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ABSTRACT  
Purpose- Identify the best model/method to accurately forecast the Value-at-Risk (VaR) and the Expected Shortfall (ES) of position. 
Methodology- The dynamic of each retained return series was estimated with one of retained GARCH-type model combined with one of 
retained probability distributions (normal, fat-tailed, and skewed) in each retained sub-periods (window). In each window (sub-period), the 
1-day ahead VaR and ES were forecasted by using the best selected GARCH-type model.  More than 4000 1-day ahead VaR and ES were 
forecasted with each retained model/method. Based on 252-day rolling-window, forecasted VaR and ES with each retained model/method 
were backtested around 3750 times. 
Findings- Our results revealed that the best fitting GARCH-specifications combined with skewed Student or GED distribution enable to 
accurately forecast VaR more often. However, the best methods based on the best fitting GARCH-specifications combined with the best 
fitting probability distribution do not improve the frequency of acceptance of the null hypothesis stating the accuracy of the method. The 
accuracy of models tends to deteriorate during crises periods. 
Conclusion- Modeling and forecasting the dynamic of retained series with skewed probability distributions (skwed student or wked GED) 
improve the forecasting accuracy of a parametric or semi parametric model. A performan model in sample may not perform well o ut sample. 
Forecasted VaR should be complemented with Stressed VaR or ES.  
 

Keywords: VaR, ES, parametric, semi-parametric, backtesting, probability distribution, rolling-window. 
JEL Codes: G11, C10, C51 
 

 

1. INTRODUCTION  

It is very important for a financial institution to determine (forecast) the risks it faces. In the specific case of market r isk, a 
possible method of measurement is the evaluation of losses likely to be incurred when the price of portfolio assets falls. T he 

important growth of trading activity and the trading loss of well-known financial institutions during the first part of the 90s 
have led financial regulators and supervisory committee of banks to prescribe rules and methods for quantifying market risk 
and determining the regulatory capital necessary to cover this risk.  

The most well-known method often used to determine market risk is the Value-at-Risk (VaR) measure. Initially proposed by 
Till Guldimann, in the late 1980s1, the VaR method gained importance since the Basel committee required the calculation of 

regulatory capital for market risk based on VaR. The Basel committee proposed a standard approach as well as an internal 
method in determining market risk. In Basel 2 and 3, the proposed internal method is based on the VaR at 99% over 10 days. 

The VaR enables to determine the worst loss of a position or portfolio over a given period for a given confidence level.  

The VaR is also used to determine the trading limit, the risk-adjusted performance, the optimum portfolio as well as the 

optimum hedge ratio. 

According to Artzner et al. (1997, 1999) a coherent risk measure should verify some axioms: 1) Translation invariance, 2) 

Subadditivity, 3) Positivity, 4) Homogeneity, 5) Relevance, and 6) Conservatism. These axioms are not verified by the VaR. 
Artzner et al. (1999) proposed a new measure of risk satisfying these axioms: the Expected Shortfall  (ES) (also called 
conditional value at risk (CVaR), average value at risk (AVaR), and expected tail loss (ETL)). The ES measures the average loss 

in case the VaR is violated. The last regulation on market risk prescribed by the Basel Committee (Fundamental Review of 
Banking Book, FRTB) consists of determining market risk and then the required regulatory capital by using the ES and the VaR 

as well as the profit and loss attribution (P/L) as a mean of backtesting. 
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Since the 1996 Basel Amendment, several models/methods for forecasting the VaR  have been proposed. These models are 
parametric, semi-parametric or non-parametric. Most existing studies based on parametric models in forecasted VaR and ES 

showed higher performance of asymmetric GARCH-type specifications (such as gjrGARCH, APARCH, TGARCH) as well as of 
skewed probability distributions (such as skewed Student-t, skewed GED...). Furthermore, it was also shown that the choice 
of the volatility model appears to be less relevant than the choice of the probability distribution. These findings  were also 

found in studies based on semi-parametric methods using GARCH-type specification and probability distribution, such as 
Filtered Historical simulation, and conditional extreme value methods. 

The purpose of this article is to compare the performance of some parametric and semi-parametric models in forecasting the 
VaR and ES of a single position in three types of assets (SP500, EURUSD and Gold) over a long period ranging from January 
2000 to June 2018 covering stable and unstable economic and financial periods. The retained parametric methods are  the 

AR-GARCH-type models. Four semi-parametric methods were also used: the AR-GARCH model combined with Monte-Carlo 
(AR-GARCH-MC), the Filtered Historical Simulation method (FHS), the FHS method combined with Bootstrapping (FHS -B) and 
the conditional EVT method (SEVT). For each retained return series, the 1-day ahead VaR and ES were forecasted by using a 
500 days rolling window method. More than 4000 windows were considered and more than 4000 1-day ahead VaR and ES 
were forecasted for each retained return and for each model/method. 

Existing studies using the rolling-window method retained the same GARCH-type specification and the same probability 
distribution in each window. The performance of a model may change over time. We accounted for this fact by using two 

approaches: Approach 1: In each window the dynamic of each retained series was evaluated with the best fitting GARCH 
specification for each retained probability distribution and the 1-day ahead VaR and ES were forecasted. Approach 2: For 

each series and each estimation window, the best fitting model was selected among all GARCH specifications combined with 
all retained probability distributions and the 1-day ahead VaR and ES were forecasted. 

The performance of models in forecasting the VaR and ES should be checked. Most existing studies compared the 
performance of some models in forecasting the VaR/ES. However, in a large part of these studies the VaR and ES were 
forecasted over one period or a few periods. Furthermore, some did not backtest these forecasts and few backtested them 

only one time by using different lengths of forecasted VaR. The BCBS recommends backtesting a model by using 1 year (252 
days) forecasted VaR. Furthermore, the performance of a model can change through time. A model can perform well in 
forecasting the VaR over a certain period and perform badly over another period. Owing that, our forecasted VaR were 
backtested more than 3750 times by using 252-days rolling-window approach with the conditional coverage (CC) test of 
Christoffersen (1998) and the Dynamic Quantile (DQ) test of Engle and Managanelli (2004). In the same way, the forecasted 
ESs were backtested by using the residual exceedance over the VaR test proposed by McNeil and Frey (2000). By forecasting 
and backtesting the VaR and ES over a long period, it is possible to check the performance of retained models during stable 

as well as unstable periods. 

The methods used in forecasting the VaR and ES are presented in the second part of this paper. Backtesting methods are 

presented in section 3. A presentation and descriptive analysis of retained return series are done in the fourth section. Thi s 
section presents and discusses also results obtained. 

2. REVIEW OF MODELS 

Value-at-Risk (VaR) is a quantitative tool used to measure the maximum potential loss in value (or in percentage) of a portfolio 
of assets over a defined period at a given level. Specifically, VaR construction requires a quantile estimate of the left tai l (right 
tail) of the return’s distribution (or profit/loss distribution) of a long position (or short position). The h-period ahead VaR and 
ES are determined as follows: 

𝑉𝑎𝑅𝑡+ℎ(100 − 𝛼) = 𝐺 −1(𝛼)                              (1) 

𝑉𝑎𝑅𝑡+ℎ(100 − 𝛼) = �̂�𝑡+ℎ+�̂�𝑡+ℎ𝐹−1(𝛼).                             (2) 

𝐸𝑆𝑡+ℎ(𝛼) 1

𝛼
∫ 𝑉𝑎𝑅𝑡+ℎ(100 − 𝛼)𝛼

0
.                                               (3) 

Forecasting the h-period ahead VaR and ES at level 𝛼  can be done by using parametric methods (eq. 2-3), non-parametric 
methods (eq. 1), and semi-parametric methods. The parametric method requires the specification of the cumulative 
probability distribution F as well as the h-period expected mean return �̂�𝑡+ℎ and the h-period expected volatility  �̂�𝑡+ℎ. As for 
the non-parametric method, it is based on the empirical probability distribution G. 

2.1. Parametric Methods 

Parametric methods consist of modelling and estimating the dynamic of risk factors by using the appropriate volatility model 
and the appropriate probability distribution (F). Based on these estimations and on the relation between these risk factors 
and the considered financial instrument prices (or returns), profits and losses in value (or in return) of the position is 

determined and then the VaR and ES can be forecasted (equations 2-3). 
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Initially, RiskMetrics proposed the delta-normal model, consisting of forecasting the VaR by estimating the standard deviation 
of the portfolio or position by means of the sample estimate of variance appropriately augmented by the quantile of a normal 

distribution. In this approach, the conditional mean and volatility are modelled with an AutoRegressive and Exponentially 
Weighted Moving Average (AR-EWMA) model. Since the 1980s several models belonging mainly to the AR/ARMA - GARCH 
family were proposed in modelling the volatility. These GARCH-type models can be classified as classical, asymmetric and 

non-linear GARCH models. Empirical studies found that the EWMA model performs the worst in forecasting VaR compared 
to GARCH-type models (Gonzalez-Rivera et al., 2004; Huang and Lin, 2004; Niguez, 2008; Chen et al., 2011; Abad et al. 2014). 
Most of the existing empirical studies modelled the dynamic of financial securities and forecasted the VaR by using GARCH-

type models (Mittnik and Paolella, 2000; Giot and Laurent, 2004; Haas et al., 2004; Angelidis et al., 2007; Bali and Theodossiou, 
2007). Although there is no evidence of an overpowering model, the results obtained in these studies seem to indicate that 

asymmetric GARCH models produce better outcomes. 

Regarding the probability distribution F, initially it was specified as a normal distribution. However, in the literature it is widely 
recognized that return distributions of financial assets are skewed and fat tailed. The excess kurtosis can be taken into account 
by probability distributions, such as t-Student (std) and GED (ged). As for the skewness, it is accounted by skewed probability 
distributions. Different probability distributions were proposed to account for both features (excess kurtosis and skewness); 

such as skewed t-Student (sstd); skewed GED (sged). 

In the empirical literature different GARCH-type models with different distributions were retained in existing empirical studies 

(Giot and Laurent, 2003; Bali and Theodossiou, 2007; Bali et al., 2008). Most existing studies forecasting the VaR and ES by 
using different GARCH type models combined with classical and skewed probability distributions showed the higher 

performance of asymmetric GARCH models (such as gjrGARCH, APARCH, TGARCH) as well as of skewed probability 
distributions (such as skewed Student-t, skewed GED...). Moreover, it was also shown that the choice of the volatility model 
appears to be less relevant than the choice of the probability distribution (Giot and Laurent, 2003; Angelidis et al., 2004). 

2.2. Non-Parametric and Semi-Parametric Methods 

The Historical Simulation (HS) method is the simplest non-parametric approach. This method consists of approximating G 
(equation 1) with the empirical distribution of financial returns. The forecasted VaR corresponds to the α quantile of this 
empirical distribution. Although this method is very simple, it presents several drawbacks due mainly to the size of the 

considered window and the main assumption on which is it based; returns are iid (Down, 2002). Some solutions to these 
drawbacks were proposed. The main important solutions are: 1) forecasting the VaR and ES with the HS method by using the 
standardized return (Filtering returns) instead of raw returns (Filtered Historical Simulation (FHS)), and 2) forecasting the VaR 
and ES by applying the HS method to bootstrapped raw returns or standardized returns (HS -B and FHS-B). 

2.2.1. Filtered Historical Simulation (FHS) 

The Filtered Historical Simulation (FHS) method consists of standardizing returns (𝑟𝑡,𝑠 = (𝑟𝑡 − 𝜇𝑡)/𝜎𝑡  ), where 𝜇𝑡 and 𝜎𝑡  are 

the mean and the standard deviation) and then forecasting the VaR as the α quantile of the empirical distribution of those 
standardized returns G(𝑟𝑡,𝑠). FHS method requires the determination of the mean and variance (𝜇𝑡 and 𝜎𝑡) of the raw data in 

the first stage in order to filter those data. Unconditional or conditional mean and variance can be used. The unconditional  
method consists of determining the mean and variance of the raw data over the retained window. Regarding the conditional  

method, it consists of determining the mean and variance of the raw data by choosing first the appropriate model describing 
the best the dynamic of these data. Empirical studies employing this method modelled the conditional volatility with AR-
GARCH-type models. These researchers considered different probability distributions, such as normal distribution, student 

distribution, skewed distributions, ... The importance of the choice of the probability distribution was empirically shown 
(Adcock et al., 2012). These authors showed that FHS models with skewed distributions produce more accurate VaR forecasts. 

Another drawback of the HS approach is that the estimation of a quantile in the tails, as in the HS and FHS method, can be 
subject to important variance, mainly in case of reduced number of used observations in this estimation. In case of a sample 
composed with one-year daily observations, the quantile at confidence level 99% (corresponding to the forecasted VaR at 
99%) will be the second or the third largest losses. This forecasted VaR depends on the realizations of the risk factors rather 
than on their probability distribution. Given this fact, the forecasted VaR with the quantile of the empirical distribution can 
be highly unstable, especially when the VaR is forecasted with a high confidence level by using only few available data. To 
overcome this instability problem bootstrapping can be combined with HS and with FHS. 

2.2.2. Extreme Value Theory (EVT) 

Another widely used semi-parametric method in forecasting the VaR and ES is the methods based on Extreme Value Theory 

(EVT). These methods deal with the study of extreme events, which are characterized by extreme deviations from the normal 
median of their probability distributions. More precisely, the EVT studies and models the behaviour of distributions in their  

extreme tails, therefore, could potentially give better estimates and forecasts on risk. 
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Among the methods based on EVT, the exceedances or peaks over threshold (POT) model is the most used in forecasting the 
VaR and the ES (Smith, 1989; Embrechts et al., 1997; McNeil and Frey, 2000; McNeil et al., 2005; Gilli and Këllezi, 2006). Th is 

method concentrates on returns (ri) in the series that exceed a certain high threshold (u) and model these returns separately 
from the rest of the unknown distribution. Balkema and De Haan (1974) and Pickands (1975) showed that the generalized 
Pareto distribution (GPD) is the limiting distribution of the probability distribution of returns exceeding the threshold u by at 

most an amount y given that r exceeds the threshold u. Given this fact (this probability distribution) and the expression of 
the conditional probability distribution of returns exceeding the threshold u, the VaR and ES of a long position are determined 
as: 

𝑉𝑎𝑅𝑡+ℎ(100 − 𝛼) = 𝑢 +
𝛽

𝜉
(( 𝑛

𝑛𝑢
𝛼)

−𝜉
− 1),             (3) 

𝐸𝑆𝑡+ℎ(𝛼) = 𝐸(𝐸|𝑋 > 𝑉𝑎𝑅𝑡+ℎ(100 − 𝛼) =
𝑉𝑎�̂�𝛼

1−�̂�
+

�̂�−�̂�𝑢

1−�̂�
,            (4)

  

where ξ and β represent the shape parameter of the distribution and the scaling parameter, respectively. n and nu denote 

the total number of observations and the number of observations exceeding the threshold u. The choice of the threshold u 
is important for the performance of the GPD modelling. This threshold (u) value can be put directly at the lower 5% and 10% 

quantile of the distribution for the retained series. The optimal threshold can be determined with the graph of the sample 
mean excess (MEF), the Hill estimator, the Q − Q graph, the graphical bootstrap method (Embrechts et al., 1997), and the 
sample percentile approach (DuMouchel, 1983). 

This presented GPD approach put emphasis on the tail of the distribution but does not recognize the fact that returns are no-
i.i.d. One way to overcome this drawback is to combine the classical GPD approach with time-varying volatility models, such 
as ARCH and GARCH models, as suggested by McNeil and Frey (2000). These authors proposed to take into account the 
conditional heteroscedasticity in the data through the GARCH models and model the extreme tail behaviour through the EVT 
method. This method, first, filters different financial time series with GARCH-type models and then deduces the residuals. In 

the second step, the POT method is applied to these residuals. 

In this conditional POT model, the h-period forecasted conditional VaR and conditional ES at level α are determined as: 

𝑉𝑎�̂�𝑡+ℎ(100 − 𝛼) = �̂�𝑡+ℎ + √�̂�𝑡+ℎ𝑉𝑎�̂�(𝑍)𝑡+ℎ(100 − 𝛼) ,            (5) 

𝐸�̂�𝑡+ℎ(𝛼) = �̂�𝑡+ℎ + √�̂�𝑡+ℎ𝐸�̂�(𝑍)𝑡+ℎ(𝛼),              (6) 

where �̂�𝑡+ℎ and �̂�𝑡+ℎ are the h-step forecasts for the conditional mean and variance, respectively. Regarding 

𝑉𝑎�̂�(𝑍)𝑡+ℎ(100 − 𝛼)  and 𝐸�̂�(𝑍)𝑡+ℎ(𝛼), they are determined with POT model applied to standardized residuals (see 

equations 4 and 5). 

Several authors forecasted the VaR and ES with EVT and conditional EVT models. Most of these authors showed that 
conditional EVT models produce more accurate VaR and ES forecasts. It was also revealed that the choice of the probability 
distribution in the conditional EVT models was more relevant than the choice of the GARCH -type models. Precisely, existing 
studies emphasized the higher accuracy of skewed distribution in forecasting the VaR and ES (Bali and Weinbaum, 2007; Bali 
and Theodossiou, 2007, 2008; Bali et al., 2008). 

3. BACKTESTING 

It is important to backtest the accuracy of the retained model in forecasting the VaR and ES. Backtesting VaR consists of 
comparing the forecasted/predicted losses (or returns) to the realized losses (or returns) and then testing the accuracy and 

effectiveness of the model. According to the Basel agreement, a model is acceptable when the proportion of 
exceptions/violations (losses greater than the VaR) is lower than α%, where α% denotes the level used to measure the 1-day 
ahead VaR and ES. Furthermore, exceptions should be independent: an exception today should not depend on whether an 

exception occurred on the previous day. Results of backtesting methods enable to select accurate models for VaR forecasting 
but also have an impact on the market risk capital requirement. 

In the literature, different backtesting methods were proposed. Reviews of backtesting are provided by Campbell (2005) and 
Zhang and Nadarajah (2018). Among these methods, the most often used are the conditional coverage test introduced by 

Christoffersen (1998) and the Dynamic Quantile (DQ) test proposed by Engle and Managanelli (2004).  

Based on the proportion of failure (POT) (Kupiec test) and the independence test of Christoffersen (1998), Christoffersen 

(1998) proposed the conditional coverage test enabling to test the correct failure rate as well as the independence of 
violations. The null hypothesis states the accuracy of the failure rate and the independence of exceptions. An exception occurs  
if the forecasted VaR is violated, meaning that the realized return (or losses) is lower than the VaR in return (or in value)  (long 

position). 
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Engle and Managanelli (2004) proposed the Dynamic Quantile statistic (DQ) enabling to test the null hypothesis that the 
current VaR exceptions are uncorrelated with past exceptions (null hypothesis). 

Although several backtesting methods for VaR were proposed, methods for backtesting ES are rare. One possible reason for 
this fact is that VaR has often been used more frequently compared to ES. Furthermore, backtesting ES is more difficult than 

that of the VaR. The earliest and the most used statistic is the residual exceedances over the VaR series r (representing the 
violations) which was proposed by McNeil and Frey (2000). McNeil and Frey (2000) proposed to test ES by directly using the 
residual exceedances over the VaR series r or by using standardized residuals (rs)). McNeil and Frey (2000) proposed to test 

the null hypothesis stipulating that r (or rs) has a zero mean, against the alternative that the mean of r (or rs) is negative. This 
alternative hypothesis corresponds to the underestimation of the risk. Overestimation of the ES is limited to the difference 
between the ES and VaR. In this case, there is no violation and r (or rs) assumes value zero. On the other hand, underestimation 

is theoretically unbounded. 

4. EMPIRICAL ANALYSIS 

4.1. Methodology 

The purpose of this paper is to forecast the VaR and ES of position in different type of assets by using parametric and semi -
parametric models over a long period. The retained assets are EURUSD currency exchange, Gold and SP500 stock index. The 

retained daily returns cover the period ranging from 4 January 2000 to 26 June 2018. This period covers periods of financial 
instability (IT crisis (2001-2003), subprime crisis (2007-2009) ...), economic recession, and of stability. By considering a long 
period it is then possible to check whether the retained models enable to correctly forecast the VaR and ES over different 
periods. A 500-day rolling window was employed to estimate the retained model and forecast 1-day ahead VaR and ES. 
Precisely, the first window covered the period ranging from 4 January 2000 to 3 December 2001 and the VaR as well as the 

ES for 4 December 2001 were forecasted. The last window included daily data from 26 July 2016 to 25 June 2018 and enabled 
to forecast the VaR and ES for the 26 June 2018. More than 4000 windows were considered and more than 4000 1-day ahead 
VaR and ES were forecasted for each retained return. 

Retained parametric methods are classical AR-GARCH-type models (AR-GARCH-type). The conditional volatility of retained 
returns' series was modelled with different GARCH-type models: the classical GARCH model, the exponential GARCH model. 

(eGARCH, Nelson (1991)), the Threshold GJR-GARCH model (gjrGARCH, Glosten et al. (1993)), and the Threshold GARCH 
(TGARCH, Zakoian (1994)). These models are presented in table 1. These models were estimated by assuming that the 
innovations follow a normal distribution, distribution accounting for the excess of kurtosis (Student T (std) and GED (ged)) as 
well as the skewed version of these probability distributions (skewed normal (snorm), skewed Student T (sstd) and skewed 

GED (sged)) which account to the skewness of financial returns' distributions. All these specifications were also used in the  
retained semi-parametric methods, which are the AR-GARCH type models combined with Monte-Carlo simulation (AR-
GARCH-type-MC), the Filtered Historical simulation (FHS), the FHS combined with bootstrapping (FHS -B) and the conditional 

POT (SEVT). For this later method, threshold values are put directly at the lower 10% quantile of the distribution for the 
retained series. 

Existing studies using rolling-window approach retained the same GARCH-type specification and the same probability 
distribution in each window. For a given series, the best-fitting GARCH specification and/or the best-fitting probability 
distribution can differ from one period to another period and mainly during stable and unstable periods. In order to account 
for these facts, two approaches were used in this article. 

Table 1: Retained GARCH Type Models 

Model Formulations Model Formulations 

GARCH 𝜎𝑡
2 = 𝑤 + 𝛼. 𝜀𝑡−1

2 + 𝛽. 𝜎𝑡−1
2   gjrGARCH 𝜎𝑡

2 = 𝑤 + 𝛼. 𝜀𝑡−1
2 + 𝛾. 𝜀𝑡 −1

2  𝐼(𝜀𝑡−1 > 0) +  𝛽. 𝜎𝑡−1
2  

eGARCH ln(𝜎𝑡
2)=(1-𝛼1)𝛼0 + 𝛼1 ln(𝜎𝑡−1

2 ) +
𝑔(𝜀𝑡−1) 

𝑔(𝜀𝑡−1) = 𝜃. 𝜀𝑡−1 + 𝛾(|𝜀𝑡−1| − √2

𝜋
 ) 

TGARCH 𝜎𝑡
2 = 𝑤 + 𝛼. 𝜀𝑡−1 + 𝛾. 𝜀𝑡−1 𝐼(𝜀𝑡−1 > 0) +  𝛽. 𝜎𝑡−1

2  

Approach 1: For each return series and each probability distribution, the best fitting GARCH specification in each window was 
selected based on AIC criterion. For each retained method (parametric and semi-parametric), the dynamic of each retained 

series was evaluated in each window with the best fitting GARCH specification for each retained probability distribution and 
the 1-day ahead VaR and ES were forecasted. As we retained 5 methods (1 parametric and 4 semi -parametric) and 6 
probability distributions, in total 30 (5*6) series of around 4000 VaR and ES were forecasted for each retained returns' series. 

Approach 2: For each series and each estimation window, the best fitting model was selected and estimated based on AIC 
among all GARCH specifications combined with all retained probability distributions and the 1-day ahead VaR and ES were 
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forecasted. For each return series more than 5 series (5=1 parametric + 4 semi-parametric methods) of around 4000 VaR and 
ES were forecasted.  

The accuracy of the retained models should be backtested. The Basel committee recommends backtesting a model by using 
252-day forecasted VaR and ES. As more than 4000 1-day VaR and ES were forecasted for each series by using a specific model 

with a specific probability distribution, forecasted VaR and ES were backtested by using 252-days rolling-window approach. 
In sum, for each series each model was backtested around 3750 times. This method enables to determine the performance 
of retained models through time. 

Table 2: Descriptive Statistics 

 Gold       EURUSD 
 

      SP500       

 mean std skew kurtosis mean 
 

std skew kurtosis mean std skew kurtosis 

mean 0.0003 0.0111 -0.281 4.2493 0.0000 
 

0.0060 0.0477 1.3067 0.0001 0.0110 -0.202 2.5417 

std 0.0004 0.0023 0.7634 3.1793 0.0003 
 

0.0011 0.2597 1.0358 0.0005 0.0046 0.3138 1.9580 
std: standard deviation 

4.2. Empirical Results 

4.2.1. Descriptive Statistics 

The summary of the descriptive statistics of each 500-day rolling window is represented in table 2. The average returns of 
retained series are very slightly positive. The returns of the Gold and of the SP500 index are slightly negatively skewed. As  for 
the return of the currency exchange rates, it is slightly positively skewed. As displayed in this table, most of the time, the 

skewness of Gold returns are negative and the kurtosis is higher than 3. 

Table 3: Best Fitting GARCH (Bfg) Specification per Distribution (In-Sample) (Percent %) 

  norm snorm std sstd ged sged norm snorm std sstd ged sged 

  SP500           EURUSD           

egarch 76.2 77 77.1 77.8 77.8 78.8 49.6 49.7 46.4 47.7 46.8 46.8 

sgarch 0.7 0.7 0.4 0.3 0.9 0.9 27 17.9 33 4.6 2.6 2.6 

gjrgarch 4 2.7 3.3 3.4 2.5 2.7 3.8 3.4 4.6 15 17.7 17.7 

tgarch 19.2 19.6 19.3 18.4 18.8 17.7 19.7 18.9 16 32.9 32.9 32.9 

  Gold                       

egarch 60.7 53.7 44.5 45.2 49 47.1         

sgarch 5.9 9.1 27.1 27.4 23.2 24.8         

gjrgarch 5.2 8.3 9.9 9 4.5 6.4         

tgarch 28.2 28.9 18.4 18.4 23.2 21.8             

4.2.2. Empirical Results Related to Approach 1 

For each retained probability distribution and each return series the best fitting GARCHtype specification is determined for 
each retained 500-day window based on AIC. Table 3 depicts a summary of the best-fitting GARCH specification for each 
probability distribution. According to our results, asymmetric GARCH-type models (eGARCH, gjrGARCH and TGARCH) fit better 
retained series whatever the probability distribution. For instance, the EGARCH model combined with the normal probability 

distribution was the best fitting model for the SP500 series on 76,2% of retained windows. Among the retained asymmetric 
model, the EGARCH dominates the gjrGARCH and TGARCH model whatever the retained series and the probability 
distribution. The classical GARCH model fits better only on a few windows. 

For each retained series and each retained probability distribution, the best fitting GARCH -type specification is used for 
forecasting 1-day ahead VaR and ES at each time (in each window) with each of the retained parametric and semi-parametric 

methods.  The performing model is the one that is the most often accurate one; this means that the null hypothesis of model 
accuracy is the least rejected by backtesting methods. In this article the conditional coverage (CC) test of Christoffersen (1998) 

and the dynamic quantile (DQ) test of Engle and Managanelli (2004) are used. 

For each method, the accuracy of VaR(99%) and VaR(95%) is checked at levels 1% and 5% for each series and each probability 

distribution combined with the best fitting GARCH type specification. Tables 4 - 6 represent the percent of time the null 
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hypothesis stating the accuracy of the retained model in forecasting the VaR is rejected. Due to the large number of results 
(30=6*5 series of around 4000 forecasted VaR), these tables contain for each method and for each series only the results of 

the model rejecting the least the null hypothesis of model accuracy based on the conditional coverage test and the DQ test. 
Both these tests may sometimes lead to different results. For instance, based on the conditional coverage test at 1% level the 
null hypothesis is the least rejected (4.84% times) for the AR-GARCH model combined with skewed Student (sstd) distribution. 

In the forecasted VaR(99%) compared to AR-GARCH models combined with other retained probability distributions for the 
SP500 return series. And according to the DQ test, the null hypothesis is the least rejected (15.75% times) for the AR -GARCH 

model combined with skewed GED (sged) distribution for the SP500 return series compared to AR -GARCH models combined 
with other retained probability distributions. For this return series, the VaR(95%) forecasted with the AR -GARCH model 
combined with skewed GED (sged) distribution is the most accurate based according to both backtesting tests at 1% 

compared to other AR-GARCH model combined with the other retained probability distribution. 

The percentages of rejection of the null hypothesis of model accuracy are different in both backtesting methods. The null 
hypothesis is more rejected by the DQ test than the conditional coverage test, except in a few cases such as backtesting the 
VaR(95%) at 5%. These percentages of rejection depend also on the level of VaR and the level of backtesting method. 

Models producing forecasted VaR which are the most often accurate ones are represented in bold in tables 4 - 6 whatever 
the method and the probability distribution. These tables reveal that methods using skewed probability distributions (skewed 

Student (sstd) and skewed GED (sged)) enable accurately forecast VaR more often followed by methods based on heavy-
tailed probability distributions (Student (std) and GED).  

Table 4: Backtesting VaR-SP500 (%) 

  VaR(99%) BT at 1% VaR(95%) BT at 1% VaR(99%) BT at 5% VaR(95%) BT at 5% 

         CC DQ       CC DQ         CC DQ        CC DQ 

AR-GARCH sged 5.19 15.75 sged 2.73 6.05 sged 11.82 16.07 sged 12.31 11.28 

  sstd 4.84 21.63               

  bf 5.14 15.53 bf 2.73 6.39 bf 14.40 15.95 bf 12.41 11.87 

AR-GARCH-MC sged 6.24 19.73 sged 3.29 6.05 sged 9.39 19.93 sged 12.17 10.99 

  sstd 4.89 21.41 sstd 2.16 6.27          

  bf 6.24 23.45       bf 14.01 23.69 bf 12.71 12.66 

SEVT std 3.24 14.55 ged 0.42 5.53 ged 9.98 21.33 sged 6.29 9.29 

           std 11.28 15.75     

  bf 4.52 28.78 bf 0.42 6.02 bf 16.00 30.10 bf 6.07 10.37 

FHS sstd 5.55 17.25 ged 2.16 4.67 sged 9.78 20.13 norm 5.87 10.81 

      sstd 0.00 6.22 sstd 14.52 18.14 sstd 5.06 13.39 

  bf 5.73 30.18 bf 2.70 4.60 bf 14.40 15.95 bf 4.55 9.09 

FHS-B sged 3.86 17.35 sstd 0.00 4.37 sged 8.70 18.65 ged 5.16 10.47 

                sstd 4.18 11.55 

  bf 3.86 23.45 bf 2.7 4.08 bf 10.00 25.76 bf 4.55 9.02 
bf: best fitting model among all retained GARCH specifications and retained probability distributions.  

Figures in this table represent the percentage of rejection of Ho. BT: backtesting. 

The conditional EVT (SEVT) and Bootstrapped FHS (FHS-B) methods produce forecasted VaR of SP500 which are the most 
often accurate ones. Indeed, the null hypothesis of accuracy is the least rejected for one of these methods dependent on the 

level of VaR and the level of the backtest test (Table 4). For instance, 3.24% of more than 3750 backtested forecasted 
VaR(99%) of SP500 determined with the SEVT model based on Student probability (std) distribution leads to the rejection of 
the null hypotheses at 1% according to the conditional coverage test. Similar findings are observed for the EURUSD currency 
exchange (Table 5). Regarding the Gold, the results in Table 6 do not lead to the conclusion of a dominant method. Our 
findings related to SP500 and EURUSD are in line with the summary of the review of literature done by Abad et al. (2014). In 

their paper these authors did a review of VaR methodologies and findings. They resumed the findings of 24 papers using 
classical parametric, semi-parametric and non-parametric methods in forecasting VaR. In 83.3% of these papers, the EVT was 
selected as the best method in forecasting the VaR, followed by FHS. 
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For each retained series the observed returns and the forecasted VaR(99%) with the selected models are displayed in graphs 
1, 2 and 3.1 These graphs show that realized returns are almost higher than the forecasted VaR(99%), except a few times. 

Regarding the backtesting results, the p-values related to the CC test and DQ test of the retained models for forecasting 
VaR(99%) are displayed in graphs 4,5, and 6. These graphs reveal that the null hypothesis of accuracy is mainly rejected duri ng 
unstable periods, such as the beginning of the subprime crisis (2007-2008). These plots show the dependence between 

exceptions. 

Figure 1: Realized Return and VAR (99%) of SP500 with SEVT-Std and FHS-B-Sged Models 

 
 

Table 5: Backtesting VaR-EURUSD (%) 
 

  VaR(99%) BT at 1% VaR(95%) BT at 1% VaR(99%) BT at 5% VaR(95%) BT at 5% 

        CC DQ        CC DQ         CC DQ        CC DQ 

AR-GARCH sged 0.00 18.44 norm 2.56 5.02 sged 1.65 18.51 norm 10.28 7.79 

       snorm    2.19     5.66      snorm 8.24 10.43 

  bf 0.30 18.54 bf 3.17 7.97 bf 2.31 19.03       

AR-GARCH-MC sged  0.00 18.44 norm 2.16 4.84 sged 1.67 18.44 norm 9.32 7.55 

  bf 0.30 18.54 bf 2.24 7.77 bf 2.31 19.03 bf 7.47 13.62 

SEVT ged 0.30 18.39 ged 0.20 0.34 sged 1.65 18.51 ged 5.97 3.25 

                 snorm 3.29 7.62 

  bf 0.30 18.39 bf 0.20 0.32 bf 2.26 18.59 bf 5.97 3.07 

FHS ged 0.00 18.24 norm 0.52 4.33 norm 0.02 18.37 ged 7.89 6.42 

  norm 0.00 18.24    sged 1.65 18.29 sstd 4.38 6.47 

  bf 0.00 18.49 bf     1.03    5.14    bf 
     
7.89 

    
6.25 

FHS-B ged 0.00 18.15 norm 0.00 2.41 sged 0.02 18.29 ged 7.72 5.83 

       snorm     0.00     2.24      snorm 4.30 7.72 

  bf 0.00 18.37 bf 0.61 4.5 bf 0.02 18.29 bf 7.72 5.75 

bf: best fitting model among all retained GARCH specifications and retained probability distributions. 

Figures in this table represent the percentage of rejection of Ho. BT: backtesting. 

 

Table 6: Backtesting VaR-Gold (%) 
 

  VaR(99%) BT at 1% VaR(95%) BT at 1% VaR(99%) BT at 5% VaR(95%) BT at 5% 

      CC DQ    CC DQ     CC DQ 
 

   CC DQ 

AR-GARCH std 0.00 23.81 sstd 0.00 6.88 std 2.24 31.33 sstd 1.79 15.48 

  bf 
6.19 

37.77 bf 
0.10 

6.64 bf 6.27 39.54 bf 6.17 22.88 

AR-GARCH-MC sstd 0.05 39.89 sged 0.05 8.87 std 2.04 27.18 sstd 1.79 19.61 

  std 0.00 20.15              

  bf 6.17 37.55 bf 1.38 9.90 bf 6.27 38.51 bf 6.34 28.70 

 
1 Due to space, only the p-value graphs and VaR(99%) graphs of the selected models are displayed. Others obtained graphs can be provided on demand.  
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SEVT snorm 2.78 20.77 std 0.00 4.74 snorm 5.51 21.33 ged 0.00 18.70 

  sstd 1.52 36.99  
 

  sstd 3.49 39.44 sstd 2.38 16.10 

  bf 3.64 37.72 bf 0.00 8.04 bf 6.46 39.52 bf 0.05 19.69 

FHS snorm 2.38 20.59 ged 0.00 4.30 snorm 5.58 21.55 ged 0.71 15.21 

  sstd 0.02 36.27     sstd 4.20 40.70 sstd 1.35 12.02 

  bf 2.11 32.64 bf 0.00 3.76 bf 5.70 34.06 bf 0.71 14.33 

FHS-B norm 1.99 20.45 std 0.00 3.24 snorm 5.58 21.60 ged 0.29 14.60 

  sstd 0.02 24.65  
 

  sstd 4.15 26.96 sstd 3.00 13.44 

  bf 1.23 31.04 bf 0.00 3.10 bf 5.14 33.05 bf 0.00 13.64 

bf: best fitting model among all retained GARCH specifications and retained probability distributions.  

Figures in this table represent the percentage of rejection of Ho. BT: backtesting. 

For the selected models, a summary of the results of backtesting ES are displayed in Table 7. For each series and for each 
selected model within each retained method, this table contains the percent of time the null hypothesis is rejected at 5% 

level with the 1-side and 2-side tests proposed by McNeil and Frey (2000). The null hypothesis states the nullity of the 
residuals between the observed losses (returns) and the predicted ES in case the VaR is exceeded. If a model accurately 
enables to forecast the ES then the average of the difference between the observed return and the predicted ES should be  

equal to 0. Compared to the percentages of rejection of the null hypothesis of accuracy in forecasting VaR, the percentages 
of rejection of the null hypothesis related to backtest of ES are higher. In all selected models, the percentages of rejection of 

the null hypothesis related to ES are between 0,3-0,4. 

Figure 2: Realized Return and VaR (99%) of EURUSD with FHS-B-Sged Model 
 

 
Figure 3: Realized Return and VaR (99%) of Gold with AR-GARCH-MC-Std And SEVT-Snorm Models 
 

 
 
Table 7: Backtesting ES (%)  
 

  SP500 er-1side er-2side EURUSD er-1side er-2side Gold er-1side er-2side 

AR-GARCH sged 38.58 38.58 sged 39.64 39.64 std 39.30 37.18 

  bf 42.54 42.54 bf 30.74 30.64 bf 39.54 38.61 

AR-GARCH-
MC sged 39.74 38.29 sged 41.14 39.86 std 31.19 30.40 

  bf 35.49 34.63 bf 33.19 33.10 bf 42.71 40.03 

FHS sged 43.60 43.60 norm 37.96 37.87 snorm 45.44 45.44 

  sstd 37.33 36.27 sged 45 43.62 sstd 46.77 42.07 
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  bf 44.61 41.26 bf 37.72 36.22 bf 44.63 42.57 

FHS-B sged 45.56 45.56 sged 38.04 36.66 snorm 47.83 47.83 

          sstd 46.77 40.89 

  bf 40.08 40.08 bf 37.03 35.68 bf 44.8 38.76 
bf: best fitting model among all retained GARCH specifications and retained probability distributions.  

Figures in this table represent the percentage of rejection of Ho. er-1side: 1 side test and er-2side: 2 side test. 

 
Figure 4: P-value of Conditional Coverage Test and DQ Test for VaR (99%) Tested at 5% for SP500  

                 with SEVT-std and FHS-B-sged Models 
 

 
 

Figure 5: P-value of Conditional Coverage Test and DQ test for VaR(99%) Tested at 5% for Gold  
                 with SEVT-snorm and AR-GARCH-MC-std models 

 

 
 
Figure 6: P-value of Conditional coverage test and DQ test for VaR(99%) tested at 5% for EURUSD with FHS -B-sged model 
 

 

4.2.3. Empirical Results Related to Approach 2 

The best way would be to forecast the VaR and the ES for each time with the GARCH type model combined with the probability 

distribution fitting the best retained series. Among the retained GARCH-type models and probability distribution, a summary 
of the best fitting specification for each series is presented in table 8. This table represents the percentages of each 
specification retained as the best fitting specification based on AIC criteria. According to our results, the GED probability  

distribution is the dominant distribution in case of the EURUSD and Gold series. As for the return of SP500, the skewed GED 
(sged) is the dominant distribution. 
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For each method, the dynamic of each retained series is evaluated with the retained best fitting model in each window and 
more than 4000 1-day ahead forecasted VaR and ES are determined. The percent of rejection of the null hypothesis among 

the 3750 backtests are represented with bf (bf=best fitting) in Tables 4 - 6. Surprisingly, the best-fitting models do not improve 
the frequency of the accuracy of forecasted VaR. Indeed, the percent of time the rejection of the null hypothesis of accuracy 
is not lower for best-fitting models compared to the best specification based on the probability distribution (approach 1). 

In this article, for each probability distribution the best GARCH-type model was selected based on the AIC (in-sample). 
Similarly, the best-fitting model was also selected based on AIC determined in sample. The best-fitting model in-sample does 

not mean that this model is the best-fitting model out-sample. This fact can explain our backtesting results related to the best 
fitting model (approach 2) compared to the backtesting results related to the best model retained in approach 1.  

Regarding the backtest of forecasted ES by using the best fitting model, the percent of time the null hypothesis of accuracy 
is rejected is important (see Table 7). However, these percentages are lower than the percentages of rejection of the null 

hypothesis of accuracy in forecasting ES with methods used in the first approach, except for a few methods. 

5. CONCLUSION 

The purpose of this article was to compare the performance of parametric and semiparametric models in forecasting the VaR 
and the ES through time. The performance of a model in modelling the dynamic of financial returns may change through time 

and then the accuracy of this model to forecast the VaR and ES may change too. To account for these facts, two approaches 
were considered. 

Approach 1: For each return series and each probability distribution, the best fitting GARCH specification in each window was  
selected based on AIC criterion. For each retained method (parametric and semi-parametric), the dynamic of each retained 
series was evaluated in each window with the best fitting GARCH-specification for each retained probability distribution and 

the 1-day ahead VaR and ES were forecasted. 

Approach 2: For each series and each estimation window, the best fitting model was selected and estimated based on AIC 
among all GARCH-specifications combined with all retained probability distributions and the 1-day ahead VaR and ES were 
forecasted. 

Our results revealed that the best fitting GARCH-specifications combined with skewed Student or GED distribution enable to 
accurately forecast VaR more often. However, the best methods based on the best fitting GARCH -specifications combined 

with the best fitting probability distribution do not improve the frequency of acceptance of the null hypothesis stating the 
accuracy of the method. The accuracy of models tends to deteriorate during crises periods. This latter finding can be explained 
by the fact that the best fitting model in sample does not mean that this model is the best fitting model out-sample. Indeed, 

the best fitting GARCH-specification and the best fitting model were selected in-sample based on AC. 

Our results revealed that the selected model among all retained methods/approaches enables to forecast accurately the 
realized loss most of the time but not all the time. Forecasted VaR with the selected model underestimates the realized losses 
over certain period mainly during unstable periods. This finding can explain the consideration of the Stressed VaR(99%) in 

addition of the VaR(99%) in the determination of the risk weighted assets (RWA) for market risk since Basel 2.5. In the Basel 
2, the RWA is determined by using only the VaR(99%). The Stressed VaR (sVaR) should be determined by using the worst 1-
year daily data occurred during the past 10 year. 

Results related to backtesting ES with nostandardized version of McNeil and Frey (2000) test are not homogeneous. These 
results can also be due to the fact that backtesting ES is difficult compared to backtesting VaR. Due to this latter fact, in  the 

FRTB approach the Basel committee did not prescribe a method enabling to directly backtest ES but this later is done by using 
Profit and Loss attribution test as well as backtesting VaR. Furthermore, these results can explain why the ES for the 
determination of the required capital for market risk in the FRTB is not determined as done in this article. In this article, the 

ES is determined as the average loss when the forecasted VaR is exceeded by using daily returns of the considered window. 
In the FRTB, different ES are determined and combined in the determination of the risk-weighted assets for market risk. One 

type of ES is determined by using current data as we did and one type by using data from the stressed periods.  
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