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Özet 

Arıtma çamurları, atıksu arıtma proseslerinin son ürünü olarak oluşur ve çamur yönetimi, arıtma tesislerinin işletiminde hem 

ekonomik hem de çevresel açıdan öneme sahiptir.  Arıtma çamurlarının yönetimi çevreye olumsuz etkileri olan başlıca 

proseslerden birisidir. Atıksuların arıtılması sonucu oluşan arıtma çamurları, patojenler, ağır metaller, iz ve kalıcı organik 

kirleticiler içerebilir. Buna karşın; stabilize edilmiş çamur ise nütrient içeriği sebebiyle gübre olarak kullanılabilir. Bununla 

birlikte, ısıl değeri uygun olursa ek yakıt olarak da kullanılabilir. Arıtma çamurları bu sebeplerle aynı zamanda yenilenebilir 

enerji ve ham madde kaynağıdır. Susuzlaştırma, yoğunlaştırma, stabilizasyon, çürütme, kompostlama, piroliz, insinerasyon, 

kurutma, ıslak oksidasyon, süper kritik ıslak oksidasyon, düzenli depolama ve fosfor geri kazanımı uygulanan çamur arıtım 

metotlarıdır. Sürdürülebilir çamur yönetimini sağlamak için yaşam döngüsü değerlendirmesi, çamur arıtım teknolojilerinin 

çevresel etkilerinin belirlenmesi ve karşılaştırılmasına olanak sağlayan en önemli araçlardan biridir. Yaşam döngüsü 

değerlendirme (YDD), bir ürün ya da hizmetin yaşam döngüsü boyunca beşikten mezara kadar, girdilerinin, çıktılarının ve 

potansiyel çevresel etkilerinin gözden geçirilip değerlendirilmesini sağlayan bütünsel bir çevresel etki değerlendirme aracıdır. 

Yaşam Döngüsü Değerlendirme, bir ürün ya da hizmetin beşikten mezara yaklaşımıyla çevresel etkilerin analizini öngörür. 

Yaşam döngüsü değerlendirme, çevresel tehlikeleri tanımlamada kullanılan genişletilmiş bir çevresel etki değerlendirme 

metodolojisidir. Bu çalışmada, çamur arıtım metotlarının yaşam döngüsü değerlendirmeleri incelenmiştir. Yapılan çalışmalar, 

çamur arıtımının yaşam döngüsü değerlendirmesinde, ORWARE, SimaPro, MARTES, TEAM by, Ecobilan, UMBERTO, LCAiT, 

SiSOSTAQUA, BioWin*, STAN*, WWEST, BEAM, GaBi 6 ve GEMIS modellerinin sıklıkla tercih edildiğini göstermektedir. 

İncelenen 40 çalışma sonucunda, çamur arıtım tekniklerinin küresel ısınma potansiyeli, insan toksisitesi, asidifikasyon 

potansiyeli ve abiyotik kaynak tüketimi gibi majör çevresel etki kategorilerine yol açtığı bulunmuştur. IPCC, Ecoinvent,  CML 

2002 ve IMPACT 2002+ çamur arıtımı için kullanılan temel yaşam döngüsü etki değerlendirme metotlarıdır. Sürdürülebilir 

çamur yönetimini sağlamak için yaşam döngüsü değerlendirmesi, çamur arıtım teknolojilerinin çevresel etkilerinin belirlenmesi 

ve karşılaştırılmasına olanak sağlayan en önemli araçlardan biridir. 

Anahtar kelimeler:  Yaşam Döngüsü Değerlendirme; Arıtma Çamuru;  Sürdürülebilirlik; Çevresel Etki 

Life Cycle Assessment of Sewage Sludge Treatment - An Overview 

 

Abstract 

Sewage sludge occurs as an end-product of wastewater treatment processes, and its management holds importance in the 

operation of wastewater treatment plants from both an economic and an environmental point of view. Sewage sludge 

management is one of the main processes that have several unfavorable impacts to environment. Sewage sludge resulting 

from wastewater treatment can contain pathogens, heavy metals and trace and recalcitrant organic pollutants however 

stabilized sludge can be used as fertilizer because of its nutrient content. Besides, sludge can be used as additional fuel if its 

calorific value is available. So sludge is also renewable energy and raw material source. Dewatering, thickening, stabilization, 

digestion, composting, incineration, drying, wet oxidation, supercritical wet oxidation, landfilling and phosphorus recovery are 

implemented methods for sludge treatment. Life Cycle Assessment (LCA) is an integrated environmental assessment tool that 

ensures the review and evaluation of the inputs, outputs, and potential environmental impacts of a product or service during 

its life cycle, from cradle to grave. Life cycle assessment (LCA) envisages a cradle-to-grave approach for analyzing the 

environmental impacts of a product or system. Life cycle assessment is an extended environmental impact evaluation 

methodology that can be used to identify environmental hazards. In this study, conducted life cycle assessments of sludge 

treatment methods have been investigated. These studies demonstrate ORWARE, SimaPro, MARTES, TEAM by, Ecobilan, 

UMBERTO, LCAiT, SiSOSTAQUA, BioWin*, STAN*, WWEST, BEAM, GaBi 6 and GEMIS models  that are frequently preferred for 

life cycle assessment of sludge treatment. As a result of researched 40 studies, it was found that sludge treatment techniques 
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cause major environmental impacts categories such as global warming potential, human toxicity, acidification potential and 

abiotic resource depletion. IPCC, Ecoinvent, CML 2002 and IMPACT 2002+ are the main life cycle impact assessment methods 

for sludge treatment.  To ensure sustainable sludge management; life cycle assessment is one of the significant tools that 

enable to detect and compare environmental impacts of sludge treatment technologiesi. 

Keywords: Life Cycle Assessment; Sludge; Sustainability; Environmental Impact

1. Introduction 
Wastewater treatment (WWT) plants should pay 

attention to the management of the sludge 

produced, because of its huge volume and its 

environmental impacts recently. The majority of 

pollutants that affect wastewater are concentrated 

by treatment processes in sludge; it is therefore 

critical having a suitable assessment methodology of 

sludge management options to analyse if pollution 

is redirected from water to other media, such as air 

and soil [1]. Sludge is a semi-solid residue generated 

resulting from wastewater treatment processes. 

Sewage sludge that is generated in various 

wastewater treatment methods such as primary 

settling, biological settling and tertiary treatment 

and chemical settling can include pathogens, heavy 

metals and recalcitrant organic and inorganic 

pollutant substances. Due to its content, sludge 

handling processess that have serious 

environmental impacts have been gained 

importance lately. For electing effective and less 

hazardous sludge handling process for environment, 

it should be known which one has less 

environmental impacts [3]. 

 

Life cycle assessment (LCA) methodology can be 

implemented to detect the environmental impacts 

of sludge treatment techniques and to decide which 

is applied and to collate with each other. The 

management of sewage sludge is often multi-

focused and requires considering both economic 

and environmental consequences [7]. Life cycle 

assessment is a widespread and integrated 

environmental impact evaluation methodology over 

the past decade and one of the most widely known 

and internationally accepted procedures to compare 

environmental impacts of processes and systems 

and to evaluate their sustainability in the entire life 

cycle [1]. Life Cycle Assessment (LCA) can be a 

suitable tool of the sustainability assessment giving 

the quantitative and overall information on 

resources consumption and environmental 

emissions of the systems investigated [2]. Several 

researchers adopted this methodology to assess the 

environmental burdens of alternative sludge 

management scenarios [3-4] or treatment 

technologies [5-6].  

 

Life cycle assessment gets easier this case. The 

studies that are related to LCA of sludge treatment 

methods demonstrate that life cycle assessment is 

the effective determination tool to detect which 

method is implemented. In several studies, by using 

different softwares, LCA evaluation of sludge 

treatment process such as dewatering, stabilization, 

thickening and other disposal methods have been 

realized.  

 

This study aims to analyze life cycle assessment 

surveys in sludge treatment presented in the 

literature and to gather them under one roof. 

 

2. Sludge Treatment 

A wastewater  treatment plant (WWTP) is a facility 

in which a combination of various processes (e.g., 

physical, chemical and biological ) are used to treat 

industrial and domestic wastewater and remove 

pollutants [8]. Until recently, sludge disposal has 

attracted little attention compared with 

considerable emphasis on discharges of treated 

wastewater. Sludge management in wastewater 

treatment plants is a significant environmental issue 

all over the world. Each of these management 

options has its own merits and disadvantages [9]. 

 

Sewage sludges contain sediments in raw 

wastewater and solid substances formed during 

wastewater treatment [10]. Dewatering, thickening, 

stabilization, digestion, composting, pyrolysis, 

incineration, drying, wet oxidation, super critical 

wet oxidation, landfilling, conditioning, thermal 

treatment, elutriation are the mainly sludge 

treatment and disposal methods. It should be 
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known the specific features of raw sludge to 

determine which method will be implemented. 

Main sludge resources of a biological wastewater 

treatment plant are primary settling tank and 

secondary settling tank [11]. 

2.1. Sludge Resources of WWTPs 

Sludge treatment systems show differences 

according to sludge sources, process type and 

operating method. [11]. Sludge resources of 

wastewater treatment plants are given in Table 1        

[12].  

 

Table 1. Sludge resources of WWTP’s *18+ 
Process Sludge Type 

Screenning Rough Solid Waste 

Grit Chamber Sand and Scum 

Pre-aeration Sand and Scum 

Primary Sedimentation Primary Sludge and Scum 

Biological Treatment Suspended Solids 

Secondary 

Sedimantation 

Biological Sludge and Scum 

Sludge Disposal Sludge, compost and ash 

In a wastewater treatment plant, main types of 

sludge are: 

 

Primary sludge: generated by settleable solids 

removed from raw wastewater in primary settling. 

This sludge has high putrescibility and good 

dewaterability when compared to biological sludge. 

Dried solids (DS) content in primary sludge vary 

between 2 % and 7% [16]; 

 

-Secondary sludge (or biological sludge) : produced 

by biological processes such as activated sludge 

consisting of microorganisms, biodegradable matter 

(either soluble or particulate), endogenous residue, 

and inert solids. DS content in secondary sludge 

changes between 0,5 % and 1,5%[16]; 

 

Chemical sludge: produced by precipitation of 

specific matters using some chemical like ferric salt 

or alum (i.e. phosphorus) or suspended solids [17]. 

2.2. Sludge Properties and Amounts 

In determining the sludge treatment and final 

sludge disposal and removal methods, it is very 

important to know the properties and content of 

the sludge and solid waste. At the same time, the 

source of solid waste is closely related to the sludge 

age and process type in the system [11].  Some 

physical properties of treatment sludge have been 

given in Table 2 [11]. 

 

It should not be forgotten that the amount of sludge 

produced varies greatly according to implemented 

processess [13].  Sludge volume comprises of huge 

water content and minor solid matter content. The 

volume of sludge mainly depends on its water 

content and slightly on the character of the solid 

substance [12]. Sewage sludge contains 

approximately 0,25 % - 12 % dry matter [11].  

 

 

Table 2. Physical Properties of Sewage Sludge [11] 
Sludge/Solid Waste Definition 

Primary Sludge It is revealed from primary settling tank. 

It is grey and has bad odor. It can be 
digested easily. 

Chemical Settling Sludge It is occured in the result of settling with 

metal salts. It has high iron content and 
dark red color. In the case of leaving the 

tank, as primary sludge its digestion is 

slow. A significant amount of gas 
escapes and 

If it stays in the tank for a long time, the 

density of the sludge increases. 

Activated Biological Sludge It is brown and flocked form. If dark 

color is observed, then septic conditions 

have occurred.  If its color is light, the 
settleability is low. Sludge tends to be 

easily septicidal.  

Compost Its colors are dark brown and black. It is 
odorless. It can be used as garden mold. 

Anaerobic Digested Sludge It is dark brown-black and contains a lot 

of gas. If it is digested well, it does not 

smell bad. 

Aerobic Digested Sludge It is dark Brown. It has flocculant 

features 

It is not bad smell but mostly moldy 
smell. If it is disintegrated, it can be 

dewatered. easily in sludge drying beds.  

 

 

Major chemical composition of untreated sludge 

and activated sludge are total dry solids, volatile 

solids, grease and fats, nitrogen, phosphorus, 

potassium such as nutrients, ph, alkalinity, organic 

acids, and energy content. Nutrient content is 

important to decide ultimate disposition of the 

processed sludge. Furthermore, the fertilizer value 

of sludge depends on its nutrient contents. 

Alkalinity, pH and organic acid composition have 

significancy in process control of anaerobic 

digestion. Heavy metal, pesticide and hydrocarbon 

contents should be considered in order to decide 

whether implement of incineration and land 

application. Calorific value should be known if 

thermal process is implemented [12].  
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 The microbial activity is based on the amount of 

sludge applied [14]. Since sewage sludge is formed 

from many different sources, there are different 

nutrients for the growth of different organisms in 

each source. It is also possible to purify disease-

causing microorganisms (pathogens) in sludge. The 

classification of organisms in an environment is 

called "taxonomy" and it is very difficult to 

determine their species and amounts. Depending on 

the type of wastewater to be treated, in particular, 

the raw primary settling sludge contains a large 

number of different organisms. There are also many 

organisms in the activated sludge. Even if fixed 

nutrients are given, the amount and variety of 

organisms are constantly changing. Particularly 

important is the content of pathogenic organisms 

and organic matter contained in the sludge when 

sewage sludges are used for agricultural purposes. 

Organic matter and pathogen removal should be 

done by applying stabilization procedures for 

agricultural implementation[11]. 

2.3. Sludge Treatment Methods 

Sludge is produced from either industrial, domestic, 

or wastewater treatment plants during the process 

of wastewater treatment and is the solid residue 

that remains following the wastewater treatment 

[15].  The sludge treatment network is given in 

Figure 3 [17,18]. 

 

Figure 3. Sludge Treatment Network [17,18] 
 

Main sludge treatment methodologies are 

dewatering, thickening, conditioning and 

stabilization [11]. For all that, fundamental final 

disposal options of sludge are landfilling,  

agricultural use, composting and incineration [19]. 

Among the processes, thickening, conditioning, 

dewatering and drying are the primary methods 

utilized to seperate water from sludge. Digestion, 

composting, and incineration are the methods used 

for stabilization for reduction of the organic matters 

and pathogenic microorganisms in sewage sludge 

[12]. 

 

Major sludge processing, disposal and treatment 

methods aim weight, mass and volume reduction 

and stabilization in general [12]. The waste activated 

sludge, major by-product of municipal wastewater 

treatment has been increasing worldwide as a result 

of an increase in the amount of wastewater being 

treated [24]. Anaerobic digestion is the most well–

known and common process for stabilization of 

treatment sludge. Anaerobic digestion is a slow 

process, which results in a long residence time and 

the requirement of a large tank volume. In order to 

improve hydrolysis and anaerobic digestion 

performance disintegration was developed as the 

pre-treatment process of sludge to accelerate the 

anaerobic digestion and to increase degree of 

stabilization [31]. 

 

 Sludge minimization is very important for 

decreasing operatio costs of wastewater treatment 

plants. So, sludge reduction should be ensured for 

limitation of costs.  

 

about reduction of sludge production and 

minimization of excess sludge [19]. The current 

approach to sludge minimization is the reduction of 

volume of wet sludge and the reduction of dry mass 

of sludge [20]. Aerobic biological treatment 

processes, such as the widely used activated sludge 

process generate a large amount of sludge causing a 

serious problem for water pollution control. Sludge 

treatment and disposal should be considered for 

design, operation, and cost [21]. Treatment and 

disposal of excess sludge can account for 25%–65% 

of total plant operation costs [22]. For many 

authorities and engineers, the effective sludge 

management is still a significant challenge since the 
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investment and operational costs [12]. Treatment 

and disposal of excess sludge in a biological 

wastewater treatment system needs enormously 

high cost, which has been predicted to be 50–60% 

of the total expense of wastewater treatment plant 

[23,24].  

 

Sludge disintegration can be defined as the 

destruction of sludge via external forces. These 

forces can be physical, chemical or biological 

[24].Nowadays, for the aim of waste activated 

sludge (WAS) minimization and more biogas 

production than classical anaerobic digestion, 

several disintegration methods have been 

researched. The methods can be classified as below: 

[26]; 

 

• Chemical disintegration (Fenton process, Ozone 

treatment, alkaline treatment etc.) 

 

• Mechanical disintegration (Ultrasonic treatment, 

Stirred ball-mill, Highpressure homogenizer, Lysat 

centrifuge, Jet Smash Technique, The High 

Performance Pulse Technique etc.) 

 

• Thermal disintegration 

 

• Biological disintegration (High temperature sludge 

stabilization with thermophilic bacteria, Enzymatic 

lysis) 

 

Ultrasonic treatment [27, 28, 29], ozone oxidation 

[24, 25, 30, 31], mechanical disintegration [32], 

alkaline treatment [33], thermal treatment [34], 

Fenton Process [35], and biological hydrolysis with 

enzymes [36] were investigated for sludge 

disintegration objective by several researchers in 

half-scale and lab-scale plants [21]. 

 

OSA, wet oxidation, super critical wet oxidation and 

phosphorus recovery are the other advanced sludge 

management methods [37]. 

 

All sludge treatment and management methods 

have various significant and negligible 

environmental impacts. In this study, the previous 

studies that LCA methodology were implemented 

for detecting environmental impacts of sludge 

management, have been reviewed and investigated. 

 

3. Life Cycle Asssessment  

3.1. Life Cycle Assessment (LCA) Definition   

Life cycle assessment means a systematic set of 

procedures for compiling and examining the inputs 

and outputs of materials and energy and the 

associated environmental impacts directly 

attributable to the functioning of a product or 

service system throughout its life cycle [38].  

Life Cycle Assessment (LCA) is a technique for 

evaluating the potential environmental and 

potential impacts associated with a product or 

service by: 

-Compiling an inventory of relevant inputs and 

outputs, 

-Evaluating the potential environmental impacts 

associated with those inputs and outputs, 

-Interpreting the results of the inventory and impact 

phases in relation to the objectives of the study 

[38]. 

Life cycle evaluations involve cradle-to-grave 

analyses of production or service systems and 

ensure comprehensive asessments of all upstream 

and downstream energy inputs and environmental 

emissions. 

There are four main phases of the LCA process: 

Scope and Goal: The scoping step determines which 

processes will be included, which environmental 

concerns will be included, what economic or social 

good is provided by the goods or services in 

question, resolves any technical issues and defines 

the audience for the LCA [39]. 

 Life Cycle Inventory (LCI): The inventory ensures 

information about all environmental inputs and 

outputs from all parts of the product system 

involved in the life cycle assessment. This involves 

modeling of the product system, data collection and 

verification of data for inputs and outputs for all 

parts of the product system. Inputs contain 

materials, energy and chemicals. Outputs include air 

emissions, water and wastewater emissions and 

solid waste [39]. 
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Life Cycle Impact Assessment: The assessment 

takes inventory data and converts it to indicators for 

each impact category. A typical list of impact 

indicators includes [39] : 

• Global Climate Change 
• Stratospheric Ozone Depletion 
• Smog 
• Noise 
• Acidification 
• Eutrophication 
• Natural Resources Consumption  (habitat, water, 
fossil fuels, minerals, biological resources) 
• Human Toxicity 
• Ecotoxicity. 

Data Interpretation: The last step is an analysis of 

the impact data that leads to the conclusion 

whether ambitions from the aim and scope can be 

met. 

 
Figure 1. Phases of a Life Cycle Assessment [40] 

3.2. Life Cycle Impact Asssessment Methodologies 

Life cycle impact assessment  (LCIA) is the third and 

the most significant phase of LCA. A typical LCA 

contain global climate change, ozone depletion, 

smog, acidification, eutropication, natural resources 

consumption, human toxicity, ecotoxicity as 

environmental impact categories.  It has been 

realized by using different LCA approaches and 

softwares. 

LCA, with its ambition to ensure insights into the 

potential environmental effects of the complete and 

detailed system associated with the provision of 

goods and services, has evolved into a powerful and 

fairly robust methodological framework. Such a 

comprehensive LCA approach can be described as a 

‘‘detailed LCA’’ when compared to simplification 

approaches [42].  

 

Figure 2. Mechanisms of LCIA [41] 

For several practitioners of LCA, it is appropriate to 

use a dedicated models.  A rough division into three 

classes of software can be made. Generic LCA 

software, typically intended for use by researchers, 

consultants and other LCA specialists. Specialized 

LCA-based software of various types for specific 

decision makers, typically intended for use by 

designers in engineering or construction, the 

purchasing department, or environmental and 

waste managers. Tailored LCA software systems are 

used for clearly defined applications in specific IT 

environments (as interfaces to business 

management software). These are usually firm-

specific adaptations of generic software or software 

packages programmed directly for the needs of the 

firm [43]. ORWARE, SimaPro, MARTES, TEAM by, 

Ecobilan, UMBERTO, LCAiT, SiSOSTAQUA, BioWin*, 

STAN*, WWEST, BEAM, GEMIS, Quantis Suit [43] are 

the common commercial LCA softwares. 

4. LCA Surveys for Sludge Treatment and 

Management 

4.1.  Assessment of the Conducted Studies 

Sludge management is receiving increased attention 

worldwide for a variety of reasons, including the 

inability to directly discharge or recycle waste 

streams, and the need for high solid content for 

purposes of residuals treatment transport, 

landfilling, disposal, and agricultural usage [44]. For 
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ensuring sludge management, first of all, it should 

be known how many environmental impact released 

to the ecosystems. 

 

According to research studies, first of all the method 

and database have been decided for LCA. In lots of 

studies, models have been utilized such as Simapro, 

MARTES and Gabi 6 [49, 50,52, 53, 54,57, 61,62, 

73,76, 82,83]. 

 

Yoshida et al., studied many studied about this 

subject [7, 43].  Hospido et al., has many research 

studies related to this topic [49, 52, 61,69]. Also 

Svanstrom and her team have several surveys in this 

manner [5,53]. 

 

LCA assessment of sludge management and 

treatment studies were listed in Table 5 in details 

[43]. In this table, study area, used LCA databases 

and LCIA methods, utilized models, assuming 

functional units, fulfilled sludge treatment 

techonologies and implemented sensitivity analysis 

related to the investigated studies have been 

defined. 

 

According to the table, in several studies, sensity 

analysis have not been applied [6, 45,46, 

49,50,52,53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 

67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81,82, 

83]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Life cycle assessment methodology is generally 

implemented for main sludge treatment such as 

dewatering, thickening and anaerobic digestion [45, 

46, 47, 48, 49, 51, 52, 54, 56, 57, 58, 61, 63, 64, 66, 

67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 

83].   

 

According to the studies, IPCC, Ecoinvent,  CML and 

IMPACT 2002+ are the commonly used life cycle 

impact assessment (LCIA)  methods for sludge 

treatment and management [6, 48, 49, 52, 56, 57, 

59, 62, 64, 66, 67, 68, 69, 72, 74, 76, 77, 78, 80, 

81,83]. 

 

For detecting functional units of all LCA studies for 

sludge treatment, treated and/or disposed sludge 

amounts and volumes and treated wastewater 

amounts have been considered.  

 

In this chapter, LCA metholody and LCIA methods 

for sludge treatment have been indicated with Table 

5. In section 4.2. , the impacts results of LCA for 

sludge treatment have been given with details. 
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Reference  

Number 

Search Area LCI Database and 

LCIA Methods 

Models Used Sensitivity Analysis Sludge Treatment 

Technologies Considered 

Functional Unit 

[45] Sweden  
 

EPS 
 

 
ORWARE 

 
- 

Anaerobic 
Digestion, Composting,  

Drying, Using on land 

1 individual 

equivalent for 1 

year 

[46] 

Australia - - - 

Anaerobic 
Digestion, Phosphorus 

recovery, Lime 
Addition, Drying, Using on 

land 

1 mg of thickened 

sludge 

[47] Sweden 

- - 
Electricity 

substitution rate 

Thickening, 
Dewatering, Phosphorus 

recovery, Lime 
Addition, Coincineration, 

Using on land, Aerobic 

stabilization 

1 mg of sludge 

[48] France CML and BUWAL 

- 
Weight and mass 

impact factor 

Thickening, 
Dewatering, Anaerobic 

Digestion, Pyrolysis  Lime 
Addition, Composting,  Using 

on 
land, Landfilling, 

Monoincineration. 

1 mg of mixed 

sludge 

[49] 

Spain 

SimaPro 
databank, 

CML, USES LCA,  

IPCC, BUWAL 

SimaPro 

 
- 

Thickening, 
Dewatering,  Using on 

land 

Daily wastewater 
flow under 

humid and dry 

condition 

[50] Göteborg, 

Sweden 

EPS and ET-long  
MARTES 

 
- 

Coincineration, Using on 
Land, Phosphorus recovery, 

Pasteurization 

1 mg of mixed 

sludge 

[51] Ålborg, 

Denmark 

 
SEA 

- Fourteen 

operational 

parameters 

Composting, Anaerobic 
Digestion, Drying, 
Monoincineration, 

Using on land,  
Coincineration, 

Landfilling. 
 

1 mg removed 
chemical oxygen 
demand   from 

wastewater 

[52] Galicia, Spain IDEMAT, BUWAL, 
CML, IPCC, 
USESLCA 

SimaPro - Thickening, 
Dewatering, Anaerobic 

Digestion, 
Monoincineration, Using on 

Land. 

1 mg of mixed 
thickened sludge 

 

 
[53] 

 
Göteborg, 

Sweden 

 
EPS and ET-long 

 
MARTES 

 
- 

Drying, Wet oxidation, 
,Phosphorus 

recovery, Using on land, 
Pasteurization, . super critical 

wet oxidation 

1 mg of digested 
sludge 

[54] Switzerland, 
France 

 
- 

 
SimaPro 

Transport, Volatile 
solids substance, 

scale of the 
treatment plant,  

sludge dewatering 
efficiency rate 

Wet oxidation, Landfilling, 
Thickening,  super critical 

oxidation, Dewatering, , Lime 
Addition, Drying, 

Monoincineration, 
Coincineration, Pyrolysis, 

Using on land. 

1 mg of sludge 

Table 5. LCA surveys conducted [43] . 
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Reference  

Number 

Search Area LCI Database and 

LCIA Methods 

Models Used Sensitivity Analysis Sludge Treatment 

Technologies Considered 

Functional Unit 

[55] Generic - - - Drying, Coincineration 1 kg of digested 

sludge 

[56] Italy TEAM database, 
AQUASAVE, CML 

USES IPCC 

 
TEAM by 
Ecobilan 

 
 
- 

Thickening, 
Dewatering, Anaerobic 
Digestion, Composting, 

Monoincineration, Using on 
land 

Landfilling. 

20 mg of mixed 

sludge 

 
[57] 

 
Galicia, Spain 

IDEMAT, 

Ecoinvent, CML 

2000 

 
SimaPro 

 
- 

Thickening, 
Using on 

Land, Dewatering 
 

1 person 

equivalent of 

wastewater 

 
[58] 

 
Germany 

IFU and IFEU 

database, 

UMBERTO - Anaerobic 
Digestion,  Using on 

land 

Wastewater from 

5000 residents 

[59] Chengdu, 

China 

US EIO-LCA,  IPCC - - Coincineration,  Using on 
land 

84 mg  produced 

sludge/ 1 day 

 
[60] 

 
Stockholm, 

Sweden 

 
- 

 
LCAiT 

 
N2O greenhouse 

gase emissions from 

using on land 

Wet oxidation, Composting, 

super critical wet oxidation, 

Using on land,  Phosphorus 

recovery. 

 
1 mg digested 

sludge 

[61] Galicia, Spain IDEMAT SimaPro - Thickening, 
Dewatering, Anaerobic 

Digestion, Using on 
land 

1 person 

equivalent of 

wastewater 

[62] France Simapro 
databank,  Eco 

Indicator, 
EDIP EPS, 

Ecopoints,   CML 

SimaPro  
- 

Lime Addition, Using on 
land 

Treated 
Wastewater in 
the treatment 

plant 
for one year 

[63] Japan Japanese 
interindustry 

relationship table, 
USES LCA. 

 
- 

 
- 

Drying, Thickening, 
, Lime addition, Dewatering  

Composting, 
Monoincineration, sludge 

melting, Anaerobic 
Digestion 

1 mg of sludge 

[64] Taragona, 
Spain 

Ecoinvent, CML SiSOSTAQUA - Anaerobic 
Digestion,  Composting, 

Coincineration, Using on land, 
landfilling. 

1 m3 of 
wastewater 

[65] Rural 
Australia 

USES - - Lime addition, Composting, 
Drying, coincineration, using 

on land, landfilling. 

2 mg of sludge 

[66]  
Generic 

IFU  IFEU 
databank, IMPACT 

2002+ method 

 
BioWin* 

Eleven parameters 
of 

leakage greenhouse 
emissions and 

phosphorus and 
nitrogen 
removal 

Thickening, Dewatering, 
Anaerobic 

Digestion, Using on land. 

10 million liters 
domestic 

wastewater per 
day 

[67]  
EU15 

Probas Databank,  
CML, IMPACT 

2002+ 

 
STAN* 

 
 
- 

Thickening, 
Dewatering,  Lime addition, 
Monoincineration, Using on 
land, Phosphorus recovery. 

1 mg of sludge 

[68]  
France 

 
USES and IPCC 

method 

- - Composting, Drying, Using on 
land. 

1 mg of sludge 

[69]  
Generic 

 
 

Ecoinvent,  CML2 - - Anaerobic 
Digestion, Using on land. 

10 liters primary 
sludge 

and waste 
activated sludge 

Table 5 continued [43] 
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Reference  

Number 

Search Area LCI Database and 

LCIA Methods 

Models Used Sensitivity Analysis Sludge Treatment 

Technologies Considered 

Functional Unit 

[70] California, 

USA 

US EIO-LCA WWEST - Thickening, 
Anaerobic 

Digestion, Dewatering,  Using 

on land. 

1 million liters of 

wastewater 

[71]  
Japan 

- - - Thickening, 
Anaerobic 

Digestion, Drying, Landfill, 

Sludge melting, Dewatering 

12 000 m3 / day 
sludge flux 

for 3 organic 

loading rates 

[72]  
Ontario, 

Canada 

 
CML2 

 
BEAM 

 
- 

Dewatering, Thickening, 
Anaerobic 

Digestion, Using on land, 

Landfilling. 

100 mg of sludge 

[73]  
Seva, Spain 

 

 
CML2 

 
SimaPro 

 
- 

Thickening, 
Dewatering, ,  Lime addition, 

Monoincineration, 
Composting,  Anaerobic 

Digestion 

1 mg of sludge  

[74]  
China 

IMPACT 2002+  

Ecoinvent 

 
- 

Statistical variability 
analysis 

Thickening, 
Dewatering, Drying, 

Coinicineration. 

1 mg of cement 

(sludge reuse) 

[75] Shanghai, 

China 

GEMIS, 
EDIP 

GEMIS - Coincineration. 1 TJ of steam 

[76] Generic Ecoinvent, CML 2 SimaPro  
- 

Anaerobic 
Digestion, Using on land, 
Landfilling,  Pretreatment 

processes 

10 liters of mixed 

sludge 

[77]  
Barcelona, 

Spain 
 

 
CML 2 

 
- 

 
- 

Anaerobic 
digestion 

 
100 m3 thickened 

sludge 

[78]  
Sweden 

 

 
IPCC 

 
- 

 
- 

Thickening, 
Dewatering,  

Monoincineration Using on 
Land,  Struvite precipitation 

 

11 kg of 

Phosphorus for 
agricultural 

purpose 

[79]  
 

Japan 

 
JEMAI database 

 
- 

 
- 

Anaerobic 
Digestion,  Composting, 

Monoincineration,  
hydroapatite 
precipitation 

Pyrolysis,  Using on Land,  
Struvire 

Precipitation, 
Alkali 

Extraction Thickening, Drying 
Dewatering 

Treatment of 

wastewater related 
to 100 000 

individuals 

[80]  

Saint Louis, 

Missouri, 
U.S. 

 

ReCipe 2008,Eco-

indicator 99,CML 
2002.   

 

- 
 

Monte Carlo 

Simulation 

Dewatering, multiple hearth 

incineration-ash to landfill 
567.8×103 m3/day 

wastewater, 105. 

5 ton/day dry 
sludge. 

[81] Gaziantep, 
Turkey 

Energy Market 
Regulatory 
Authorities 

(EMRA),  IMPACT 
2002 +,  Ecoinvent 

Simapro 
Software 
Version 
7.3.3. 

 
- 

Dewatering, Thermal drying, 
Incineration, Landfilling. 

Incineration of 

one kg of digested 
sewage sludge 

[82]  
Gothenburg, 

Sweden 

 
Ecoinvent, ILCD 

Handbook 

 
Gabi 6 

 
- 

Dewatering, Mesophilic 
digestion, 

1 dry tonne of 

sludge 

[83] Ireland CML 2001,  EPA 
data 

GaBi 6 - Thickening, Dewatering, 
Anaerobic Digestion. 

35 000 m3 /day 

wastewater 

[6] Muret - 
France,  Albi 
city -France. 

Heijungs 
Guideliness, IPCC. 

 
- 

 
- 

Thermal drying,  Fry-drying,  
Conventional 

Drying. 

1000 kg of sludge 

Table 5 continued [43] 
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4.2.  Results of the Conducted Studies 

In this survey study, LCA for sludge management 

studies have been reviewed. According to the 

studies, the impact categories of LCA for sludge 

management have been given in Figure 4. 

 
Figure 4. Impact Categories numbers of LCA studies for 

sludge treatment: 
 

GWP, global warming potential; AP, acidification potential; EP, 
eutrophication potential; POP, photochemical oxidation potential; HT, 
human toxicity; ET, ecotoxicity; DAR, depletion of abiotic 
resource; EB, energy balance, TE, terrestrial ecotoxicity. 

Models distribution in the studies that were 

implemented have been demonstrated in Figure 5.  

According to the investigated studies, global 

warming potential is the most common impact 

category in LCA of sewage sludge treatment with 34 

numbers. Eutrophication potential impact followed 

it with 21 numbers. Terrestrial ecotoxicity impact 

has the minimum effect among them. 

 
Figure 5. Models used in LCA assesment of sludge 

management 

Simapro is the most commonly used model for LCA 

of sludge treatment according to the studies with 9 

numbers. Gabi 6 and MARTES are the other popular 

models implemented in LCA of sludge treatment 

scenarios. 

5. Conclusion 

Life cycle assessment is one of the significant 

environmental impact detection methods of sludge 

treatment and management. 

 

According to the literature, ORWARE, SimaPro, 

MARTES, TEAM by, Ecobilan, UMBERTO, LCAiT, 

SiSOSTAQUA, BioWin*, STAN*, WWEST, BEAM, GaBi 

6 and GEMIS are the common models that are 

preferred for LCA of sludge treatment and 

management. Simapro is the most widely used 

model. IPCC, Ecoinvent,  CML and its modifications 

and IMPACT 2002+ are the main life cycle impact 

assessment methods for sludge treatment. Among 

them, CML and its modifications are the most 

common life cycle impact asssesment tool. 

 

Global warming potential, acidification potential, 

eutrophication potential, photochemical oxidation 

potential, human toxicity, ecotoxicity, depletion of 

abiotic resource, energy balance and terrestrial 

ecotoxicity are the fundamental impact categories 

of sludge treatment. Global warming potential 

within the impact categories is mostly observed.  
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