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Abstract. In this work, we develop a new method to obtain approximate solutions of linear and nonlinear coupled
partial differential equations with the help of Double Aboodh-Shehu decomposition method (DASDM). The non-
linear term can easily be handled with the help of Adomian polynomials. The results of the present technique have
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1. Introduction

The topic of partial differential equations is one of the most important subjects in mathematics and other sciences.
Therefore, it is very important to know methods to solve such partial differential equations. In the literature, several
different transforms are introduced and applied to find the solution of partial differential equations such as Laplace
transform [8], Shehu transform [10], Aboodh transform [2], and so on. Two of the most popular methods for solving
partial differential equations are the integral transforms method and Adomian decomposition method [13]. The decom-
position method has been shown to solve efficiently, easily and accurately a large class of linear and nonlinear ordinary,
partial, deterministic or stochastic differential equations [7, 16]. The method is very well suited to physical problems
since it does not require unnecessary linearization, perturbation, discretization, or any unrealistic assumptions. The
Adomian decomposition method is relatively easy to implement, and it can be used with other methods. It can also be
used to solve both initial value problems and boundary value problems. In [9], the authors used Laplace transform with
Adomian decomposition method to solve nonlinear coupled partial differential equations.

The main objective of this paper is to obtained the exact solutions of coupled linear and nonlinear partial differential
equations with initial value problems by using double Aboodh-Shehu transform algorithm based on decomposition
method.
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2. Preliminaries

Definition 2.1. The single Aboodh transform of the real function f (x) of exponential order is defined over the set of
functions

M =
{
f (x) : ∃K, τ1, τ2 > 0, | f (x)| < Ke|x|τi , x ∈ (−1)i × [0,∞), i = 1, 2

}
,

by the following integral

A[ f (x)] = F(r) =
1
r

∫ ∞
0

e−rx f (x)dx, τ1 ≤ r ≤ τ2.

And the inverse Aboodh transform is

A−1[F(r)] = f (x) =
1

2πi

∫ ω+i∞

ω−i∞
rerxF(r)dr, ω ≥ 0.

Aboodh transform was introduced by K. Aboodh [2] in 2013 to facilitate the process of solving ordinary and partial
differential equations in the time domain. For further details and properties of the Aboodh transform and its derivatives
we refer to [1, 5].

Definition 2.2. The single Shehu transform of the function f (t) of exponential order is defined over the set of functions,

B =

{
f (t) : ∃N, ρ1, ρ2 > 0, | f (t) |< Ne

|t|
ρ j , t ∈ (−1) j × [0,∞), j = 1, 2

}
,

by the following integral

S[ f (t)] = F(s, u) =
∫ ∞

0
e
−st
u f (t)dt, s > 0, u > 0.

Moreover, the inverse Shehu transform is given by

f (t) = S−1[F(s, u)] =
1

2πi

∫ w+i∞

w−i∞

1
u

e
st
u F(s, u)ds,

where s and u are the Shehu transform variables, and w is a real constant and the integral in Eq. (2.2) is taken along
s = w in the complex plane s = x + iy.

For further details and properties of Shehu transform and its derivatives we refer to [3, 4, 10, 12].

Definition 2.3. The double Aboodh-Shehu transform of the continuous function f (x, t), x, t > 0 is denoted by the
operator AxSt[ f (x, t)] = F(r, s, u) and defined by

AxSt[ f (x, t)] = F(r, s, u) =
1
r

∫ ∞
0

∫ ∞
0

e−(rx+ st
u

) f (x, t)dxdt

=
1
r

lim
a→∞,b→∞

∫ a

0

∫ b

0
e−(rx+ st

u
) f (x, t)dxdt.

It converges if the limit of the integral exists, and diverges if not.
The inverse of double Aboodh-Shehu transform is defined by

f (x, t) = A−1
x S
−1
t [F(r, s, u)] =

1
(2πi)2

∫ ρ1+i∞

ρ1−i∞
rerx
{∫ ρ2+i∞

ρ2−i∞

1
u

e
st
u F(r, s, u)ds

}
dr,

where ρ1 and ρ2 are real constants.

Double Aboodh-Shehu transform for second partial derivatives property

AxSt[
∂2 f (x, t)
∂x2 ] = r2F(r, s, u) − S[ f (0, t)] −

1
r
S[ fx(0, t)],

AxSt[
∂2 f (x, t)
∂t2 ] =

s2

u2 F(r, s, u) −
s
u

A[ f (x, 0)] − A[ ft(x, 0)],

AxSt[
∂2 f (x, t)
∂x∂t

] =
sr
u

F(r, s, u) − rA[ f (x, 0)] −
1
r
S[ ft(0, t)],

where A[.] and S[.] denote to single Aboodh transform and single Shehu transform, respectively.
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Recently, in 2022, the authors in [11] discussed some theorems and properties about the double Aboodh-Shehu
transform and gave the double Aboodh-Shehu transform of some elementary functions.

We consider the general inhomogeneous nonlinear partial differential equation with initial conditions given below:

Lu(x, t) + Ru(x, t) + Nu(x, t) = f (x, t), (2.1)

u(x, 0) = f1(x), ut(x, 0) = f2(x), (2.2)

where L = ∂2

∂t2 is the second order derivative which is assumed to be easily invertible, R is the remaining linear
differential operator, Nu represents the nonlinear terms and f (x, t), f1(x) and f2(x) are known functions.
The methodology consists of applying double Aboodh-Shehu transform first on both sides of Eq. (2.1)

AxSt
{
Lu(x, t) + Ru(x, t) + Nu(x, t)

}
= AxSt

{
f (x, t)

}
. (2.3)

By linearity property of double Aboodh-Shehu transform, Eq. (2.3) becomes

AxSt[Lu(x, t)] + AxSt[Ru(x, t)] + AxSt[Nu(x, t)] = AxSt[ f (x, t)]. (2.4)

Using the property of partial derivative of double Aboodh-Shehu transform for Eq. (2.4), we have

s2

u2 U(r, s, u) −
s
u

A[u(x, 0)] − A[ut(x, 0)] + AxSt[Ru(x, t)]

+ AxSt[Nu(x, t)] = AxSt[ f (x, t)]. (2.5)

Using given initial conditions and arrangement, Eq. (2.5) becomes

U(r, s, u) =
u

s
A[ f1(x)] +

u2

s2 A[ f2(x)] +
u2

s2 AxSt[ f (x, t)]

−
u2

s2 AxSt[Ru(x, t)] −
u2

s2 AxSt[Nu(x, t)]. (2.6)

Application of inverse double Aboodh-Shehu transform to (2.6) leads to

u(x, t) = A−1
x S
−1
t

[u
s

A[ f1(x)] +
u2

s2 A[ f2(x)] +
u2

s2 AxSt
[
f (x, t)

]]
− A−1

x S
−1
t

[u2

s2 AxSt
[
Ru(x, t)

]
+
u2

s2 AxSt
[
Nu(x, t)

]]
. (2.7)

The second step in double Aboodh-Shehu decomposition method is that we represent solution as an infinite series:

u(x, t) =
∞∑

i=0

ui(x, t), (2.8)

and the nonlinear term can be decomposed as

Nu(x, t) =
∞∑

i=0

Ai, (2.9)

where Ai are the Adomian polynomials [15] of u0, u1, u2, ..., un and it can be calculated via the general formula given
below

Ai =
1
i!

di

dλi

[
N
∞∑

i=0

λiui

]
λ=0
.

Substituting Eq. (2.8) and Eq. (2.9) in Eq. (2.7), we get
∞∑

i=0

ui(x, t) = A−1
x S
−1
t

[u
s

A[ f1(x)] +
u2

s2 A[ f2(x)] +
u2

s2 AxSt[ f (x, t)]
]

− A−1
x S
−1
t

[u2

s2 AxSt

[
R
∞∑

i=0

ui(x, t)
]
+
u2

s2 AxSt

[ ∞∑
i=0

Ai

]]
. (2.10)
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On comparing both sides of the Eq. (2.10) and by using standard Adomian decomposition method (ADM), we then
define the recurrence relations as

u0(x, t) = A−1
x S
−1
t

[u
s

A[ f1(x)] +
u2

s2 A[ f2(x)] +
u2

s2 AxSt[ f (x, t)]
]
,

u1(x, t) = −A−1
x S
−1
t

[u2

s2 AxSt[Ru0(x, t)] +
u2

s2 AxSt[A0]
]
,

u2(x, t) = −A−1
x S
−1
t

[u2

s2 AxSt[Ru1(x, t)] +
u2

s2 AxSt[A1]
]
.

In more general, the recursive relation is given by

ui+1(x, t) = −A−1
x S
−1
t

[u2

s2 AxSt[Rui(x, t)] +
u2

s2 AxSt[Ai]
]
, i ≥ 0.

The recurrence relation generates the solution of (2.1) in series form given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · + ui(x, t) + · · ··

3. Applications

In order to illustrate the applicability and efficiency of the double Aboodh-Shehu decomposition method, we apply
this method to solve some equations.

Example 3.1. Consider the following nonlinear partial differential equation

uxx(x, t) +
1
4

u2
t (x, t) = u(x, t), (3.1)

subject to the initial conditions

u(0, t) = 1 + t2, ux(0, t) = 1.

Applying double Aboodh-Shehu transform first on both sides of Eq. (3.1), we have

AxSt[uxx(x, t)] + AxSt[
1
4

u2
t (x, t)] = AxSt[u(x, t)].

Using the differentiation property of double Aboodh-Shehu transform, we have

r2U(r, s, u) − S[u(0, t)] −
1
r
S[ux(0, t)] + AxSt[

1
4

u2
t ] = AxSt[u].

Rearranging the terms and using given initial conditions, we have

U(r, s, u) =
1
r2 S[1 + t2] +

1
r3 S[1] +

1
r2 AxSt[u] −

1
4r2 AxSt[u2

t ]

=
u

r2s
+

2!u3

r2s3 +
u

r3s
+

1
r2 AxSt[u] −

1
4r2 AxSt[u2

t ]. (3.2)

Application of inverse double Aboodh-Shehu transform to (3.2) leads to

u(x, t) = 1 + t2 + x + A−1
x S
−1
t

[ 1
r2 AxSt[u] −

1
4r2 AxSt[u2

t ]
]
. (3.3)

The double Aboodh-Shehu decomposition method assumes a series solution of the function u(x, t) is given by

u(x, t) =
∞∑

i=0

ui(x, t). (3.4)

Using Eq. (3.4) into Eq. (3.3) we get
∞∑

i=0

ui(x, t) = 1 + t2 + x + A−1
x S
−1
t

[ 1
r2 AxSt

[ ∞∑
i=0

ui

]
−

1
4r2 AxSt

[ ∞∑
i=0

Ai(u)
]]
, (3.5)
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where Ai are Adomian polynomials that represents nonlinear terms.
So, Adomian polynomials are given as follows:

∞∑
i=0

Ai(u) = u2
t (x, t). (3.6)

The few components of the Adomian polynomials are given as follow:

A0(u) = u2
0t, A1(u) = 2u0tu1t, ..., Ai(u) =

i∑
r=0

urtu(i−r)t.

From Eqs. (3.5) and (3.6) we obtain

u0 = 1 + t2 + x,
∞∑

i=0

ui+1(x, t) = A−1
x S
−1
t

[
1
r2 AxSt

[ ∞∑
i=0

ui −
1
4

∞∑
i=0

Ai(u)
]]
, i ≥ 0.

Then, the first few components of ui(x, t) follows immediately upon setting

u1(x, t) = A−1
x S
−1
t

[ 1
r2 AxSt

[
u0
]
−

1
4r2 AxSt

[
A0(u)

]]
= A−1

x S
−1
t

[ 1
r2 AxSt[1 + t2 + x] −

1
4r2 AxSt[4t2]

]
= A−1

x S
−1
t

[ u
r4s
+
u

r5s

]
=

1
2!

x2 +
1
3!

x3,

u2(x, t) = A−1
x S
−1
t

[ 1
r2 AxSt

[
u1
]
−

1
4r2 AxSt

[
A1(u)

]]
= A−1

x S
−1
t

[ 1
r2 AxSt[

1
2!

x2 +
1
3!

x3] −
1

4r2 AxSt[0]
]

= A−1
x S
−1
t

[ u
r6s
+
u

r7s

]
=

1
4!

x4 +
1
5!

x5,

and so on for other components. Therefore, the exact solution obtained by double Aboodh-Shehu decomposition
method is given as follows:

u(x, t) =
∞∑

i=0

ui(x, t) = t2 + 1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + ...

= t2 +
(
1 + x +

1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + ...
)

= t2 + ex.

Which is same as solution obtained by variational iteration method (VIM) [14].

Example 3.2. Consider the following linear system of partial differential equations

ut(x, t) − vx(x, t) − (u − v) = −2,
vt(x, t) + ux(x, t) − (u − v) = −2, (3.7)

with initial conditions
u(x, 0) = 1 + ex,
v(x, 0) = −1 + ex.

(3.8)
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Taking the double Aboodh-Shehu transform on both sides of (3.7), then by using the differentiation property of double
Aboodh-Shehu transform, we have

s
u
U(r, s, u) − A[u(x, 0)] = AxSt[−2] + AxSt[vx] + AxSt[u − v],

s
u
V(r, s, u) − A[v(x, 0)] = AxSt[−2] − AxSt[ux] + AxSt[u − v]. (3.9)

Application of single Aboodh transform to (3.8) and substitute in (3.9), we have

U(r, s, u) = u

r2 s +
u

r(r−1)s −
2u2

r2 s2 +
u

s AxSt
[
vx + (u − v)

]
,

V(r, s, u) = − ur2 s +
u

r(r−1)s −
2u2

r2 s2 −
u

s AxSt
[
ux − (u − v)

]
.

(3.10)

Taking the inverse double Aboodh-Shehu transform in (3.10), our required recursive relation is given by

u(x, t) = 1 + ex − 2t + A−1
x S
−1
t

[
u

s AxSt
[
vx + (u − v)

]]
,

v(x, t) = −1 + ex − 2t − A−1
x S
−1
t

[
u

s AxSt
[
ux − (u − v)

]]
.

(3.11)

The double Aboodh-Shehu decomposition method assumes a series solution of the functions u(x, t) and v(x, t) are given
by

u(x, t) =
∞∑

i=0

ui(x, t), v(x, t) =
∞∑

i=0

vi(x, t). (3.12)

Using Eq. (3.12) into Eq. (3.11), we obtain

∞∑
i=0

ui(x, t) = 1 + ex − 2t + A−1
x S
−1
t

[
u

s
AxSt

[ ∞∑
i=0

vix +

∞∑
i=0

(
ui − vi

)]]
, (3.13)

∞∑
i=0

vi(x, t) = −1 + ex − 2t − A−1
x S
−1
t

[
u

s
AxSt

[ ∞∑
i=0

uix −

∞∑
i=0

(
ui − vi

)]]
. (3.14)

From (3.13) and (3.14) the recursive relations are

u0(x, t) = 1 + ex − 2t,

ui+1(x, t) = A−1
x S
−1
t

[
u

s
AxSt

[ ∞∑
i=0

vix +

∞∑
i=0

(
ui − vi

)]]
, i ≥ 0,

(3.15)

v0(x, t) = −1 + ex − 2t,

vi+1(x, t) = −A−1
x S
−1
t

[
u

s
AxSt

[ ∞∑
i=0

uix −

∞∑
i=0

(
ui − vi

)]]
, i ≥ 0.
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In view of the recursive relations (3.15) we obtained other components as follows

u1(x, t) = A−1
x S
−1
t

[u
s

AxSt

[
v0x +

(
u0 − v0

)]]
= A−1

x S
−1
t

[u
s

AxSt[ex + 2]
]

= A−1
x S
−1
t

[ u2

r(r − 1)s2 +
2u2

r2s2

]
= tex + 2t,

v1(x, t) = A−1
x S
−1
t

[u
s

AxSt

[
u0x −

(
u0 − v0

)]]
= −A−1

x S
−1
t

[u
s

AxSt[ex − 2]
]

= −A−1
x S
−1
t

[ u2

r(r − 1)s2 −
2u2

r2s2

]
= −tex + 2t,

u2(x, t) = A−1
x S
−1
t

[u
s

AxSt

[
v1x +

(
u1 − v1

)]]
= A−1

x S
−1
t

[u
s

AxSt[tex]
]

= A−1
x S
−1
t

[ u3

r(r − 1)s3

]
=

t2

2!
ex,

v2(x, t) = A−1
x S
−1
t

[u
s

AxSt

[
u1x −

(
u1 − v1

)]]
= −A−1

x S
−1
t

[u
s

AxSt[−tex]
]

= −A−1
x S
−1
t

[ u3

r(r − 1)s3

]
=

t2

2!
ex,

and so on for other components. The series solutions are given by

u(x, t) =
∞∑

i=0

ui(x, t) = 1 + ex
(
1 + t +

t2

2!
+

t3

3!
+ ...
)
,

v(x, t) =
∞∑

i=0

vi(x, t) = −1 + ex
(
1 − t +

t2

2!
−

t3

3!
+ ...
)
.

Then the solutions obtained by double Aboodh-Shehu decomposition method of (3.7) are given as follows:

u(x, t) = 1 + ex+t,

v(x, t) = −1 + ex−t.

Which is same as solution obtained by Sumudu decomposition method [6].

Example 3.3. Consider the system of nonlinear partial differential equations

ut + vuy + u = 1,
vt − uvy − v = 1, (3.16)

with initial conditions
u(y, 0) = ey,
v(y, 0) = e−y.

(3.17)

Applying the double Aboodh-Shehu transform to both sides of equations (3.16), we have
s
u
U(r, s, u) − A[u(y, 0)] = AySt[1] − AySt[vuy + u],

s
u
V(r, s, u) − A[v(y, 0)] = AySt[1] + AySt[uvy + v]. (3.18)

Application of single Aboodh transform to (3.17) and substitute in (3.18), we have

U(r, s, u) = u

r(r−1)s +
u2

r2 s2 −
u

s AySt[vuy + u],
V(r, s, u) = u

r(r+1)s +
u2

r2 s2 +
u

s AySt[uvy + v].
(3.19)
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By taking the inverse double Aboodh-Shehu transform in (3.19), we get

u(y, t) = ey + t − A−1
y S

−1
t

[u
s

AySt
[
vuy + u

]]
,

v(y, t) = e−y + t + A−1
y S

−1
t

[u
s

AySt
[
uvy + v

]]
.

The recursive relations are

u0(y, t) = ey,

ui+1(y, t) = t − A−1
y S

−1
t

[
u

s
AySt

[ ∞∑
i=0

Ci(v, u) +
∞∑

i=0

ui

]]
, i ≥ 0,

v0(y, t) = e−y, (3.20)

vi+1(y, t) = t + A−1
y S

−1
t

[
u

s
AySt

[ ∞∑
i=0

Di(u, v) +
∞∑

i=0

vi

]]
, i ≥ 0,

where u(y, t) and v(y, t) are linear terms represented by the decomposition series and Ci(v, u) and Di(u, v) are Adomian
polynomials representing the nonlinear terms [15]. The few components of Adomian polynomials are given as follow

C0(v, u) = v0u0y,

C1(v, u) = v0u1y + v1u0y,

C2(v, u) = v0u2y + v1u1y + v2u0y,

C3(v, u) = v0u3y + v1u2y + v2u1y + v3u0y,

...

Ci(v, u) =
i∑

n=0

vnu(i−n)y,

D0(u, v) = u0v0y,

D1(u, v) = u0v1y + u1v0y,

D2(u, v) = u0v2y + u1v1y + u2v0y,

D3(u, v) = u0v3y + u1v2y + u2v1y + u3v0y,

...

Di(u, v) =
i∑

n=0

unv(i−n)y.

Using the derived Adomian polynomials into (3.20), we obtain

u0(y, t) = ey,

v0(y, t) = e−y,

u1(y, t) = t − A−1
y S

−1
t
[u

s
AySt[C0(v, u) + u0]

]
= t − A−1

y S
−1
t
[u

s
AySt[v0u0y + u0]

]
= t − A−1

y S
−1
t
[u

s
AySt[1 + ey]

]
= t − A−1

y S
−1
t
[ u2

r2s2 +
u2

r(r − 1)s2

]
= −tey,

v1(y, t) = t + A−1
y S

−1
t
[u

s
AySt[D0(u, v) + v0]

]
= t + A−1

y S
−1
t
[u

s
AySt[u0v0y + v0]

]
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= t + A−1
y S

−1
t
[u

s
AySt[−1 + e−y]

]
= t + A−1

y S
−1
t
[
−
u2

r2s2 +
u2

r(r + 1)s2

]
= te−y,

u2(y, t) = −A−1
y S

−1
t
[u

s
AySt[C1(v, u) + u1]

]
= −A−1

y S
−1
t
[u

s
AySt[v0u1y + v1u0y + u1]

]
= −A−1

y S
−1
t
[u

s
AySt[−tey]

]
= −A−1

y S
−1
t
[
−

u3

r(r − 1)s3

]
=

t2

2!
ey,

v2(y, t) = A−1
y S

−1
t
[u

s
AySt[D1(u, v) + v0]

]
= A−1

y S
−1
t
[u

s
AySt[u0v1y + u1v0y + v1]

]
= A−1

y S
−1
t
[u

s
AySt[te−y]

]
= A−1

y S
−1
t
[ u3

r(r + 1)s3

]
=

t2

2!
e−y.

In the same way we can get

u3(y, t) = −
t3

3!
ey,

v3(y, t) =
t3

3!
e−y,

and so on for other components. Therefore, the solutions obtained by double Aboodh-Shehu decomposition method
are given by

u(y, t) =
∞∑

i=0

ui(y, t) = ey
(
1 − t +

t2

2!
−

t3

3!
+ ...
)
= ey−t,

v(y, t) =
∞∑

i=0

vi(y, t) = e−y
(
1 + t +

t2

2!
+

t3

3!
+ ...
)
= e−y+t.

Example 3.4. Consider the system of nonlinear partial differential equations

uy(x, y, t) − vxwt = −1,
vy(x, y, t) − wxut = 1, (3.21)
wy(x, y, t) − uxvt = −5,

with initial conditions

u(x, 0, t) = x + 3t,

v(x, 0, t) = x + 3t, (3.22)
w(x, 0, t) = −x + 3t.

Taking the double Aboodh-Shehu transform to both sides of equations (3.21), we have

ru(x, r, s, u) −
1
r
S[u(x, 0, t)] = −

1
r2 + AySt[vxwt],

rv(x, r, s, u) −
1
r
S[v(x, 0, t)] =

1
r2 + AySt[wxut], (3.23)

rw(x, r, s, u) −
1
r
S[w(x, 0, t)] = −

5
r2 + AySt[uxvt].
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Application of single Shehu transform to (3.22) then, substitute in (3.23) and rearranging the terms, we have

u(x, r, s, u) =
xu
r2s
+

3u2

r2s2 −
1
r3 +

1
r

AySt[vxwt],

v(x, r, s, u) =
xu
r2s
+

3u2

r2s2 +
1
r3 +

1
r

AySt[wxut], (3.24)

w(x, r, s, u) = −
xu
r2s
+

3u2

r2s2 −
5
r3 +

1
r

AySt[uxvt].

By taking the inverse double Aboodh-Shehu transform in (3.24), we get

u(x, y, t) = x + 3t − y + A−1
y S

−1
t

[1
r

AySt
[
vxwt
]]
,

v(x, y, t) = x + 3t + y + A−1
y S

−1
t

[1
r

AySt
[
wxut
]]
,

w(x, y, t) = −x + 3t − 5y + A−1
y S

−1
t

[1
r

AySt
[
uxvt
]]
.

The recursive relations are

u0(x, y, t) = x − y + 3t,

ui+1(x, y, t) = A−1
y S

−1
t

[
1
r

AySt

[ ∞∑
i=0

Ei(v,w)
]]
, i ≥ 0,

v0(x, y, t) = x + y + 3t,

vi+1(x, y, t) = A−1
y S

−1
t

[
1
r

AySt

[ ∞∑
i=0

Fi(w, u)
]]
, i ≥ 0,

w0(x, y, t) = −x − 5y + 3t,

wi+1(x, y, t) = A−1
y S

−1
t

[
1
r

AySt

[ ∞∑
i=0

Gi(u, v)
]]
, i ≥ 0,

where Ei(v,w), Fi(w, u), and Gi(u, v) are Adomian polynomials representing the nonlinear terms [15] in above equa-
tions. The few components of Adomian polynomials are given as follow

E0(v,w) = v0xw0t,

E1(v,w) = v1xw0t + v0xw1t,

...

Ei(v,w) =

i∑
n=0

vnxw(i−n)t,

F0(w, u) = w0xu0t,

F1(w, u) = w1xu0t + w0xu1t,

...

Fi(w, u) =

i∑
n=0

wnxu(i−n)t,

G0(u, v) = u0xv0t,

G1(u, v) = u1xv0t + u0xv1t,

...

Gi(u, v) =

i∑
n=0

unxv(i−n)t.
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In view of this recursive relations we obtained other components of the solution as follows

u1(x, y, t) = A−1
y S

−1
t

[1
r

AySt[E0(v,w)]
]
= A−1

y S
−1
t

[1
r

AySt[v0xw0t]
]
= A−1

y S
−1
t

[ 3
r3

]
= 3y,

v1(x, y, t) = A−1
y S

−1
t

[1
r

AySt[F0(w, u)]
]
= A−1

y S
−1
t

[1
r

AySt[w0xu0t]
]
= A−1

y S
−1
t

[−3
r3

]
= −3y,

w1(x, y, t) = A−1
y S

−1
t

[1
r

AySt[G0(u, v)]
]
= A−1

y S
−1
t

[1
r

AySt[u0xv0t]
]
= A−1

y S
−1
t

[ 3
r3

]
= 3y,

u2(x, y, t) = A−1
y S

−1
t

[1
r

AySt[E1(v,w)]
]
= A−1

y S
−1
t

[1
r

AySt[v1xw0t + v0xw1t]
]
= 0,

v2(x, y, t) = A−1
y S

−1
t

[1
r

AySt[F1(w, u)]
]
= A−1

y S
−1
t

[1
r

AySt[w1xu0t + w0xu1t]
]
= 0,

w2(x, y, t) = A−1
y S

−1
t

[1
r

AySt[G1(u, v)]
]
= A−1

y S
−1
t

[1
r

AySt[u1xv0t + u0xv1t]
]
= 0.

Similarly, u3(x, y, t) = v3(x, y, t) = w3(x, y, t) = 0 and so on for rest terms.
Therefore, the solution of system (3.21) of nonlinear partial differential equations is given below

u(x, y, t) =
∞∑

i=0

ui(x, y, t) = x + 2y + 3t,

v(x, y, t) =
∞∑

i=0

vi(x, y, t) = x − 2y + 3t,

w(x, y, t) =
∞∑

i=0

wi(x, y, t) = −x − 2y + 3t.
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