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Abstract
In this study, we introduce an innovative fractional Genocchi collocation method for solving nonlinear
fractional differential equations, which have significant applications in science and engineering. The
fractional derivative is defined in the Caputo sense and by leveraging fractional-order Genocchi
polynomials, we transform the nonlinear problem into a system of nonlinear algebraic equations. A
novel technique is employed to solve this system, enabling the determination of unknown coefficients
and ultimately the solution. We derive the error bound for our proposed method and validate its
efficacy through several test problems. Our results demonstrate superior accuracy compared to
existing techniques in the literature, suggesting the potential for extending this approach to tackle
more complex problems of critical physical significance.
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1 Introduction

During the last few years, fractional calculus (FC) has gained significant attention in the scientific
and engineering communities due to its ability to provide more realistic simulations of real-life
complex phenomena. FC is defined as the branch of mathematics that deals with derivatives
and integrals of non-integer orders. Unlike traditional calculus, which focuses on integer-order
derivatives and integrals, FC extends these operations to include fractional orders. The importance
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of the application of FC comes from the fact that it involves the derivative and integral of any order
and is particularly useful in simulating models that exhibit memory effects or cannot be adequately
described by classical approaches. With these important remarks and properties, researchers
have been trying over the years to develop several definitions of FC [1]. One of the common
definitions of FC is the Riemann-Liouville fractional derivative, which is defined as the integral of
a function raised to a fractional power, followed by differentiation. On the other hand, another
well-known important definition is the Caputo fractional derivative, which is defined as the
integral of a function multiplied by a weight function, followed by differentiation [2]. The Caputo
fractional derivative is one of the most important definitions in the field of FC due to many reasons.
First, it can handle initial conditions more efficiently and can handle non-smooth functions and
discontinuities. In addition, unlike other operators that require knowledge of the function’s history
at all times, the Caputo derivative only requires the function’s values at the current time. This
property makes this definition suitable for modeling real-world phenomena where the initial
conditions are unknown or hard to obtain. Also, this definition provides the ability to handle
non-smooth functions and discontinuities more effectively compared to other fractional operators.
This makes it more versatile and applicable in a wider range of applications. Other definitions of
fractional operators include the Grunwald-Letnikov fractional derivative, which is defined as a
finite difference approximation of the fractional derivative, and the Atangana-Baleanu fractional
derivative, which is defined using the Caputo fractional derivative and a non-singular kernel.
Each of these definitions has its advantages and limitations and is suitable for specific applications.
Choosing the appropriate fractional operator for a given problem requires careful consideration of
the problem’s nature and the desired properties of the solution.

In many real-life applications, differential equations are used to model physical processes, and
the development of fractional calculus has led to a growing interest in fractional differential
equations (FDEs). The study of FDEs has significant implications in various fields, including
physics, engineering, and finance. For example, Kilbas et al. [3] were among the first to introduce
the basics of fractional calculus and its application to differential equations. Podlubny [4] further
expanded on the possible applications of fractional calculus to differential equations and was one
of the earliest researchers to study FDEs. Agarwal et al. [5] investigated solutions to a class of
semi-linear FDEs in the form of periodic solutions. In the field of biology, Rahman et al. [6] adapted
the singular-type and nonsingular fractional-order derivatives for simulating the plant-pathogen-
herbivore interactions model. Additionally, Ali et al. [7] employed the new sub-equation method
to attain new traveling wave solutions of conformable time FDEs. Moreover, Uzun et al. [8] studied
the forced oscillatory theory for higher-order fractional differential equations with a damping
term via the ψ-Hilfer fractional derivative. In the field of biology, FDEs have been contributing
to the understanding of the dynamics and spread of many viruses. For example, Atede et al. [9]
investigated the solution of a COVID-19 model incorporating the effect of vaccination through a
fractional model with verification using real data from Nigeria. Also, Anjam et al. [10] simulated
the dynamics of a fractional pollution model in a system of three interconnecting lakes. These are
some examples of the applications of FDEs in simulating real-life phenomena. For more details on
the application of FDEs, the reader may refer to [11–17] and references therein.

In this paper, we introduce the Genocchi collocation method for solving the following form of
fractional differential equation

u(η)(x) =
r∑

m=0

σmu(m)(x) + µ (x, u(x)) , a < x < b, r − 1 < η < r, (1)
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and boundary conditions

u(i)(a) = αi, u(i)(b) = βi. (2)

The study of fractional calculus has led to the development of various methods for solving frac-
tional differential equations (FDEs) of the form Dηu(x) = f (x), where η is the fractional order of
the derivative, u(x) and f (x) are continuous functions, and Dη denotes the fractional derivative
operator. Many of these methods aim to find the most accurate approximation for the solution.
For instance, Jajarmi et al. [18] developed a new iterative method to solve a class of non-linear
fractional boundary value problems (BVPs), while Patnaik et al. [19] provided a fractional order
nonlocal continuum model of an Euler-Bernoulli beam along with its analytic form and finite
element solution. Isah et al. [20] suggested using a novel operational approach based on Genocchi
polynomials to numerically solve nonlinear FDEs, while El-Gamel et al. [21] solved the Bagley-
Torvik equation using Legendre basis functions. Abd-Elhameed et al. [23] created sixth-order
Chebyshev polynomials for numerically solving linear and nonlinear forms of fractional order
differential equations, and Zaky [24] created and examined a singularity-preserving spectral-
collocation approach for the numerical solution of nonlinear tempered fractional differential
equations. Chuanli Wang et al. [25] provided a Legendre spectral collocation method for Caputo
fractional boundary value problems, while Ismail et al. [26] proposed a numerical technique using
the Green function, which combines cosine and sine functions, to solve linear and nonlinear FDEs.
Akguel and Yalcin [27] solved problems involving fourth-order fractional boundary values using
the reproducing kernel Hilbert space approach, and Li et al. [28] provided a new reproducing
kernel collocation technique for solving nonlocal fractional boundary value problems with nons-
mooth solutions. Rehman et al. [29, 30] presented a numerical method based on the operational
matrices of integration of the Haar wavelet to solve linear two-point and multi-point boundary
value problems for FDEs, while Saeed et al. [31] used the Haar wavelet-quasilinearization ap-
proach to solve the nonlinear heat transfer equation. Pedas et al. [32, 33] presented spline and
piecewise polynomial collocation techniques for numerical solutions of a class of boundary value
problems for nonlinear Caputo fractional differential equations, respectively. Finally, Ur Rehman
et al. [34] solved FDEs using Legendre wavelets and developed an operational matrix of fractional
order integration to convert them into a system of algebraic equations. These methods contribute
to the development of effective and efficient techniques for solving FDEs, which have significant
applications in science and engineering.
The paper aims to investigate the solution of FDEs using the collocation technique accompanied
by Genocchi polynomials. This technique offers several advantages and disadvantages that need
to be considered when applying it. Firstly, one advantageous aspect of using the Genocchi collo-
cation method is its simplicity and ease of implementation in selecting collocation points within
the specified domain to approximate the solution of the model. Additionally, the flexibility of
the proposed method in handling different forms of boundary conditions makes it suitable for
simulating physical models with complex behavior. Furthermore, this method often leads to
sparse linear systems, which can be efficiently solved using numerical techniques, thus reducing
computational costs and improving efficiency. However, the choice of collocation points plays a
crucial role in obtaining accurate results. Moreover, the method may encounter difficulties when
dealing with problems involving irregular or complex geometries. To the best of the authors’
knowledge, this is the first time FDEs have been solved using the Genocchi collocation technique.
The novelty of the paper lies in the following points:
• A new design of a novel collocation approach based on Genocchi polynomials for simulating
the model.
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• The proposed algorithm is implemented to solve both linear and nonlinear fractional models of
different complexities.
• An error analysis for the proposed algorithm is conducted to determine the error bound and
estimate the residual error.
• The effectiveness of the method in solving these models suggests its potential application to
other similar models.
• The proposed results obtained from the Genocchi collocation scheme are compared for each
variant to verify the accuracy of the newly designed system.

The organization of the paper is as follows: In Section 2, some basic properties and definitions
of fractional calculus are illustrated. Section 3 provides the properties of Genocchi polynomials,
which are used in the subsequent sections to simulate the general model. Section 4 introduces
a new approach to illustrate the main steps for solving the main model. Section 5 is devoted
to investigating the error bound and residual error function of the proposed method through
theorems. In Section 6, multiple examples are simulated to demonstrate the efficiency of our
technique. The conclusion for the work is given in Section 7.

2 Basic definitions

In this section, we will introduce some important definitions using later in next sections for solving
fractional boundary value problems, starting by the following definitions.

Definition 1 [3] The Riemann-Liouville fractional integral of order η of f (t) is given by

Iη f (t) =
1

Γ(η)

∫ t

0
(t − τ)η−1 f (τ)dτ, t > 0, η ∈ R+, (3)

where Γ(η) is the well known gamma function.

Definition 2 [3] The Riemann Liouville fractional derivative of order η > 0 is defined by

Dη
t (t) =

(
d
dt

)m
Im−η f (t), (η > 0, m − 1 < η < m).

Some properties of Iη are as following:

Iη Iφ f (t) = Iη+φ f (t), η > 0, φ > 0, (4)

Iηtφ =
Γ(φ + 1)

Γ(η + φ + 1)
tφ+η . (5)

Definition 3 [3] The Caputo fractional derivative Dη of a function f (t) is defined as

Dη f (t) =
1

Γ(n − η)

∫ t

0

f (n)(τ)
(t − τ)η−n+1 dτ, n − 1 < η < n, n ∈ N. (6)



El-Gamel et al. | 355

Some properties of Caputo fractional derivatives are as follows:

Dηtφ =


0, φ ∈ N ∪ {0} and φ < ⌈η⌉

Γ(φ+1)
Γ(η+1−φ)

tφ−η , φ ∈ N ∪ {0} and φ ≥ ⌈η⌉
or φ /∈ N and φ > ⌊η⌋

, (7)

where, ⌊η⌋ denotes the largest integer less than or equal to η and ⌈η⌉ is the smallest integer greater
than or equal to η.

DηC = 0, C = constant. (8)

The operator Dη is a linear operator, since,

Dη (A f (t) + Bg(t)) = ADη f (t) + BDη g(t), (9)

where A and B are constants. The novelty of the paper lies in the fact that the use of the Genocchi
polynomials has many advantages over other similar polynomials. The Genocchi polynomials
have the advantage of providing accurate results with high accuracy of less basis. In addition, the
computational cost of finding an accurate solution is less than the other methods in the literature.

3 Fundamental relations

In this section, we will illustrate the basic concepts of Genocchi polynomials and Genocchi
operational matrix for integer and fractional derivatives that will be needed in later sections for
solving this type of equation.

Genocchi polynomials and their properties

In this subsection, we will illustrate the basic concepts of Genocchi polynomials. The generating
function of the Genocchi polynomials can take the following form [35–37]:

Q(x, t) =
2text

et + 1
=

∞∑
n=0

Gn(x)
tn

n!
, (|t| < π), (10)

where Gn(x) is the Genocchi polynomials of degree n and are defined on interval [0, 1] as

Gn(x) =
n∑

k=0

(
n
k

)
Gkxn−k, (11)

where Gk is the Genocchi numbers and are defined by the generating function

Q(t) =
2t

et + 1
=

∞∑
n=0

Gn
tn

n!
, (|t| < π). (12)

The first few Genocchi polynomials can be found in the form

G1(x) = 1,
G2(x) = 2x − 1,

G3(x) = 3x2 − 3x,
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G4(x) = 4x3 − 6x2 + 1,
G5(x) = 5x4 − 10x3 + 5x.

These polynomials have many interesting properties and one of these important properties is
the differential property. By differentiating both sides of Eq. (11) with respect to x, we get the
following:

dGn(x)
dx

= nGn−1(x), n ≥ 1. (13)

If we differentiate Eq. (11) k times, then we have

dkGn(x)
dxk =

{
0, n ≤ k

k!(n
k)Gn−k(x), n > k

k, n ∈ N ∪ {0}, (14)

Gn(1) + Gn(0) = 0, n > 1. (15)

In the next two subsections, we introduce the differentiation matrices for both integer and fractional
derivatives of boundary value problems.

Genocchi operational matrix of integer derivative

First, we express the approximate solution in Eq. (11) in the following form

uN(x) =
N∑

n=1

cnGn(x) = G(x)C, (16)

where C are the unknown Genocchi coefficients and G(x) are the Genocchi polynomials of the
first kind, then they are given by

Ct =
[
c1 c2 ... cN

]
, G(x) =

[
G1(x) G2(x) ... GN(x)

]
.

The kth derivative of uN(x) can be expressed by

u(k)
N (x) =

N∑
n=1

cnG(k)
n (x) = G(x)MkC, k = 1, 2, ... (17)

where M is N × N operational matrix of derivative, and is given by

M =


0 2 0 · · · 0
0 0 3 · · · 0
...

...
... · · · ...

0 0 0 · · · N
0 0 0 · · · 0

 .
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Genocchi operational matrix of fractional derivative

We can find the fractional derivative of Genocchi polynomials in Eq. (11) from the following
theorem.

Theorem 1 [20] Let G(x) =
[
G1(x) G2(x) ... GN(x)

]
is the Genocchi vector and η > 0. Then the

fractional derivative for any Genocchi polynomial can be found from

DηGi(x) =
i∑

k=1

i!Gi−k
(i − k)!k!

Dηxk =
i∑

k=⌈η⌉

i!Gi−k
(i − k)!Γ(k + 1 − η)

xk−η , (18)

where

DηGi(x) = 0, i ≤ ⌈η⌉,

and the matrix form of the fractional derivative will be in the form

H(x) =
[
0 0 ... H⌈η⌉+1(x) ... HN(x)

]
. (19)

4 Method of solution

In this section, we solve the fractional differential boundary value problems with linear and
nonlinear forms using Genocchi collocation method. First we approximate u(x) as following

uN(x) =
N∑

n=1

cnGn(x) = G(x)C, (20)

and approximate the fractional derivative from Eq. (20) as

u(η)
N (x) =

N∑
n=1

cnG(η)
n (x) = H(x)C. (21)

Linear case

First, let µ(x, u(x)) = f (x) in Eq. (1), then

u(η)(x) =
r∑

m=0

σmu(m)(x) + f (x), 0 < x < 1, r − 1 < η < r, (22)

after substituting equations (20), (21), and (17) in Eq. (22), we reach the following theorem.

Theorem 2 If the assumed approximate solution of the fractional problem (22), and (2) are (20), (17), and
(21), then the discrete Genocchi system for calculating the unknown coefficients is given by

N∑
n=1

cnHn(xi) =
r∑

m=0

N∑
n=1

σmcnG(m)
n (xi) + f (xi). (23)
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Proof By replacing each term in Eq. (22) with its approximation from equations (20), (17), and (21)
and substituting collocation points given by the following equation

xi =
i − 1
N − 1

, i = 1, 2, ..., N. (24)

■
The matrix form of system (23) can be written by

ΨC = F, (25)

where

Ψ = H−

( r∑
m=0

σmGMm

)
, (26)

and

σm =


σm 0 ... 0
0 σm ... 0
...

... . . . ...
0 0 ... σm

 , F =


f (x1)

f (x2)
...

f (xN)

 ,

H =


0 0 ... H⌈η⌉+1(x1) ... HN(x1)

0 0 ... H⌈η⌉+1(x2) ... HN(x2)
...

... ...
... ...

...
0 0 ... H⌈η⌉+1(xN) ... HN(xN)

 .

The matrix forms of boundary conditions are given by

G(0)MiC = [αi], G(1)MiC = [βi]. (27)

After replacing r rows of the augmented matrix with boundary conditions, then the new aug-
mented matrix takes the form

Ψ̄C = F̄. (28)

Finally, obtaining the unknown coefficients C by solving the resulting N × N system of linear
algebraic equations.
In the next subsection, we will treat with nonlinear case of fractional boundary value problem.

Nonlinear case

By replacing µ(x, u(x)) =
∑r

m=1 ζmum(x) + f (x), we reach the nonlinear form

u(η)(x) =
r∑

m=0

σmu(m)(x) +
r∑

m=1

ζmum(x) + f (x), 0 < x < 1, r − 1 < η < r, (29)
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the nonlinear terms in Eq. (29) can be approximated according to the following theorem:

Theorem 3 [38] The nonlinear term of the function uv(xi), i = 1, 2, ..., N can be expressed as in the
following matrix form


um(x1)

um(x2)
...

um(xN)

 =


u(x1) 0 ... 0

0 u(x2) ... 0
...

... . . . ...
0 0 ... u(xN)


m−1 

u(x1)

u(x2)
...

u(xN)


= (Ū)m−1

U

= (ḠC̄)m−1GC,

(30)

where

Ḡ =


G(x1) 0 ... 0

0 G(x2) ... 0
...

... . . . ...
0 0 ... G(xN)

 , C̄ =


C 0 ... 0
0 C ... 0
...

... . . . ...
0 0 ... C

 .

After substituting equations (20), (21), and (17) in Eq. (29), we reach the following theorem:

Theorem 4 If the assumed approximate solution of the fractional problem (29), and (2) are (20), (17), and
(21), then the discrete Genocchi system for calculating the unknown coefficients is given by

N∑
n=1

cnHn(xi) =
r∑

m=0

N∑
n=1

σmcnG(m)
n (xi) +

r∑
m=1

N∑
n=1

ζmcnGm
n (xi) + f (xi). (31)

Proof We begin by replacing each term in Eq. (29) with its approximation from equations (20),
(17), and (21). Then, by substituting collocation points given by Eq. (24) into this system, we get
the following matrix form:

ΨC = F, (32)

where

Ψ = H −

( r∑
m=0

σmGMm −

r∑
m=1

ζm(ḠC̄)m−1G

)
, (33)

and

ζm =


ζm 0 ... 0
0 ζm ... 0
...

... . . . ...
0 0 ... ζm

 ,
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after replacing r rows of augmented matrix with boundary conditions matrices from Eq. (27), then
the new augmented matrix take the form

Ψ̄C = F̄. (34)

Finally, obtaining the unknown coefficients C by solving the resulting N × N system of nonlinear
algebraic equations by using the following algorithm:
Algorithm
• input (integer) N.
• input (double) tol.
• input (array) Cold = C0, (initial approximation, C0 with N dimension, can be chosen so that the
boundary conditions are satisfied.)
• Ψ̄(Cold).Cnew = F̄ is a linear algebraic equation system. This system is solved and Cnew is
found.
• If |Cold −Cnew| < tol then Cnew = C. break (the program is finished).
• Else then Cold ← Cnew.
• Go to the second stage. ■

5 Error bound

Error bound estimate

In this subsection, we will provide the error bound for the obtained solution of model 1. We
provide the error bound for a special case of the model where the value of µ(x, u(x)) = g(x).
Suppose that g(x) ∈ Cn+1[0, 1] and the space Ξ = Span{G1(x), G2(x), ..., GN(x)}. Next, if the best
approximation of g(x) can be in the form CTG(x), then we reach the following theorem:

Theorem 5 Suppose that g(x) ∈ Cn+1[0, 1] and define Ξ = Span{G1(x), G2(x), ..., GN(x)} where
CTG(x) is the best approximation of the function g(x) out of Ξ, then we have

∥g(x)− CTG(x)∥ ≤ ℑ
2m+3

2 ℜ

(m + 1)!
√

2m + 3
, x ∈ [xi, xi+1] ⊆ [0, 1],

where ℜ = max
x∈[xi,xi+1]

|g(m+1)(x)| and ℑ = xi+1 − xi.

Proof To prove this theorem. We first expand the function u(x) in the following Taylor expansion
form

u1(x) = g(xi) + g
′
(xi)(x − xi) + g

′′
(xi)

(x − xi)
2

2!
+ ... + g(n)(xi)

(x − xi)
n

n!
. (35)

Then, for the previous form of Taylor expansion, if we apply the modulus for both sides of Eq. (35),
we can deduce in the following compact form

|g(x)− u1(x)| ≤ |g(n+1)(ℵx)|
(x − xi)

n+1

(n + 1)!
,

where

ℵx ∈ [xi, xi+1].



El-Gamel et al. | 361

With the assumption that CTG(t) is the best approximation of the function g(x) out of the space Ξ
and that u1(t) ∈ Ξ, then we have

∥g(x)− CTG(x)∥2
2 ≤ ∥g(x)− u1(x)∥2

2 =

∫ xi+1

xi

|g(h)− u1(h)|2dh

≤
∫ xi+1

xi

∥g(x)(m+1)(ℵx)∥2 (h − xi)
m+1

(m + 1)!
dh ≤ ℑ2m+3ℜ2

((m + 1)!)2(2m + 3)
.

Then, finally taking the square root for both sides, we conclude that

∥g(x)− CTG(x)∥ ≤ ℑ
2m+3

2 ℜ

(m + 1)!
√

2m + 3
.

■
This theorem provides a local error bound for the proposed main equation of O(ℑ

2m+3
2 ).

Residual error function

In this subsection, We can easily check the accuracy of the suggested method in terms of the
residual error function. Since the truncated Genocchi series in Eq. (16) is considered as an
approximate solution of Eq. (1), then by substituting the approximate solution uN(x) and its
derivatives into Eq. (1), the resulting equation must be satisfied, and when substituting the
collocation points defined as

x = xi ∈ [0, 1], i = 1, 2, ..., N,

the residual error function for the approximate solution can be calculated in the form

| ℜN(xi) |=| u(η)(x)−
r∑

m=0

σmu(m)(x)− µ(x, u(x)) | ∼= 0, (36)

or

ℜN(xi) ≤ 10−τi,

where ℜN(xi) are the residual error function defined at the collocation points xi and τi is any
positive integer. If max 10τi = 10τ (τ is any positive integer) can be prescribed which can be
considered as the tolerance for the obtained error, then the value of the number of iterations N is
increased until the residual error ℜN(xi) at each of the points become smaller than the prescribed
tolerance 10τ which shall prove that the method converge to the desired solution as the residual
error approaches zero. Also, we can calculate the error function at each of the collocation points to
prove the efficiency of the proposed technique which can be described as

ℜN(xi) = u(η)(x)−
r∑

m=0

σmu(m)(x)− µ(x, u(x)).

Then, if uN(x)→ 0, as N has sufficiently enough value, then the residual error decreases and this
proves that the proposed method converges correctly.
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6 Numerical simulation

In this section, we present 7 examples [20, 21, 25, 33, 34, 39, 40] for linear and nonlinear forms of
fractional problems using Genocchi collocation method. The error measurements for verifying the
results in the later examples can be used in the following form

eN(x) = |(u(x)− uN(x))|,

and the maximum absolute error is given by

∥eN(x)∥∞ = max∥u(x)− uN(x)∥.

In addition, the L2 norm can be defined in the following form:

∥eN(x)∥2 =

√√√√ 1
N

N∑
i=1

(eN(x))2.

Example 1 [21] Consider the following linear fractional BVP

u ′′ + u(3/2) + u = x + 1, 0 < x < 1,

with boundary conditions

u(0) = 1, u(1) = 2,

and exact solution u = x + 1. We provide the details for obtaining the approximate solution for N = 6 as
follows, let the approximate solution in the form

u(x) = c1G1(x) + c2G2(x) + · · ·+ c6G6(x),

then

M2 =



0 0 6 0 0 0
0 0 0 12 0 0
0 0 0 0 20 0
0 0 0 0 0 30
0 0 0 0 0 0
0 0 0 0 0 0


.

Using collocation points xi =
i−1

5 , i = 1, 2, · · · , 6, then we have

G =



1 −1 0 1 0 −3
1 −0.6 −0.48 0.792 0.928 −2.42208
1 −0.2 −0.72 0.296 1.488 −0.92256
1 0.2 −0.72 −0.296 1.488 0.92256
1 0.6 −0.48 −0.792 0.928 2.42208
1 1 0 −1 0 3


(6×6)

,
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H =



0 0 0 0 0 0
0 0 3.02776 −4.44071 −3.39109 13.42249
0 0 4.28190 −3.99644 −7.76451 12.95335
0 0 5.24423 −2.09770 −10.90800 6.37099
0 0 6.05552 0.80740 −11.62659 −3.38417
0 0 6.77027 4.51352 −9.02703 −12.57337


(6×6)

,

and the augmented matrix becomes as

[Ψ, F] =



1 −1 6 −11 0 27 , 1
1 −0.6 8.54776 −10.84871 −12.06309 34.76041 , 1.2
1 −0.2 9.56190 −6.10044 −20.67651 20.91079 , 1.4
1 0.2 10.52423 0.00631 −23.82000 −1.58645 , 1.6
1 0.6 11.57552 7.21540 −20.29860 −24.72209 , 1.8
1 1 12.77028 15.51352 −9.02703 −39.573377 , 2


.

Next, the augmented matrix for the boundary conditions according to Eq. (27) can take the forms

[ψ1, α0] =
[
1 −1 0 1 0 −3 , 1

]
,

[ψ2, β0] =
[
1 1 0 −1 0 3 , 2

]
.

Replacing the first and last rows with the previous representation of the boundary conditions, the new
augmented matrix takes the form

[Ψ̄, F̄] =



1 −1 0 1 0 −3 , 1
1 −0.6 8.54776 −10.84871 −12.06309 34.76041 , 1.2
1 −0.2 9.56190 −6.10044 −20.67651 20.91079 , 1.4
1 0.2 10.52423 0.00631 −23.82000 −1.58645 , 1.6
1 0.6 11.57552 7.21540 −20.29860 −24.72209 , 1.8
1 1 0 −1 0 3 , 2


.

Then, by solving the above linear system the Genocchi coefficients can be found as

C =



1.5000
0.5000

−3.1258E − 17
−2.6724E − 16
−1.3235E − 17
−8.2262E − 17


,

and the approximate solution is

u6(x) = 1 + x + 0.2757E − 15x2 − 0.9366E − 15x3 + 0.1168E − 14x4 − 0.4936E − 15x5.

By using Genocchi collocation method for solving this form of fractional boundary value problem at N = 6
having the exact solution u = x + 1, we reach that the approximate solution is equal to the exact solution
with running time 5.079 seconds. For N = 14 the absolute error and the residual error are represented in



364 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 4, 351–375

Table 1. From this table, it can be noted that the method provides accurate results using a few numbers of
Genocchi bases. In addition, a comparison between exact and approximate solutions is presented in Figure 1.

Table 1. Absolute and residual error for Example 1 at N = 14.

x |eN(x)| |ℜN |

0.0 1.5543E-15 9.1807E-15
0.1 1.3323E-15 9.6109E-16
0.2 8.8818E-16 5.0143E-16
0.3 4.4409E-16 3.0309E-16
0.4 0.0000 3.1559E-16
0.5 2.2204E-16 1.4750E-16
0.6 4.4409E-16 1.2567E-16
0.7 8.8818E-16 1.1833E-16
0.8 1.1102E-15 6.3519E-17
0.9 1.5543E-15 1.3599E-16
1.0 1.7764E-15 1.6221E-15

0.0 0.2 0.4 0.6 0.8 1.0
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

u(
x)

x

 Exact
 Approximate

Figure 1. Comparison between exact and Genocchi solution for Example 1.

Example 2 [21, 22] Consider the linear fractional IVP taken the form

u ′′ + u(3/2) + u = 7x +
8√
π

x3/2 + x3 + 1, 0 < x < 1,

with initial conditions

u(0) = 1, u ′(0) = 1,
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and exact solution

u = x3 + x + 1.

Comparing the approximate solution obtained by Genocchi collocation method and shifted Legendre col-
location method [21] at N = 15 with the exact solution in Table 2 and the Genocchi solution and shifted
Legendre solution are represented in Figure 3. The absolute error for Genocchi solution when N = 15 is
appearing in Table 3 and compared to the results reported by using the Lucas Wavelet Scheme in [22]. Based
on these results, it can be seen that the proposed method provides better accuracy. In addition, it can be
noticed from Figure 2, which appears the exact and Genocchi approximate solution that our method is very
accurate.

Table 2. Exact and approximate solution for Example 2.

x Exact Approximate Shifted Legendre [21]
0.10 1.101000 1.101000 1.101000
0.25 1.265625 1.265625 1.265625
0.50 1.625000 1.625000 1.625000
0.75 2.171875 2.171875 2.171875
1.0 3.000000 3.000000 3.000002

Table 3. Absolute error for Example 2.

x |eN(x)| Lucas Wavelet [22]
0.0 2.2204E-16 ×
0.1 4.4409E-16 1.99E-15
0.2 4.4409E-16 ×
0.3 6.6613E-16 ×
0.4 6.6613E-16 ×
0.5 6.6613E-16 4.90E-14
0.6 6.6613E-16 ×
0.7 4.4409E-16 ×
0.8 0.0000 ×
0.9 0.0000 ×
1.0 4.4409E-16 1.96E-13

Example 3 [39] Consider another form of linear fractional IVP

u(η) + u = (x2 + 2x2−η/Γ(3 − η)) + (x3 + 6x3−η/Γ(4 − η)), 0 < x < 1,

with initial condition

u(0) = 0,

the exact solution

u = x3 + x2.



366 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 4, 351–375

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

u(
x)

x

 Exact
 Approximate

Figure 2. Comparison between exact and Genocchi solution for Example 2.
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Figure 3. Comparison between Genocchi solution and Shifted Legendre for Example 2.

Taking the value of η = 1/2, we reach the absolute error for N = 6 using Genocchi collocation method
tabulated in Table 4. In addition, the running time for simulating the results is found to be 5.651 seconds
with an error norm of ∥e6(x)∥2 = 3.0978E − 15. The value of the acquired norm reveals the ability of the
method to provide accurate solutions. In addition, the behavior of exact and approximate Genocchi solution
is in Figure 4.
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Table 4. Absolute error for Example 3.

x |eN(x)|
0.0 1.8111E-15
0.1 1.9082E-16
0.2 1.5127E-15
0.3 2.9143E-15
0.4 3.8580E-15
0.5 4.3299E-15
0.6 4.4409E-15
0.7 4.2188E-15
0.8 3.7748E-15
0.9 2.8866E-15
1.0 1.7764E-15
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Figure 4. Comparison between exact and Genocchi solution for Example 3.

Example 4 [20] Consider the following nonlinear fractional BVP

u ′′ + Γ(
4
5
)x

6
5 u( 6

5 ) +
11
9

Γ(
5
6
)x

1
6 u( 1

6 ) − (u ′)2 = 2 +
1

10
x2, 0 < x < 1,

with boundary conditions

u(0) = 1, u(1) = 2,

and exact solution

u = x2 + 1.

Seeing from Table 5 which represents the absolute error obtained by Genocchi collocation method for N = 6
with a running time 10.912 seconds, our method is very accurate for solving this type of fractional BVPs.
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Besides that comparison between exact and approximate Genocchi solution is shown in Figure 5.

Table 5. Absolute error for Example 4.

x |eN(x)|
0.0 0.0000
0.1 3.1752E-14
0.2 5.6177E-14
0.3 6.6391E-14
0.4 4.5519E-14
0.5 1.9762E-14
0.6 1.3101E-13
0.7 2.6557E-13
0.8 3.6660E-13
0.9 3.3085E-13
1.0 0.0000

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

u(
x)

x

 Exact
 Approximate

Figure 5. Comparison between exact and Genocchi solution for Example 4.

Example 5 [33] Consider the following nonlinear fractional BVP

u( 3
2 ) − u3 =

Γ(2.9)
Γ(1.4)

x0.4 − (x1.9 − 1)3,

with boundary conditions

u(0) = −1, u(1) = 0,
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the exact solution is

u = x1.9 − 1.

Representing the absolute error obtained by Genocchi collocation method with N = 10 in Table 6 and
the comparison between maximum absolute error obtained by Genocchi collocation method and spline
collocation method [33] for different values of N in Table 7. In addition, the exact and approximate Genocchi
solutions are shown in Figure 6.

Table 6. Absolute error for Example 5.

x |eN(x)|
0.0 6.6613E-16
0.1 2.3761E-4
0.2 2.9613E-4
0.3 3.0385E-4
0.4 2.9104E-4
0.5 2.6203E-4
0.6 2.1928E-4
0.7 1.6267E-4
0.8 9.4943E-5
0.9 1.2709E-5
1.0 6.3838E-16

Table 7. Comparison between maximum absolute error for Example 5.

N ∥eN(x)∥ Spline collocation [33]
4 1.8688E-03 1.24E-3
8 4.6148E-04 3.57E-4
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x
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 Approximate

Figure 6. Comparison of exact and Genocchi solutions at η = 3/2 for Example 5.
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Example 6 [40] Consider the following nonlinear fractional BVP

u( 3
2 ) + e−2πu2 =

105
√

π

32
x2 + e−2πx7, 0 < x < 1,

with boundary conditions

u(0) = 0, u(1) = 1,

the exact solution

u = x7/2.

Table 8 represents the comparison between the absolute error obtained by Genocchi collocation method
N = 10, and Legendre wavelet method [34]. In addition, it is found that the error measure of the
∥e6(x)∥2 = 8.0268E − 06 and the behavior of exact and approximate solutions is graphed in Figure 7.

Table 8. Comparison of absolute error for Example 6.

x |eN(x)| Legendre wavelet [34]
0.0 5.7246E-17 x
0.1 1.0507E-5 9.6996E-5
0.2 1.3141E-5 9.3927E-4
0.3 1.2742E-5 1.5087E-3
0.4 1.1182E-5 3.3989E-4
0.5 8.7996E-6 2.4163E-3
0.6 5.9264E-6 3.1023E-4
0.7 2.5945E-6 1.4799E-3
0.8 9.2167E-7 6.3407E-4
0.9 5.2079E-6 4.6701E-3
1.0 1.1102E-16 x
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Figure 7. Comparison between exact and Genocchi solution at η = 3/2 for Example 6.
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Example 7 [25] Consider the following nonlinear fractional BVP

u(5/4) − u2 = −
Γ(128/17)

Γ(128/17 − η)
x111/17−η − (x − x111/17)2, 0 < x < 1,

with boundary condition

u(0) = 0, u(1) = 0,

the exact solution

u = x − x111/17.

A comparison between exact and approximate Genocchi solution is represented in Figure 8, and the absolute
error for N = 10 obtained by Genocchi collocation method is represented in Table 9.

Table 9. Absolute error for Example 7.

x |eN(x)|
0.0 1.9559E-16
0.1 1.4825E-07
0.2 3.2983E-08
0.3 1.0581E-07
0.4 2.6299E-07
0.5 4.4011E-07
0.6 6.3645E-07
0.7 8.6430E-07
0.8 1.1047E-06
0.9 1.4344E-06
1.0 1.9559E-16
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Figure 8. Comparison between exact and Genocchi solution at η = 5/4 for Example 7.
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7 Conclusion

In this paper, we have examined the application of the Genocchi collocation technique for solving
a general form of linear and nonlinear fractional models. The models of fractional order have great
applications in science and engineering. Some basic definitions for the fractional order derivative
are introduced and utilized for treating the fractional term in the main model. Then, the collocation
technique is adapted for converting the model into a system of nonlinear algebraic equations
which is then solved using a novel technique to find the values of the unknown coefficients, and
hence, the solution is found. The error bound for the proposed technique is provided ensuring that
the proposed technique has a local bound of O(ℑ

2m+3
2 ). The accuracy of the proposed technique

is tested for several examples of different forms and the results are compared to other forms the
literature provides the effectiveness of the technique in providing more accurate results with less
computational cost. Thus, the method proved to be an effective technique for simulating similar
models and has other important applications.
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