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Oz

Bu galismanin amaci, 6nceki ¢alismalar incelendikten sonra
disblkey ve integrallenebilir ve diferansiyellenebilir fonksiyonlar
icin ters Bellman tipi esitsizligi elde etmektir. Bununla birlikte
Bellman tipi esitsizligin genellestirilmesinin ispati yapilmistir.
Elde edilen ana sonuglar yardimiyla disbiikey ve integrallenebilir,
diferansiyellenebilir fonksiyonlar Gzerine bazi 6zel durumlar
elde edildi. Bu sonuglar kullanilarak analitik olarak hesaplanmasi
zor integraller igin bir alt sinir elde dilmistir.
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Abstract

The aim of this work, to obtain reverse Bellman type inequality
for convex and integrable-differentiable functions after
examining the previous studies on the Bellman inequality and
giving the results that are a source of inspiration for us. With
that we proved the generalized of Bellman type
inequality. With the help of obtained main results, we have
obtained some special cases on convex and integrable-
differentiable functions. For convexity we have also included
some examples to make these exercises more understandable.
On the other hand, we have expressed with examples

to obtain a lower bound for hard integrals.

Keywords: Convexity; Inequalities; Integral operator; Belmann.

1. Introduction

Calculus, using different notions of derivatives and
integrals of arbitrary order, has become in recent years
one of the centers of attention of mathematical
researchers, both pure and applied. By other hand, one of
the most developed mathematical areas in the last 30
years is that of integral inequalities, associated with
different
synchronous functions within the framework of Riemann,

functional notions: convex, q-calculus,
fractional and generalized integral operators (Alp 2021,
Delgado et al. 2021, Roberts et al. 1974). Moreover, many
research papers have studied the properties of convex
functions that make this

concept interesting in

mathematical analysis. In recent vyears, important
generalizations have been made in the context of
convexity: quasi-convex, pseudo-convex, invex and
preinvex, strongly convex, approximately convex, MT-
convex, (a;m)-convex, and strongly (s;m)-convex
(Cristescu and Lupsa 2002, Vivas-Cortez et al. 2020,

Youness 1999).

Recently, some studies have been done on the Bellman
inequality, which has an important place in the literature
on inequalities. Pecaric and Mitronic (Mitrinovic and
Pecaric, 1988, Pecaric 1982) obtained Bellman type
generalization of Steffensen’s inequalities. In 2014,

Mirzapour (Mirzapour and Moslehian 2014) proved some
results on Bellman operator inequality. Moreover in 2013
Morassaei (Morassaei et al. 2013) proved the Bellman
operator inequality. In 2014 Iddrisu (lddrisu et al. 2014)
proved Bellman type inequality. On the other hand, in
2020 Sababheh (Sababheh et al. 2020) obtained reversing
Bellman operator inequality. The inspiration for this work
is the inequality achieved by Iddrisu. The purpose of this
paper, to obtain inverse inequality of (4) and prove
generalized of (4) with some results. By using this result
we obtain upper and lower bounds for integrals.

2. Preliminaries

We begin with convex functions.

Definition 1. (Convex Function). Let real function f be
defined on some non-empty interval I of real line R. The

function f said to be convex on I, if the inequality

fb+ A —-t)a) <tf(b)+ (1 —-t)f(a),
ab€landte[0,1].
The following inequality was discovered in 1918 by

Steffensen (Steffensen 1947):

Assume that two integrable functions h(x) and 3(x)are
defined on [a,b], that h(x) never increases and that 0 <
3(x) < 1in(a,b).
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Then

b b
J-h(x)dx < J-h(x)qb(x)dx
b-2 a

a+d

< f h(x)dx €9)

a

where 1 = ff ¢ (x)dx.
Bellman in (Bellman 1959) prove the following
inequality:

P a+c

b
f‘P(s)A(s)ds Sf YP(s)ds, (2)

wherec = a + (ffA(s)ds )p :

But, Godunova and Levin in (Godunova and Levin 1968)
noted Inequality (2) that the generalisation of Inequality
(1) was incorrect. Pecaric (Pecaric 1982) corrected the
Bellman generalisation with a narrow subclass. The
corrected result is

1 p A
f‘P(s)A(s)ds < pr(s)ds, 3
0 0
where
1 p
A= f‘l’(s)ds ,A:[0,1] » R
0

is a nonnegative and nonincreasing function, ¥: [0,1] - R
is an integrable function with 0 < W(x) < 1andp = 1, for
the proof; see (Pecaric 1982) and the references therein.

Iddrisu et al. (Iddrisu et al. 2014) prove the following
refinement of Bellman type inequality:

Theorem 1. Let the function ¥: [0,1] - R

be continuous such that 0 < 3(x) < 1. If 3:[0,1] — Ris
a convey, differentiable function

with 3(0) = 0, then

3 E!‘P(s)ds < E)f‘l’(s)S'(s)ds €))

foralls € [0,1].

The purpose of this paper, to obtain reversi of (4) and prove
generalized of (4) with some results. By using obtained our
results we obtain lower bounds for integrals.

3. Reverse Bellman Type Inequality

In this section, we prove reverse of Inequality (4) and by
following theoremes:

Theorem 2 (Reverse Bellman Type Inequality). Assume
Y, 3:[0,1] > R are integrable-differentiable functions
and 3 is convex. For 0 < ¥W(t) <1 and J3(0) = 0, then
the following inequality holds:

flp(x)s’ @ dx + 23 (%) ~3(1)
0

1
<3 f W(x )dx |. (5
0
(5) changes direction when 3 is concave.
Proof. Assume 0 < W(t) < 1and

0= f‘{’(t )dt,
0

X
x 1 qu(t)dH
2°2 x
0

Now choosing F(x) = i(fox Y(t)dt + x ), then we

have

Gx) =3(F(x))=3 % flP(t)de
0

3’ is nondecreasing and this yields
G'(x) = F'(x)J'(F(x))

X
Wx)+1
=—(x2) S’—f‘l’(t)dt+x
0

N =

~

Yx)+1_, x
=—5—@)
By integrating the last inequality on [0,1] and for J3(0) =
0, we get

f G'(x)dx = G(1) — G(0)
0
=3 % flp(t)dtﬂ

> [lP(xz) +1] ~ (g) dx.

OR’H

Due to convexity of 3, we obtain

N| =

3 J‘I’(t)dt + 3(1)
0

1
1
2395 Jtp(t)dt+1
0

568



On Reverse and Generalized of Belmann Type Inequality, ALP.

WG+ 1],
ZJXTJ (g)dx

1
= % f YT (E)

So, we have

f Y(t)dt |+ 3(1)

f Y(x)3'

ax+23(3).
x+23(5

f‘{’(t )dt (6)

2)dx +23 (1) ~ 3(1).

J. Px)JI'

Thus, the proof is completed. ]

Corollary 1. In (5), assume J(t) = tP for p > 1, then we get

1
fxp‘“P(x)dx +
0

—p-1

2pr-1

P
2v-1

p

1
Of‘P(x )dx

4. Generalized Results

In this section we generalize Theorem 1.and 2.

Theorem 3 (Generalized Bellman Type Inequality). Assume
W,ASJ :[a,b] = R are integrable-differentiable functions
and 3 (x) is a convex. For W(x) <M, A’ (t) 20, and
3 (0) = 0 the following inequality holds
b
3 fA’(t)‘P(t)dt

a
b

< f ANOYR)I'{M[A() — Ala)]}dt. 7N

a

where M € R.
Proof. Assumem < W(x) < M and A'(t) =0,

N®OPE) <AN()M

JA’(t)LP(t)dt < MJA’(t)dt

a

= M[A(x) — A(a)].

Now choosing
X

E(x) = fA’(t)‘P(t)dt,
a
then, we have

X

fA’(t)‘P(t)dt .

a

H(x) = S(E(x)) =3

3 'is nondecreasing due to convexity, so this yields

H'(x) = E'(0)3 (E())

X

=N(x)¥Px)T’ fA’(t)lP(t)dt

a

S NOYE)I{M[AX) — A@)]}.

By integrating the last inequality on [a, b], we have
b

f H'(x)dx

a
b

f NPT MIAG) — A@]dx.

a

Since 3 (0) = 0 and
b

fH’(x)dx = H(b) — H(a)

a
b

=3 fA'(t)‘P(t)dt ,

a
and the desired result is achieved as follows

b

3 JA’(t)tP(t)dt

b

< fA'(x)‘P(x)S'{M[A(x) — A(a)]}dx.

a

Corollary 2. Considering the conditions in

Theorem 3, assume A(t) =t in Inequality (7), then we
obtain
b
J-‘P(t)dt J-‘P(t) "Mt — a]}dt. (8)
a

Remark 1. In (8), assumea =0, b =
landm=0<W¥(x) <1=M,then
we reach (4).

Corollary 3. In (7), assume 3(t) =tP forp =
1, then we get
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b p
(J- N(x)WP(x)dx ) 9

a

b
< pMP1 J- NP (x)[A(x) — A(a)]P~1dx.

a

Corollary 4. In (9), assume A(t) = t, then we
get

b P
(J- Y(x)dx )

b
< pMP-1 J-(x — a)? 1Y (x)dx. (10)
a

Example 1. In (10), assume p = 2, then we get

b 2 b
<f ‘P(x)dx) < 2Mf(x — a)¥(x)dx.

a a
Theorem 4 (Generalizied Reverse Bellman Type

Inequality). Assume W, A, I : [a,b] » R are integrable-
differentiable functions and 3(x) is a convex. For m <
Y(x), A'(x) =0, and3J (0) =0 the following inequality
holds

b

f NPT <(m - DA(;C) _ mA(a)) dx (11)
[ () 1)
-3(AD))

b
<3 <f N ()P (x)dx >,

a
wherem € R.
Proof. Assume m < W(x) and A'(t) = 0, then we write

mA'(t) < AP,

X

m[A(x) — A(a)] < fA’(t)‘P(t)dt,

m[A(x) — A(a)] + A(x)
2

17
<3 f NPt + A |.

a

Now, choosing K(x) = %(f;A’(t)‘P(t)dt + A(x)), then

we have

T(x) = S(K(x))

— X 1 [ / d
=313 fA(t)‘P(t) t+AX) |-

3’ is nondecreasing and this yields
T'(x) = K'(x)S’(K(x))

1
=3 (N ()PX) + A (%))

1 X
3 {E <f N(@®)P()dt + A(x))}

X

1
> > (N@WE) +A'()

. {m[A(x) —A@)] + A(x)}
X3 2 '

If the last inequality integrate on [a, b], the following
inequality is obtained

b
fG’(x)dx = G(b) — G(a)

b
=3 {% ( f N (OOt + A(b))} -3 (A(Za)>

a

=

N =

b
f W@ + 1]

,(m[A(x) — A(@)] + A(x)
MLICRIOTIC AW

i.e.

~ 1 i i
313 fA(t)‘P(t)dt+A(b)

b
= [ +1)

. <m[A(x) - Az(a)] + A(x))} b+ 5 (A(Za))

Due to convexity of 3, we obtain

b
%3 (f A’(t)‘P(t)dt) + %S(A(b))

a
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b b
zs%(fNummyu+Mm)} =fAmowam(é@m"+”_mM@>m
2 2
b ~ ((m+1)A(b)-mA(a) ~ (A@)
i S -5 ()
ZiﬁN&Wﬂﬂ+ﬂ +2 — ?
_ If (13) is substituted in (12), we get
< (m[/\(x) /\Z(a)] + A(JC))} dx 43 (A(Za)) X
3 fA’(t)lP(t)dt
So, the following inequality is obtained 2
b b
3 <f A’(t)‘P(t)dt) 1z = f{ N ()[P(x) +1]
b _ (m[A() — A(d)] + A(x) p
zﬁwmwm+u XJ( 2 »x
’ ~(A@Y
- (m[A(x) —A(@)] + A(x))} +23 (T) - 3(AMD))
X3 > dx
b
, — (AX)[m + 1] — mA(a)
123 (@) — 3(AM)). = f N ) P03 ( > >d"
By editing the integral in right side of (12), we get 5 (W) -5 (M)
, +2 Z Z
m+1
[verwed +11 (13) A@)
2 +23 (T) — 3(Ab))
s (A(x)[m +1] - mA(a))} dx ,
2 - [ v (A(x) LESE mA(a)> .
b
. _ (MA@ [m + 1] — mA(a) @
=fACQW@%5< 2 )dx 2 NCm+1m@)—mAm5
a + 3
m+1 2
b
oo (A [m + 1] — mA(a) 2 A@)
+JA@%5< > )M +a§i3<f)—3@@”
f (A [m + 1] — mA(a) Thus, the desired result is achieved and the proof is
= | NPT ( > ) completed.

a Remark 2. In (11), assume a = 0,b = 1, A(x) = x and
b

2 m+1 oo (A [m + 1] = mA(a) m=0<W¥(x)<1=M wereach (5).
Tl 2 fA(x)\s< 2 )dx

Corollary 5. Considering the conditions in

“ Theorem 4, in (11), assume A(t) = t we obtain

b

A 1] —mA
_ f A )T ( (xX)[m + 2] m (a)) dx f‘l’(x)’i' <(m + 1x — ma) &
a > 2
2 [m + 1]JA(b) — mA(a) ‘.1 2 [~ ((m+1)b-ma ~fa -
+m+ 1‘S< 2 ) " (m+1) [‘S( zb ) T ms (E)] —3®)
2 _([m+1]A(a) — mA(a) 4
Tmt1ls 2 <3 J‘P(x)dx ,

wherem € R.
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Corollary 6. In (11), assume 3(t) = tP, forp = 1 then
we get

b
’ p—1
T f A (x)‘{’(x)((m + DAx) — mA(a)) dx
a
2 (m+1)A(b)-mA(a)\P A@)\P
'(m+1)[( 2 ) +m(2)]
~(a®)”
b p
< J-A’(x)‘{’(x)dx , (14)
a
where m € R.
Corollary 7. In (14), assume A(t) =t
then we get
b
p p-1
FJ‘ ‘P(x)((m + 1Dx — ma) dx (15)
a
. ((m+1)b—ma)p+ma”—2p—1(m+1)b”
' 2P=1(m+1)
b 14
< J-‘P(x)dx
a
Corollary 8. In (15), assume p = 2 then
we get
b
f‘P(x)((m + 1x — ma)dx (16)
a

,((m+ 1)b—ma)2+ma2—2(m+ 1)b2
' 2(m+1)

2

b
< f‘l’(x)dx

Finally, we give some examples to calculate some bound
value for hard integrals using the obtained results.

Example 2. By using (16) we obtain a lower bound for

b 2
J, e*"dx as follows

b b 2
2 bz 2
fxexdx—TS fexdx ,

a a

Example 3. By using (16) we obtain a lower bound for

f; sin(x?)dx as follows

b b 2

b2
fxsin(xz)dx—?ﬁ fsin(xz)dx )
a a
sin(a?) — sin(b?) — b2
2

b
< f sin(x?)dx.

a

5. Conclusion

In this research, we have proved generalized of Bellman
type inequality and obtained Reverse Bellman type
inequality with some more results for convex functions.
We also get some bounds for hard integrals with
examples. Our results can be applied to other analyses
especially g-calculus. Similar inequalities in convexity
types (for example, quasi-convex, pseudo-convex, invex,
preinvex, strongly convex, approximately convex, MT-
convex, (o;m)-convex, strongly (s;m)-convex) can be
investigated. Moreover, similar results on the Time Scale
can be explored.
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