net $(a_{\lambda})_{\lambda}$ in \mathcal{A} such that $a = \lim_{\lambda} \sigma(a_{\lambda})$. Hence

$$D(a) = w^* - \lim_{\lambda} D(\sigma(a_{\lambda}))$$

$$= w^* - \lim_{\lambda} (\sigma(a_{\lambda})x - x\sigma(a_{\lambda}))$$

$$= ax - xa$$

$$= \delta_x^{id_{\mathcal{A}}}(a).$$

Thus, D is inner. Therefore, A is ideally Connes amenable.

Let \mathcal{I} be a w^* -closed two sided ideal in dual Banach algebra \mathcal{A} . It is clear that \mathcal{I} is a dual Banach algebra with predual \mathcal{I}_* . Then we say that \mathcal{I} has the σ -dual trace extension property if every $\phi \in \mathcal{I}$ with $\delta^{\sigma}_{\phi} = 0$ has an extension τ to \mathcal{A} such that $\delta^{id_{\mathcal{A}}}_{\tau} = 0$.

Theorem 2.2. Let \mathfrak{I} be a w^* -closed two sided ideal in dual Banach algebra \mathcal{A} , and let $\sigma(\mathfrak{I}) = \mathfrak{I}$. Then the following statements hold.

- (i) If \Im is σ -Connes amenable and $\frac{\mathcal{A}}{\Im}$ is $\hat{\sigma}$ -Connes amenable, where $\hat{\sigma}(a+\Im) = \sigma(a)+\Im$ for all $a \in \mathcal{A}$, then \mathcal{A} is σ -Connes amenable.
- (ii) If A is σ -ideally Connes amenable and \Im has the σ -dual trace extension property, then $\frac{A}{\Im}$ is σ -ideally Connes amenable dual Banach algebra.

Proof. (i) Let X be a normal dual Banach \mathcal{A} -bimodule and $D: \mathcal{A} \to X$ be a w^* -continuous σ -derivation. It is obvious that $D|_{\mathcal{I}}$ is a w^* -continuous σ -derivation from \mathcal{I} into X. By the σ -Connes amenability of \mathcal{I} , there exists $x_0 \in X$ such that $D|_{\mathcal{I}} = \delta_{x_0}^{\sigma}$. Set $D_1 = D - \delta_{x_0}^{\sigma}$. Then D_1 is a w^* -continuous σ -derivation vanishes on \mathcal{I} . Now let

$$X_0 = \overline{\operatorname{span}\{x\sigma(a) + \sigma(b)y : a, b \in A, x, y \in X\}}^{w^*}.$$

Then $\frac{X}{X_0}$ with the following actions is a normal dual Banach $\frac{A}{\mathcal{I}}$ –bimodule.

$$(a + \Im)(x + X_0) = \sigma(a)x + X_0$$
 and $(x + X_0)(a + \Im) = x\sigma(a) + X_0$

for all $a \in \mathcal{A}$ and $x \in X$. We define the w^* -continuous map $\hat{D}: \frac{\mathcal{A}}{\mathcal{I}} \to \frac{X}{X_0}$ by

$$\langle g_*, \hat{D}(a+\mathfrak{I}) \rangle = \langle g_*, D_1(a) \rangle,$$

where $g_* \in (\frac{X}{X_0})_* = ^{\perp} X_0$. Since $D_1|_{\mathfrak{I}} = 0$, it follows that \hat{D} is well-defined. For every $a, b \in \mathcal{A}$, we have

$$\langle g_*, \hat{D}((a+\Im)(b+\Im)) \rangle = \langle g_*, D_1(ab) \rangle$$

$$= \langle g_*, \sigma(a)D_1(b) + D_1(a)\sigma(b) \rangle$$

$$= \langle g_*\sigma(a), D_1(b) \rangle + \langle \sigma(b)g_*, D_1(a) \rangle$$

$$= \langle g_* \cdot (a+\Im), \hat{D}(b+\Im) \rangle + \langle (b+\Im) \cdot g_*, \hat{D}(a+\Im) \rangle$$

$$= \langle g_*, (a+\Im) \cdot \hat{D}(b+\Im) \rangle + \langle g_*, \hat{D}(a+\Im) \cdot (b+\Im) \rangle.$$

This shows that \hat{D} is a w^* -continuous $\hat{\sigma}$ -derivation, where $\hat{\sigma}(a+\mathfrak{I})=\sigma(a)+\mathfrak{I}$ for all $a\in A$. So there exists $t\in\frac{X}{X_0}$, such that $\hat{D}=\delta_t^{\hat{\sigma}}$. Thus we have

$$\langle g_*, D_1(a) \rangle = \langle g_*, \hat{D}(a+\Im) \rangle$$

$$= \langle g_*, \hat{\sigma}(a+\Im) \cdot t - t \cdot \hat{\sigma}(a+\Im) \rangle$$

$$= \langle g_* \cdot \sigma(a), t \rangle - \langle \sigma(a) \cdot g_*, t \rangle$$

$$= \langle g_*, \delta_t^{\sigma}(a) \rangle.$$

This implies that $D_1 = D - \delta_t^{\sigma}$, and therefore $D = \delta_{x_0 - t}^{\sigma}$.

(ii) Let $\frac{\mathcal{J}}{\mathcal{J}}$ be a w^* -closed two sided ideal in $\frac{\mathcal{J}}{\mathcal{J}}$. Then \mathcal{J} is a w^* -closed two sided ideal in \mathcal{A} . We shall briefly outline the argument. Let $(a_{\alpha})_{\alpha}$ be a net in \mathcal{J} , such that $a_{\alpha} \longrightarrow a$ in w^* -topology of \mathcal{J} , we must show that a is in \mathcal{J} . It is clear that $a_{\alpha} + \mathcal{I} \longrightarrow a + \mathcal{I}$, in w^* -topology of $\frac{\mathcal{J}}{\mathcal{J}}$. Note that $(a_{\alpha} + \mathcal{I})_{\alpha}$ is a net in $\frac{\mathcal{J}}{\mathcal{J}}$. Since $\frac{\mathcal{J}}{\mathcal{J}}$ is w^* -closed, $a + \mathcal{I}$ is in $\frac{\mathcal{J}}{\mathcal{J}}$. Thus a belongs to \mathcal{J} , so \mathcal{J} is w^* -closed. Note that ${}^{\perp}\mathcal{I}$ is a predual of $\frac{\mathcal{J}}{\mathcal{J}}$ and it is also a closed \mathcal{J} -submodule of \mathcal{J}_* . Let $\pi_* : \mathcal{J}_* \to {}^{\perp}\mathcal{I}$ be the natural projection \mathcal{J} -bimodule homomorphism and $q : \mathcal{J} \to \frac{\mathcal{J}}{\mathcal{J}}$ be the natural quotient map. Now if $D : \frac{\mathcal{J}}{\mathcal{J}} \to \frac{\mathcal{J}}{\mathcal{J}}$ is a w^* -continuous σ -derivation, then $\tilde{\mathcal{J}} := (\pi_*)^* \circ D \circ q : \mathcal{J} \to \mathcal{J}$ is a w^* -continuous σ -derivation. Indeed, if $a, b \in \mathcal{J}$ and $j_* \in \mathcal{J}_*$, then

$$\langle j_*, \tilde{D}(ab) \rangle = \langle j_*, (\pi_*)^* (D \circ q(ab)) \rangle$$

$$= \langle j_*, (\pi_*)^* (D((a+\Im)(b+\Im))) \rangle$$

$$= \langle \pi_*(j_*), (\sigma(a)+\Im) \cdot D(b+\Im) + D(a+\Im).(\sigma(b)+\Im) \rangle$$

$$= \langle \pi_*(j_*) \cdot (\sigma(a)+\Im), D(b+\Im) \rangle + \langle (\sigma(b)+\Im) \cdot \pi_*(j_*), D(a+\Im) \rangle$$

$$= \langle \pi_*(j_*) \cdot \sigma(a), D(b+\Im) \rangle + \langle \sigma(b) \cdot \pi_*(j_*), D(a+\Im) \rangle$$

$$= \langle \pi_*(j_* \cdot \sigma(a), D(b+\Im) \rangle + \langle \pi_*(\sigma(b) \cdot j_*), D(a+\Im) \rangle$$

$$= \langle j_*, \sigma(a) \cdot (\pi_*)^* (D \circ q(b)) + (\pi_*)^* (D \circ q(a)) \cdot \sigma(b) \rangle$$

$$= \langle j_*, \sigma(a) \cdot \tilde{D}(b) + \tilde{D}(a) \cdot \sigma(b) \rangle.$$

So $\tilde{D}(a) = \delta_{\lambda}^{\sigma}$ for some $\lambda \in \mathcal{J}$. If $i_* \in \mathcal{I}_* = \frac{\mathcal{A}_*}{\perp \mathcal{I}}$, then $i_* \notin^{\perp} \mathcal{I}$. But π_* is the projection on $\perp \mathcal{I}$. Thus $\pi_*(i_*) = 0$. That is, $\pi_* = 0$ on \mathcal{I}_* . Let m be the restriction of λ to \mathcal{I}_* , then $m \in \mathcal{I}$ and for $i_* \in \mathcal{I}_*$, we have

$$\langle i_*, \sigma(a) \cdot m - m \cdot \sigma(a) \rangle = \langle i_* \cdot \sigma(a) - \sigma(a) \cdot i_*, m \rangle$$

$$= \langle i_* \cdot \sigma(a) - \sigma(a) \cdot i_*, \lambda \rangle$$

$$= \langle i_*, \sigma(a) \cdot \lambda - \lambda \cdot \sigma(a) \rangle$$

$$= \langle i_*, (\pi_*)^* \circ D \circ q(a) \rangle$$

$$= \langle \pi_*(i_*), D \circ q(a) \rangle$$

$$= 0.$$

Therefore $\sigma(a) \cdot m = m \cdot \sigma(a)$ for all $a \in \mathcal{A}$. Since \mathcal{I} has the σ -dual trace extension property, there exist a $\kappa \in \mathcal{A}$ such that $\kappa|_{\mathcal{I}_*} = m$ and $a \cdot \kappa - \kappa \cdot a = 0$ for all $a \in \mathcal{A}$. Let τ

be the restriction of κ to \mathcal{J}_* . Then $\tau \in \mathcal{J}$ and $\lambda - \tau = 0$ on \mathcal{I}_* . Therefore $\lambda - \tau \in \frac{\mathcal{J}}{\mathcal{I}}$. By the surjectivity of π_* , for every $x \in (\frac{\mathcal{J}}{\mathcal{I}})_*$ there exists $j_* \in \mathcal{J}_*$ such that $\pi_*(j_*) = x$. So

$$\langle x, D(a+\Im) \rangle = \langle \pi_*(j_*), D(a+\Im) \rangle$$

$$= \langle j_*, \sigma(a) \cdot \lambda - (\sigma(a) \cdot \tau - \tau \cdot a) - \lambda \cdot \sigma(a) \rangle$$

$$= \langle j_*, \sigma(a) \cdot \lambda - \sigma(a) \cdot \tau + \tau \cdot \sigma(a) - \lambda \cdot \sigma(a) \rangle$$

$$= \langle j_*, \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \cdot \rangle$$

If $j_* \in {}^{\perp} \mathcal{I}$, then by the definition of π_* , we have $\pi_*(j_*) = j_*$. Thus

$$\langle j_*, \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \rangle = \langle \pi_*(j_*), \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \rangle$$
$$= \langle x, \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a) \rangle.$$

Hence

$$D(a + \Im) = \sigma(a) \cdot (\lambda - \tau) - (\lambda - \tau) \cdot \sigma(a).$$

This shows that D is an inner σ -derivation. If $j_* \notin^{\perp} \mathcal{I}$, then $\pi_*(j_*) = 0$. This implies that D is also an inner σ -derivation. Therefore, $\frac{\mathcal{A}}{\mathcal{I}}$ is σ -ideally Connes amenable.

In the following, let \mathcal{A}^{\sharp} be the unitization of \mathcal{A} . It is easy to see that the map $\tilde{\sigma}: A^{\sharp} \to A^{\sharp}$ defined by

$$\tilde{\sigma}(a+\alpha) = \sigma(a) + \alpha \quad (a \in \mathcal{A}, \alpha \in \mathbb{C})$$

is a w^* -continuous endomorphism.

Theorem 2.3. Let A be a dual Banach algebra. Then the following statements hold.

- (i) If A^{\sharp} is $\tilde{\sigma}$ -ideally Connes amenable, then A is σ -ideally Connes amenable.
- (ii) If $H^1_{\tilde{\sigma},w^*}(\mathcal{A}^{\sharp},\mathcal{A}^{\sharp}) = \{0\}$, then $H^1_{\sigma,w^*}(\mathcal{A},\mathcal{A}) = \{0\}$.
- (iii) If σ is idempotent and \mathfrak{I} is a w^* -closed two sided ideal of \mathcal{A} with a bounded approximate identity and $\sigma(\mathfrak{I}) = \mathfrak{I}$, then $H^1_{\sigma,w^*}(\mathfrak{I},\mathfrak{I}) = \{0\}$ if and only if $H^1_{\sigma,w^*}(\mathcal{A},\mathfrak{I}) = \{0\}$.

Proof. (i) Let $D: \mathcal{A} \to \mathcal{I}$ be a w^* -continuous σ -derivation. Define the weak*-continuous $\tilde{\sigma}$ -derivation $\tilde{D}: A^{\sharp} \to \mathcal{I}$ by $\tilde{D}(a+\alpha) = D(a)$. Since \mathcal{A}^{\sharp} is $\tilde{\sigma}$ -ideally Connes amenable, it follows that $\tilde{D} = \delta_{\tilde{a}}^{\tilde{\sigma}}$ for some $a \in \mathcal{A}$. Hence for every $b \in \mathcal{A}$, we have

$$D(b) = \tilde{D}(b+\alpha)$$

$$= \tilde{\sigma}(b+\alpha) \cdot a - a \cdot \tilde{\sigma}(b+\alpha)$$

$$= \sigma(b) \cdot a - a \cdot \sigma(b).$$
(2.2)

This shows that D is σ -inner. Thus \mathcal{A} is σ -ideally Connes amenable.

(ii) This follows from (i) and the fact that \mathcal{A} is a normal \mathcal{A}^{\sharp} —bimodule with the following module action.

$$(a + \alpha) \cdot b = a \cdot b + \alpha b$$
 and $b \cdot (a + \alpha) = b \cdot a + \alpha b$,

for all $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$.

(iii) Assume that $H^1_{\sigma,w^*}(\mathfrak{I},\mathfrak{I})=\{0\}$. Let $D:\mathcal{A}\to\mathfrak{I}$ be a w^* -continuous σ -derivation and $i:\mathfrak{I}\to\mathcal{A}$ be the inclusion map. Then $d=D|_{\mathfrak{I}}:\mathfrak{I}\to\mathfrak{I}$ is a w^* -continuous σ -derivation. So there exists $t_0\in\mathfrak{I}$ such that $d=\delta^{\sigma}_{t_0}$. Since \mathfrak{I} has a bounded approximate identity and $\sigma(\mathfrak{I})=\mathfrak{I}$, we have

$$\overline{\sigma(\mathfrak{I}^2)}=\overline{\mathfrak{I}^2}=\mathfrak{I}.$$

On the other hand,

$$\mathfrak{I} = \sigma(\mathfrak{I}) \cdot \mathfrak{I} \cdot \sigma(\mathfrak{I}).$$

Thus $\mathfrak{I}_* = \sigma(\mathfrak{I}) \cdot \mathfrak{I}_* \cdot \sigma(\mathfrak{I})$. So for every $i, j \in \mathfrak{I}$ and $i_* \in \mathfrak{I}_*$, we have

$$\langle \sigma(i)i_*\sigma(j), D(a) \rangle = \langle \sigma(i)i_*, \sigma(j)D(a) \rangle$$

$$= \langle \sigma(i)i_*, D(ja) - D(j)\sigma(a) \rangle$$

$$= \langle \sigma(i)i_*, \sigma(ja)t_0 - t_0\sigma(ja) \rangle$$

$$- \langle \sigma(i)i_*, (\sigma(j)t_0 - t_0\sigma(j))\sigma(a) \rangle$$

$$= \langle \sigma(i)i_*\sigma(j), \sigma(a)t_0 - t_0\sigma(a) \rangle$$

$$= \langle \sigma(i)i_*\sigma(j), \delta_{t_0}^{\sigma}(a) \rangle.$$

It follows that $D = \delta_{t_0}^{\sigma}$. So D is σ -inner.

Conversly, let $\mathcal{H}^1_{\sigma,w^*}(\mathcal{A},I)=\{0\}$, and $D:\mathcal{I}\to\mathcal{I}$ be a w^* -continuous σ -derivation. Note that \mathcal{I} is neo-unital Banach \mathcal{I} -bimodule. So

$$\mathfrak{I} = \sigma(\mathfrak{I}) \cdot \mathfrak{I} \cdot \sigma(\mathfrak{I}).$$

In view of [[14], Proposition 4.14], there exists a σ -derivation $\hat{D}: \mathcal{A} \to \mathcal{I}$ such that $\hat{D}|_{\mathcal{I}} = D$. From hypothesis we infer that \hat{D} is σ -inner. Thus $H^1_{\sigma,w^*}(\mathcal{I},\mathcal{I}) = \{0\}$.

Let \mathcal{A} be a dual Banach algebra. Recall that \mathcal{A} is called *Connes amenable* if it is $id_{\mathcal{A}}$ —Connes amenable. Also, \mathcal{A} is said to be weakly amenable if every continuous derivation from \mathcal{A} into \mathcal{A}^* is inner; for more details see [15].

Theorem 2.4. Let \mathcal{A} and \mathcal{B} be dual Banach algebras and $\phi: \mathcal{A} \to \mathcal{B}$ be a w^* -continuous epimorphism. If \mathcal{A} is either Connes amenable or commutative weakly amenable dual Banach algebra, then \mathcal{B} is $\bar{\sigma}$ -ideally Connes amenable, where $\bar{\sigma}$ is a weak*-continuous endomorphism of \mathcal{B} .

Proof. Let \mathcal{I} be a w^* -closed two sided ideal of \mathcal{B} . Then \mathcal{I} is a normal dual \mathcal{A} -bimodule with the following actions.

$$a \cdot i = \bar{\sigma}(\phi(a)) \cdot i$$
 and $i \cdot a = i \cdot \bar{\sigma}(\phi(a))$

for all $a \in \mathcal{A}$ and $i \in \mathcal{I}$. It is easy to check that if $D : \mathcal{B} \to \mathcal{I}$ is a w^* -continuous $\bar{\sigma}$ -derivation, then $D \circ \phi : \mathcal{A} \to \mathcal{I}$ is a w^* -continuous $\bar{\sigma} \circ \phi$ -derivation.

If \mathcal{A} is Connes amenable, then there exists $t \in \mathcal{I}$ such that

$$D \circ \phi(a) = \delta_t^{id_{\mathcal{A}}}(a) = \delta_t^{\bar{\sigma} \circ \phi}(a) = \delta_t^{\bar{\sigma}}(\phi(a)).$$

Since ϕ is an epimorphism, $D = \delta_t^{\bar{\sigma}}$. Therefore, D is a $\bar{\sigma}$ -inner derivation. Thus \mathcal{B} is $\bar{\sigma}$ -ideally Connes amenable.

If \mathcal{A} is commutative weakly amenable, then \mathcal{B} is commutative and so \mathcal{I} is a symmetric Banach \mathcal{B} -bimodule. Hence \mathcal{I} is a symmetric Banach \mathcal{A} -bimodule and $\mathcal{H}^1(\mathcal{A}, I) = \{0\}$. So $D \circ \phi = 0$. Consequently D = 0. Therefore, \mathcal{B} is σ -ideally Connes amenable. \square

3. Some examples

In this section, we give some examples to illustrate the new notion of σ -ideally Connes amenability introduced in this work. These examples show that the notion of σ -ideally Connes amenability is different from ideally Connes amenable. In doing this, we give some examples of σ -ideally Connes amenable dual Banach algebras that are not ideally Connes amenable.

Example 3.1. Let \mathcal{A} be a dual Banach algebra, and let φ be a non-zero linear functional on A. Let \mathcal{A}_{φ} be the Banach algebra \mathcal{A} equipped with the following product.

$$a \cdot b = \varphi(a)b$$
.

Then $(\mathcal{A}_{\varphi}, \cdot)$ is a Banach algebra. Note that φ is a linear functional on A and thus $\varphi(a) \in \mathbb{C}$ for all $a \in A$. Hence

$$a \cdot (b \cdot c) = a \cdot (\varphi(b)c) = \varphi(a)\varphi(b)c$$
$$= \varphi(\varphi(a)b)c = \varphi(a \cdot b)c$$
$$= (a \cdot b) \cdot c$$

for all $a, b, c \in \mathcal{A}$. This shows that the multiplication is associative. Since the product "·" is separately w^* —continuous, \mathcal{A}_{φ} is a dual Banach algebra. It is clear that \mathcal{A}_{φ} has a left identity, say e, but it does not have bounded right approximate identity. So \mathcal{A}_{φ} is not ideally Connes amenable; see [[7], Proposition 2.3].

We define the w^* -continuous endomorphism $\sigma: \mathcal{A}_{\varphi} \to \mathcal{A}_{\varphi}$ by

$$\sigma(a) = \varphi(a)e$$
.

For every $a \in \mathcal{A}$, we have

$$\sigma^2(a) = \sigma(\varphi(a)e) = \varphi(a)\sigma(e) = \sigma(a).$$

Thus σ is idempotent. Obviously, e is identity for $\sigma(\mathcal{A}_{\varphi})$.

We claim that any non-trivial two-sided ideal of \mathcal{A}_{φ} is contained in $\ker \varphi$, and that any closed subspace of $\ker \varphi$ is a closed two-sided ideal. Indeed, let $\mathfrak{I} \subseteq \mathcal{A}_{\varphi}$ be a non-trivial two-sided ideal, so for $a \in \mathfrak{I}$, $b \in \mathcal{A}$ we have $\varphi(a)b = a \cdot b \in \mathfrak{I}$. Letting b vary and using that $\mathfrak{I} \neq \mathcal{A}$ shows that $\varphi(a) = 0$, so $\mathfrak{I} \subseteq \ker \varphi$. Conversely, if $\mathfrak{I} \subseteq \ker \varphi$ is a closed subspace, then $a \cdot b = 0$ for each $a \in \mathfrak{I}$, $b \in \mathcal{A}$, while $b \cdot a = \varphi(b)a \in \mathfrak{I}$, showing that \mathfrak{I} is a two-sided ideal.

Let $\tilde{D}: \mathcal{A}_{\varphi} \to \mathcal{A}_{\varphi}$ be a non-zero w^* -continuous σ -derivation. Then for every $a, b \in \mathcal{A}_{\varphi}$, we have

$$\tilde{D}(a \cdot b) = \sigma(a) \cdot \tilde{D}(b) + \tilde{D}(a) \cdot \sigma(b).$$

Hence

$$\varphi(a) \cdot \tilde{D}(b) = \varphi(a) \cdot e \cdot \tilde{D}(b) + \tilde{D}(a) \cdot \varphi(b) \cdot e$$
$$= \varphi(a) \cdot \tilde{D}(b) + \varphi(b) \cdot \tilde{D}(a) \cdot e.$$

Thus $\varphi(b)\tilde{D}(a)\cdot e=0$. Since $\varphi\neq 0$, we have $\tilde{D}(a)\cdot e=0$. Thus $\varphi(\tilde{D}(a))e=0$, so we conclude that e=0, that is a contradiction. It means that every σ -derivation is zero, so it is inner. Thus \mathcal{A}_{φ} is σ -ideally Connes amenable.

Example 3.2. Let $\mathcal{A} = \ell^1(\mathbb{N})$ be equipped with the product

$$f \cdot g = f(1)g$$

and the norm $\|.\|_1$; see [18]. It is easy to see that \mathcal{A} does not have bounded approximate identity. So \mathcal{A} is not ideally Connes amenable [7].

For $f \in \mathcal{A}$, define the mapping $\widetilde{f} : \mathbb{N} \to \mathbb{C}$, by $\widetilde{f}(1) = 0$ and $\widetilde{f}(n) = f(n)$ for $n \geq 2$. Then $f = f \cdot e + \widetilde{f}$, where $e \in \ell^1(\mathbb{N})$ is defined by

$$e_n = \left\{ \begin{array}{ll} 1 & n = 1 \\ 0 & n \neq 1. \end{array} \right.$$

Let \mathcal{I} be a weak*-closed two-sided ideal of \mathcal{A} with $\mathcal{I} \neq \mathcal{A}$. Then \mathcal{I} is contained in

$$\{f \in \mathcal{A} : f(1) = 0\}.$$

We define the w^* -continuous idempotent endomorphism σ on \mathcal{A} , be such that for all $a \in \ell^1(\mathbb{N})$

$$\sigma(a)(1) = a(1).$$

Let $D: \mathcal{A} \to \mathcal{I}$ be a weak*-continuous σ -derivation. Then

$$D(f) = \sigma(f)(1)D(e) + D(\widetilde{f}),$$

Since $D(\widetilde{f}) \in \mathcal{I}$ and $D(\widetilde{f})(1) = 0$, it follows that

$$D(\tilde{f}) \cdot \sigma(e) = D(\tilde{f})(1)\sigma(e) = 0.$$

So for every $g \in \mathcal{A}_*$, we have

$$\langle D(\widetilde{f}), g \rangle = \langle D(\widetilde{f}), \sigma(e) \cdot g \rangle = \langle D(\widetilde{f}) \cdot \sigma(e), g \rangle = 0.$$

Hence $D(\widetilde{f}) = 0$. From $D(e) \in \mathcal{I}$ and D(e)(1) = 0 we infer that $D(e) \cdot \sigma(f) = 0$. So

$$D(f) = \sigma(f)(1)D(e)$$

$$= \sigma(f) \cdot D(e)$$

$$= \sigma(f) \cdot D(e) - D(e) \cdot \sigma(f).$$

Therefore $H^1_{\sigma,w^*}(\mathcal{A},\mathfrak{I})=\{0\}.$

Let $a \in \ell^{\dot{1}}(\mathbb{N})$. Then there is a sequence $\{a_n\}$ in $c_0(\mathbb{N})$ such that $a_n \to a$ in the w^* -topology. For $f \in c_0(\mathbb{N})^*$, define the linear functional $\hat{f} \in \ell^1(\mathbb{N})^*$ by

$$\langle a, \hat{f} \rangle := w^* - \lim_n \langle a_n, f \rangle.$$

This enables us to define the left and right module actions of $\ell^1(\mathbb{N})$ on $c_0(\mathbb{N})^*$ by

$$a \cdot f = \langle a, \hat{f} \rangle e$$
 and $f \cdot a = a(1)f$.

It is easy to prove that $c_0(\mathbb{N})^*$ is an $\ell^1(\mathbb{N})$ -bimodule. Let D be a weak*-continuous σ -derivation from $\ell^1(\mathbb{N})$ to $\ell^1(\mathbb{N}) \cong c_0(\mathbb{N})^*$. For all $a \in \ell^1(\mathbb{N})$, we have

$$a(1)D(a) = D(a^{2})$$

$$= D(a) \cdot \sigma(a) + \sigma(a) \cdot D(a)$$

$$= \sigma(a)(1)D(a) + \langle \sigma(a), D(a) \rangle e.$$

This shows that

$$\langle \sigma(a), D(a) \rangle = 0.$$

So for every $a, b \in \ell^1(\mathbb{N})$, we have

$$0 = \langle \sigma(ab), D(ab) \rangle$$

$$= \langle \sigma(ab), D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b) \rangle$$

$$= \langle \sigma(a).\sigma(b), \sigma(b)(1)D(a)$$

$$+ \langle \sigma(a), D(b)e \rangle$$

$$= \langle \sigma(a).\sigma(b), \sigma(b)(1)D(a) \rangle$$

$$+ \langle \sigma(a), D(b) \rangle \langle \sigma(a)\sigma(b), e \rangle$$

$$= \sigma(b)(1)\langle \sigma(a).\sigma(b), D(a) \rangle$$

$$+ \sigma(a)(1)\sigma(b)(1)\langle \sigma(a), D(b) \rangle$$

$$= \sigma(b)(1).\sigma(a)(1)\langle \sigma(b), D(a) \rangle$$

$$+ \sigma(a)(1)\sigma(b)(1)\langle \sigma(a), D(b) \rangle.$$

It follows that

$$\langle \sigma(a), D(b) \rangle = -\langle \sigma(b), D(a) \rangle.$$

Let $t \in \sigma(A)$. Then there exists $b \in \ell^1(\mathbb{N})$ such that $t = \sigma(b) = \sigma^2(b)$. Thus

$$\begin{array}{lll} \langle t,D(a)\rangle &=& \langle t,D(ea)\rangle \\ &=& \langle t,D(e)\cdot\sigma(a)\rangle + \langle t,\sigma(e)\cdot D(a)\rangle \\ &=& \langle \sigma(a).t,D(e)\rangle + \langle t.\sigma(e),D(a)\rangle \\ &=& \langle \sigma(a).\sigma^2(b),D(e)\rangle + \langle \sigma^2(b).\sigma(e),D(a)\rangle \\ &=& \langle \sigma(a).\sigma(b),D(e)\rangle + \langle \sigma(\sigma(b).e),D(a)\rangle \\ &=& \langle \sigma(a).\sigma(b),D(e)\rangle - \langle \sigma(a),D(\sigma(b).e)\rangle \\ &=& \langle \sigma(a).\sigma(b),D(e)\rangle - \langle \sigma(a),\sigma(b)(1)D(e)\rangle \\ &=& \langle \sigma(b),D(e)\cdot\sigma(a)\rangle - \langle \sigma(a),D(e)\cdot\sigma(b)\rangle \\ &=& \langle \sigma(b),D(e)\cdot\sigma(a)\rangle - \langle \sigma(b).\sigma(a),D(e)\rangle \\ &=& \langle \sigma(b),D(e)\cdot\sigma(a)\rangle - \langle \sigma(b),\sigma(a)\cdot D(e)\rangle \\ &=& \langle t,D(e)\cdot\sigma(a)-\sigma(a)\cdot D(e)\rangle. \end{array}$$

Hence

$$D(a) = D(e) \cdot \sigma(a) - \sigma(a) \cdot D(e) = \delta^{\sigma}_{-D(e)}(a).$$

Therefore, $\ell^1(\mathbb{N})$ is σ -ideally Connes amenable.

Example 3.3. Let \mathcal{A} be a non-ideally Connes amenable Banach algebra with a right approximate identity. It is known from [7] that \mathcal{A}^{\sharp} is not ideally Connes amenable. Define the w^* -continuous map $\sigma: \mathcal{A}^{\sharp} \to \mathcal{A}^{\sharp}$ by

$$\sigma(a+\alpha)=\alpha.$$

Let $(e_{\alpha})_{\alpha \in \Lambda}$ be a right approximate identity for \mathcal{A} , and let \mathcal{I} be a w^* -closed two-sided ideal in \mathcal{A}^{\sharp} . If $D: \mathcal{A}^{\sharp} \to \mathcal{I}$ is a w^* -continuous σ -derivation, then a simple calculation shows that $D(ae_{\alpha}) = 0$, for all $a \in \mathcal{A}$ and $\alpha \in \Lambda$. Consequently, D(a) = 0. If $e_{\mathcal{A}^{\sharp}}$ denotes the identity element of \mathcal{A}^{\sharp} , then

$$D(a + \alpha e_{A\sharp}) = D(a) + \alpha D(e_{A\sharp}) = 0.$$

That is, D = 0 and so \mathcal{A}^{\sharp} is σ -ideally Connes amenable.

4. σ -ideally Connes amenability of $\ell^1(G,\omega)$

Let us recall that a Banach space E is called an L-embedded Banach space if it is an l^1- summand in its bidual.

The following theorem is proved in [1] is needed to prove the main result of this section.

Theorem 4.1. Let E be an L-embedded Banach space and F be a non-empty bounded subset of E. Then the family of isometry maps of E preserving F has a common fixed point in F.

Let G be a discrete group and $\omega: G \to [1, \infty)$ be a weight function, i.e, $\omega(e) = 1$ and

$$\omega(xy) \le \omega(x)\omega(y)$$

for all $x,y \in G$. Let us recall that a weight function ω on G is called diagonally bounded if $\sup_{x\in G}(\omega(x)\omega(x^{-1}))$ is finite. Also, recall that $\ell^1(G,\omega)$ denotes the space of all complex-valued functions on G such that $\omega f \in \ell^1(G)$. For details on these algebras, refer to [9] and the references therein.

We know that $\ell^1(G)$ is L-embedded, and since $\ell^1(G,\omega)$ is isometrically isomorphic to $\ell^1(G)$ as a Banach space (although not as a Banach algebra), it too must be L-embedded. We show that a weak*-closed linear subspace of $\ell^1(G)$ is L-embedded. We shall briefly

outline the argument. Let $i: c_0(G) \hookrightarrow \ell^{\infty}(G)$ be the canonical embedding, and let $p = i^*$. Then p is the projection $\ell^1(G)^{**} \longrightarrow \ell^1(G)$ witnessing its L-embeddedness, that is to say

$$\|\Phi\| = \|p(\Phi)\| + \|(id - p)(\Phi)\| \quad (\Phi \in \ell^1(G)^{**}). \tag{4.1}$$

Let I be a weak*-closed linear subspace of $\ell^1(G)$, and let $j: c_0(G)/I_{\perp} \longrightarrow l^{\infty}(G)/I^{\perp}$ be the map

$$j: x + I_{\perp} \longmapsto i(x) + I^{\perp} \quad (x \in c_0(G)).$$

Then j can be thought of an embedding $I_* \hookrightarrow I^*$. Let $q = j^* : I^{\perp \perp} \longrightarrow I$. Canonically $I^{\perp \perp} \cong I^{**}$ (isometrically) and we can check that $p|_{I^{\perp \perp}} = q$. A simple calculation using Equation (4.1) then shows that

$$\|\Phi\| = \|q(\Phi)\| + \|(id - q)(\Phi)\| \quad (\Phi \in I^{\perp \perp}),$$

so that I is L-embedded.

Theorem 4.2. Let ω be a diagonally bounded weight function on a discrete group G and σ be an isometric isomorphism of $\ell^1(G,\omega)$. Then $\ell^1(G,\omega)$ is σ -ideally Connes amenable.

Proof. Let ω be a weight function on G. Fix $a \in G$ and define the weight function ω_a on G by

$$\omega_a(x) = \omega(axa^{-1})$$

for all $x \in G$. Then for every $x \in G$, we have $\omega_a(x) \leq \omega(a)\omega(a^{-1})\omega(x)$ and

$$\begin{array}{lcl} \omega(x) & = & \omega(a^{-1}(axa^{-1})a) \\ & \leq & \omega(a^{-1})\omega(a)\omega(axa^{-1}) = \omega(a^{-1})\omega(a)\omega_a(x). \end{array}$$

Now, define the weight function ω' on G by $\omega'(x) = \sup_{a \in G} \omega(axa^{-1})$. Since ω is diagonally bounded, there is a constant m > 0 such that $\omega(a)\omega(a^{-1}) \leq m$ for every $a \in G$. Hence $\omega(axa^{-1}) \leq \omega(x)\omega(a)\omega(a^{-1}) \leq m\omega(x)$ for every $a \in G$. Thus $\sup_{a \in G} \omega(axa^{-1}) \leq m\omega(x)$, therefore

$$\omega'(x) \le m\omega(x) \tag{4.2}$$

On the other hand

$$\omega(x) = \omega(exe^{-1}) \le \sup_{a \in G} \omega(axa^{-1}) = \omega'(x)$$
(4.3)

Due to relations (4.2) and (4.3) we conclude that ω and ω' are equivalent. Thus $\ell^1(G,\omega)$ and $\ell^1(G,\omega')$ are isometrically isomorphic.

Let D be a w^* -continuous derivation from $\ell^1(G, \omega')$ into w^* -closed two sided ideal \mathbb{F} of $\ell^1(G, \omega')$. Define the function $h: G \to \mathbb{F}$ by $h(t) = D(\delta_t) * \sigma(\delta_{t^{-1}})$. Since ω is diagonally bounded, ω' does so. Thus h is bounded. Indeed, for every $t \in G$, we have

$$|| h(t) || = || D(\delta_t) * \sigma(\delta_{t-1}) ||$$

$$\leq || D || || \delta_t ||_{w'} || \delta_{t-1} ||_{w'}$$

$$= || D || w'(t)w'(t^{-1}).$$

For $t \in G$ and $g \in \mathcal{I}$, define the action

$$t \cdot g = \sigma(\delta_t) * g * \sigma(\delta_{t-1}).$$

Then

$$h(st) = D(\delta_{st}) * \sigma(\delta_{(st)^{-1}}) = D(\delta_s * \delta_t) * \sigma(\delta_{t^{-1}} * \delta_{s^{-1}})$$

$$= D(\delta_s) * \sigma(\delta_t) + \sigma(\delta_s) * D(\delta_t) * \sigma(\delta_{t^{-1}}) * \sigma(\delta_{s^{-1}})$$

$$= D(\delta_s) * \sigma(\delta_{s^{-1}}) + \sigma(\delta_s) * D(\delta_t) * \sigma(\delta_{t^{-1}}) * \sigma(\delta_{s^{-1}})$$

$$= h(s) + s \cdot h(t).$$

Using h we can define another action of G on \mathfrak{I} as follows.

$$t \bullet q = t \cdot q + h(t) = \sigma(\delta_t) * q * \sigma(\delta_{t-1}) + h(t)$$

for all $t \in G$ and $g \in \mathcal{I}$. Since σ is an isometric isomorphism of $\ell^1(G, w')$, there exist a continuous character $\gamma : G \to \mathbb{T}$ and an automorphism ψ on G such that for every $t \in G$,

$$\sigma(\delta_t) = \frac{w(t)\gamma(t)}{w(\psi(t))}\delta_{\psi(t)};$$

see [[17] Theorem 2.4]. This implies that " \bullet " is isometry. Thus for every $g_1, g_2 \in \ell^1(G, w')$, we have

$$\| t \bullet (g_{1} - g_{2}) \|_{1,w'} = \| t \cdot (g_{1} - g_{2}) \|_{1,w'}$$

$$= \| \sigma(\delta_{t}) * (g_{1} - g_{2}) * \sigma(\delta_{t-1}) \|_{1,w'}$$

$$= | \frac{w(t)\gamma(t)}{w(\psi(t))} | | \frac{w(t^{-1})\gamma(t^{-1})}{w(\psi(t^{-1}))} | \sum_{x \in G} (| (g_{1} - g_{2})(x) | w'(\psi(t^{-1})x\psi(t)))$$

$$= \sum_{x \in G} | (g_{1} - g_{2})(x) | w'(x)$$

$$= \| g_{1} - g_{2} \|_{1,w'} .$$

But, for $t \in G$, we have

$$t \bullet h(G) = \{t \bullet h(s) : s \in G\}$$
$$= \{t \cdot h(s) + h(t) : h \in G\}$$
$$= \{h(ts) : s \in G\}$$
$$= h(G).$$

These facts let us to apply Theorem 4.1 to $E = \mathcal{I}$ and F = h(G). So there exists $g \in \mathcal{I}$ such that $t \bullet g = g$ for all $t \in G$. It follows that

$$D(\delta_t) * \sigma(\delta_{t-1}) = h(t)$$

$$= t \bullet g - t \cdot g$$

$$= g - t \cdot g$$

$$= g - \sigma(\delta_t) * g * \sigma(\delta_{t-1}).$$

This shows that

$$D(\delta_t) = q * \sigma(\delta_t) - \sigma(\delta_t) * q.$$

Since span $\{\delta_t; t \in G\}$ is weak* dense in $\ell^1(G, w')$, we conclude that

$$D(f) = q * \sigma(f) - \sigma(f) * q = \delta_{\sigma}^{\sigma}(f)$$

for all $f \in \ell^1(G, w')$. Thus $\ell^1(G, w')$ is σ -ideally Connes amenable.

We finish this section with the following result which is an immediate consequence of Theorem 4.2.

Corollary 4.3. Let ω be a diagonally bounded weight function on a discrete group G. Then $\ell^1(G,\omega)$ is ideally Connes amenable.

5. Conclusion

In this paper, we introduced the concept of σ -ideally Connes amenable for dual Banach algebras. We gave some examples to illustrate this notion and showed that it is different from ideally Connes amenable. We also determined relation between σ -ideally Connes amenability of a dual Banach algebra with its unitization, quotient spaces and homomorphic images. Finally, we studied σ -ideally Connes amenability of weighted group algebra $\ell^1(G,\omega)$ and proved that if ω is a diagonally bounded weight function on discrete group G and σ is isometrically isomorphism of $\ell^1(G,\omega)$, then $\ell^1(G,\omega)$ is σ -ideally Connes amenable.

Acknowledgment. The authors would like to thank the referee of the paper for invaluable comments.

References

- [1] U. Bader, T. Gelander and N. Monod, A fixed point theorem for L^1 spaces, Invent. Math. **189** (1), 143-148, 2012.
- [2] A. Connes, Classification of injective factors. Cases II_1 , II_{∞} , III_{λ} , $\lambda \neq 1$, Ann. of Math. 104 (1), 73-115, 1976.
- [3] A. Connes, On the cohomology of operator algebras, J. Functional Analysis 28 (2), 248-253, 1978.
- [4] A. Y. Helemskii, Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule, (Russian); translated from Mat. Sb. **180** (12) (1989), 1680–1690, 1728 Math. USSR-Sb. **68** (2), 555-566, 1991.
- [5] B. E. Johnson, *Cohomology in Banach algebras*, Memoirs of the American Mathematical Society **127**, American Mathematical Society, Providence, R.I., 1972.
- [6] B. E. Johnson, R.V. Kadison and J. R. Ringrose, Cohomology of operator algebras, III. Reduction to normal cohomology, Bull. Soc. Math. France 100, 73-96, 1972.
- [7] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, *Ideal Connes-amenability of dual Banach algebras*, Mediterr. J. Math. **14** (4), Paper No. 174, 12 pp, 2017.
- [8] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Derivations on the tensor product of Banach algebras, J. Math. Ext. 11, 117-125, 2017.
- [9] A. Minapoor and O.T. Mewomo, Zero set of ideals in Beurling algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82 (3), 129-138, 2020.
- [10] A. Minapoor, Approximate ideal Connes amenability of dual Banach algebras and ideal Connes amenability of discrete Beurling algebras, Eurasian Math. J. 11 (2), 72-85, 2020.
- [11] A. Minapoor, *Ideal Connes amenability of l*¹-Munn algebras and its application to semigroup algebras, Semigroup Forum **102** (3), 756-764, 2021.
- [12] A. Minapoor and A. Zivari-Kazempour, *Ideal Connes-amenability of certain dual Banach algebras*, Complex. Anal. Oper. Th. **17**, 27, 2023.
- [13] M. Mirzavaziri and M. S. Moslehian, σ -amenability of Banach algebras, Southeast Asian Bull. Math. **33** (1), 89-99, 2009.
- [14] M. Momeni, T. Yazdanpanah and M. R. Mardanbeigi, σ-approximately contractible Banach algebras, Abstr. Appl. Anal. 2012, Art. ID 653140, 2012.
- [15] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2002.
- [16] A. Teymouri, A. Bodaghi and D. E. Bagha, *Derivations into annihilators of the ideals of Banach algebras*, Demonstr. Math. **52** (1), 20–28, 2019.
- [17] S. Zadeh, Isometric isomorphisms of Beurling algebras, J. Math. Anal. Appl. 438 (1), 1-13, 2016.
- [18] Y. Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. 44, 504–508, 2001.