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Abstract: In this study, a PI-PD controller was designed via weighted geometric center method (WGC) for a quarter vehicle model to 

suppress the vertical vibrations. The proposed design is based on finding the weighted geometric center of the area formed by the 

control parameters that make the system stable. The WGC method has two main stages. First, an area formed by the parameters of the 

PD controller (kf, kd) in the inner loop is obtained and the weighted geometric center of this area is calculated. Then, using these 

obtained parameters, the inner loop is reduced to a single block, and the parameters of the PI controller in the external loop (kp, ki) are 

calculated using the stability boundary curve as in the first step, and the weighted geometric center is calculated. The simulation 

results show that the PI-PD controller designed with the weighted geometric center method offers successful responses for the time 

delay quarter vehicle system. 
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1. Introduction 
The aim of the studies on suspension systems, which is 

one of the most important parts of vehicle dynamics, is to 

suppress the vibrations that occur in the vehicle due to 

road defect/roughness and to increase the vehicle's 

handling. To achieve this, basically three different control 

applications are used, namely active (Kararsiz et al., 

2021) semi-active (Paksoy and Metin, 2019), and passive 

(Paksoy and Metin, 2020). Although active control 

applications show high performance, they require high 

cost. Semi-active control applications have higher 

performance, and they require less cost compared to 

passive control applications. Passive control applications 

exhibit lower performance compared to the other two 

control applications, while also being more affordable. 

Adaptive, classical PID and robust control types, 

applications of quarter vehicle model on vibration 

control are available in the literature. Uncertainties in the 

system model, different operating conditions and high-

performance requirements require more efficient control 

systems such as adaptive ones. 

However, the intricate nature of adaptive control design 

poses challenges, rendering the process arduous. 

Therefore, researchers tend to use robust control 

methodologies to avoid poor performance output due to 

system and modeling uncertainties. 

Adaptive and robust controllers either require very 

complex control and/or adaptive architectures, or the 

desired performance is achieved with high-order 

controllers. 

In recent years, low-order PID controllers, which are 

simply used to control higher-order operations, are 

preferred. PID controller is widely used in industrial 

applications due to the simplicity of the control 

structures, easy to understand, easy to maintain and low 

cost (A Turan et al., 2019) . In addition, many methods 

such as Ziegler-Nichols step response, Ziegler-Nichols 

final cycle, Cohen-Coon internal model control, error-

integral criterion adjustment formulas, gain and phase 

margin are available in the literature to determine the 

optimum parameters (Åström et al., 1993; Åström and 

Hägglund, 1995; Ho et al., 1995; Ziegler and Nichols, 

1942). However, in some cases, the closed-loop 

responses of the mentioned controllers may not be at the 

desired level (Åström et al., 1993). In the studies on the 

development of these methods, the desired answers are 

not always obtained (Zhuang and Atherton, 1993). 

Therefore, the studies carried out to determine the 

optimum controller parameters are still up to date. 

The design studies for tuning the PID control parameters 

can be classified into three categories as optimization 

(Ho et al., 1998; Pai et al., 2010; A Turan and Aggumus, 
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2021; Turan, 2021; Yeroglu et al., 2009), tuning formulas 

for a particular class (Chidambaram and Sree, 2003; 

Luyben, 2003), and studies for determining the 

controller parameters region (Atic et al., 2018; Onat, 

2013; Ozyetkin et al., 2018). In the literature, stability 

boundary location method in the calculation of PID 

parameters seems to have attracted more attention of 

researchers recently. PID controllers tuned with the 

proposed methods have performed successfully for 

certain classes of systems. However, PID controllers have 

inherent limitations in controlling time-delayed unstable 

processes (Kaya, 2003; Kaya, 2016). 

Compared to traditional PID controllers, PI-PD controller 

structure has advantages. While PID controllers may not 

always show the desired performance in the control of 

unstable and resonant systems, PI-PD controllers show 

effective performance for the aforementioned systems 

(Kaya, 2016; Park et al., 1998; Tan, 2009). In addition, the 

number of PI-PD control parameters is one more than the 

number of PID control parameters. 

Some of the important studies presented in the literature 

on PI-PD controller design can be found in (Nema and 

Padhy, 2015; Özbek and Eker, 2016; Ozyetkin et al., 2020; 

Padhy and Majhi, 2006). However, studies on PI-PD are 

not sufficient and the parameters of the controllers are 

adjusted after complex processes. 

The proposed method in this study is based on drawing 

the stability boundary location, which is dependent on 

the controller and frequency parameters, in the 

parameter plane. The weighted geometric center method, 

which was first proposed for the PI control of time-

delayed systems, is based on the stable area calculation 

timeline of the mentioned control parameters (Onat, 

2013) .The mentioned WGC method has been used in 

successful applications in PI/PI-PD/PID design so far 

(Oant et al., 2021; Onat, 2018; Onat et al., 2017; Onat et 

al., 2012; Ozyetkin et al., 2018; Ozyetkin et al., 2019; 

Ozyetkin et al., 2020; Turan et al., 2019). The advantage 

of the WGC method over other methods (genetic 

algorithm (Ahmad et al., 2014), LQR (Kumar and Jerome, 

2013), Jaya algorithm (Sain et al., 2018), Ziegler-Nichols 

tuning (Ho et al., 1996), Astrom-Hagglund autotune (Ho 

et al., 1997)) is that the control parameters are calculated 

numerically without any optimization process. 

This study consists of five sections. In Section 2, the 

quarter vehicle model is presented. The design 

procedure of the PI-PD controller is then given in Section 

3. The simulation results are presented in Sections 4. The 

conclusions are drawn in Section 5. 

 

2. Materials and Methods 
2.1. Quarter Vehicle Model 

The quarter vehicle model, which is widely preferred in 

studies due to its simple structure, is defined with two 

degrees of freedom, z1 and z2, as seen in Figure 1. In the 

model, there are two masses named m1 and m2, one 

suspended and the other one unsuspended, respectively 

(Paksoy and Metin, 2020). The connection between these 

masses is the suspension system. Suspension spring 

coefficient is k1 and suspension damping coefficient is c1. 

The spring coefficient of the wheel is k2 and since the 

damping value is very small, it has been neglected. h is 

the path input applied to the model. The equations of 

motion of the quarter vehicle model seen in Figure 1 are 

given in equation 1 and 2. 
 

m1z̈1 +  c1(ż1 − ż2) + k1(z1 − z2) + fu = 0                       (1) 
 

m2z̈2 − k1(z1 − z2) + k2(z2 − h) − fu = 0                        (2) 
 

The fu expressed in the equations represents the force 

produced by the controller. Mass values for vehicle 

parameters are m1=338.8 kg, m2=59 kg. Spring 

coefficients are k1=15000 N/m, k2=15000 N/m. The 

damping value of the suspension is c1=600 N.s/m 

(Paksoy and Metin, 2020) . Gp(s) is the transfer function 

of the system and it is given in equation 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Quarter vehicle model. 

 

𝐺𝑃(𝑠) =
−0.019908𝑠2+1.7927∗10−8𝑠−9.5276

𝑠4+11.9446𝑠3+3518.955𝑠2+5716.5781𝑠+142914.4519
      (3) 

 

PI-PD Controller Design Procedure 

The diagram of the PI-PD control system is shown in 

Figure 2. Through the inner loop with the PD controller 

shown in the figure, the transfer function of the system is 

reduced and its response is improved. In other words, it 

can transform the unstable process in the open loop into 

the stable process in the open loop. Thus, the poles of the 

obtained system are better positioned. Then, the 

performance of the system is tried to be increased with 

the PI controller in the second loop. 

 

 

 

 

 

 

 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Abdullah TURAN et al.                                                                91 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. PI-PD Control System with time delay. 

 

The transfer function of the system can be described as in 

equation 4. 
 

𝐺𝑃(𝑠) =
𝑁𝑃(𝑠)

𝐷𝑃(𝑠)
                                                                               (4) 

 

Here, τ represents delay time of the system. CPD and CPI 

are models of PD and PI controller, respectively 

(equations 5 and 6). 
 

𝐶𝑃𝐷(𝑠) =
𝑁𝑃𝐷

𝐷𝑃𝐷
=

(𝑘𝑓+100𝑘𝑑)𝑠+100𝑘𝑓

𝑠+100
                                          (5) 

 

𝐶𝑃𝐼(𝑠) =
𝑁𝑃𝐼

𝐷𝑃𝐼
=

𝑘𝑝𝑠+𝑘𝑖

𝑠
                                                                 (6) 

 

Here, kd and kf are the derivative and proportional gains 

of the PD controller. kp and ki symbolize the proportional 

and integral gains of the PI controller, respectively. The 

closed loop characteristic equation with PD controller is 

given in equation 7. 
 

∆𝑃𝐷(𝑠) = 𝐷𝑃(𝑠)𝐷𝑃𝐷(𝑠) + 𝑁𝑃(𝑠)𝑁𝑃𝐷(𝑠)𝑒−𝜏𝑠 = 0              (7) 
 

The proposed design procedure consists of three steps; 

Step1. By calculating the stable area parameters of the 

CPD, the stability region in the kd-kf plane is obtained. For 

this, if 𝑠 = 𝑗𝜔 and 𝑒−𝜏𝑗𝜔 = cos(𝜏𝜔) − 𝑗𝑠𝑖𝑛(𝜏𝜔) changes 

are applied in equation 8. 
 

∆𝑃𝐷(𝜏𝜔) = 𝐷𝑃(𝜏𝜔)𝐷𝑃𝐷(𝜏𝜔) + 𝑁𝑃(𝜏𝜔)𝑁𝑃𝐷(𝜏𝜔) (cos(𝜏𝜔) −

𝑗𝑠𝑖𝑛(𝜏𝜔))  = 0                                                                                (8) 
 

Here, if ∆𝑃𝐷 is separated to its real and imaginary part 

equation 9 is obtained. 
 

∆𝑃𝐷= 𝑅∆,𝑃𝐷 + 𝑗𝐼𝑃𝐷 = 0                                                             (9) 
 

Here RΔ,PD and JIΔ,PD are functions of kd, kf and ω. By 

equating the real and imaginary parts of ΔPD to zero, two 

equations with two unknowns with parameters (kd, kf) 

are obtained. The system of equality is given in equation 

10. 
 

R∆,PD(kf, kd, ω) = 0 , I∆,PD(kf, kd, ω) = 0                         (10) 
 

The equation (linear) system based on frequency (ω) is 

solved and then a curve is drawn with the kd-kf 

parameters obtained in the kd-kf plane. Finally, the stable 

region of this area and the WGC is determined. 

2.2. Calculation of WGC Point 

The WGC method is based on two principles. First, it is 

the computation of the region of stabilizing controller 

parameters. For this, the stability boundary curve 

method is used. The second basis of the method is to 

determine the WGC point of the stability area by means 

of the parameters forming the boundary curve of the 

stability region. To understand the WGC method better, 

the design of the PD controller in the inner loop is 

detailed. In this context, if two equations with two 

unknowns (kd, kf) in Eq. (7) are solved depending on the 

frequency (ω) (rad/s), the stability boundary locus and 

stability region of the PD controller is obtained as in 

Figure 3. Time delay of the system is considered as 0.1 s. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. The stability boundary curve and stability 

region of PD controller. 

 

The real root boundary line, which is formed by the 

change of system parameters, is the line shows the 

location of the closed-loop roots in the s-plane. In Figure 

3, The stability region is obtained by choosing random 

points from different areas seen in the graph and using 

the Hurwitz stability test method.  

In the figure, the stability boundary curve is obtained 

with ω ∈ [0, 15.8]. The stability boundary curve is 

represented as pairs (kf, kd) corresponding to each value 

of ω. As can be seen in Figure 2, the points are located at 

different intervals for each ω value. The line kf = 15000 

indicates the boundary of the stability boundary curve. 

Closed stability region consists of m boundary position 
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points expressed as (kf1, kd1), (kf2, kd2)…, (kfm, kdm) 

coordinates and their reflections on the true root line. m 

reflection points can be expressed as (15000, kd1), 

(15000, kd2)…, (15000, kdm) coordinates. In other words, 

the stability region is surrounded by 2*m points. 

kf=15000 can be considered independent of ω because 

the stability boundary curve is limited to the true root 

line kf=15000 (Cem Onat, 2013). As a result, using the 

coordinate values of the stability boundary curve points 

and their reflection points, the WGC points of the stability 

region can be obtained by equations 11 and 12, in Figure 

4. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. (kf, kd) pairs corresponding to each value of ω 

for stability boundary locus and the weighted 

geometrical center point. 
 

𝑘𝑑𝑤𝑔𝑐 =
1

𝑚
∑ 𝑘𝑑𝑗

𝑚
𝑖=1                                                                  (11) 

 

𝑘𝑓𝑤𝑔𝑐 =
1

2𝑚
[∑ 𝑘𝑓𝑗 + (15000. 𝑚)𝑚

𝑖=1 ]                                  (12) 
 

It is a fact that choosing ω with a smaller step size (e.g., 

0.05 also results in larger m values) will allow us to get 

more accurate results than with a larger step size. Results 

may be affected by step size changes but have no 

significant effect on stability (Munevver Mine Ozyetkin et 

al., 2020). Thus, the WGC point of the PD controller is 

obtained as (kf, kd) = (-1703, -1421). 

Step 2. The inner loop is reduced using the selected PD 

control parameters (kf = -1703, kd = -1421). Reduced 

inner loop transfer function is given in equation 13. 
 

𝐺(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
=

𝐺𝑃(𝑠)

1+𝐺𝑃𝐷(𝑠)𝐺𝑃(𝑠)
=

𝑁𝑃(𝑠)𝐷𝑃𝐷(𝑠)𝑒−𝜏𝑠

𝐷𝑃(𝑠)𝐷𝑃𝐷(𝑠)+𝑁𝑃𝐷(𝑠)𝑁𝑃(𝑠)𝑒−𝜏𝑠
           (13) 

 

Step 3. The purpose of the inner loop PD controller is 

only to achieve stability, but the purpose of the outer 

loop controller is to both ensure stability and meet the 

performance requirements of the closed loop system. 

Accordingly, at this stage of the controller design, the 

control block diagram is as shown in Figure 5. 

 

 

 

 

 

 

 

Figure 5. Reduced block diagram. 

 

The stability region is obtained for the PI controller by 

means of the reduced transfer function in the kp–ki plane. 

PI controller parameters can also be calculated using the 

given procedure for calculating the CPD parameters. The 

application of 𝑠 = 𝑗𝜔 change to the characteristic 

equation of the outer loop is given in equation 14 

(Maslen and Schweitzer, 2009). 
 

∆𝑃𝐼(𝑗𝜔) = 𝐷(𝑗𝜔)𝐷𝑃𝐼(𝑗𝜔) + 𝑁(𝑗𝜔)𝑁𝑃𝐼(𝑗𝜔)𝑒−𝑗𝜏𝜔 = 0              (14) 
 

If ΔPI is decomposed into its virtual and real parts 

(equation 15); 
 

∆𝑃𝐼= 𝑅∆,𝑃𝐼 + 𝐼∆,𝑃𝐼 = 0                                                            (15) 
 

If the procedure described above to obtain the PD 

controller parameters is also used to obtain the PI 

parameters, the following equations are obtained. By 

solving the set of (linear) equations depending on the 

frequency (ω), the stability region as in Figure 6 and 

WGC are determined by plotting the obtained kp and ki 

parameters in the kp – ki plane in Figure 7. It is a fact that 

choosing ω with a smaller step size (eg 0.01 also results 

in larger m values) will allow us to get more accurate 

results than with a larger step size. Thus, the WGC point 

of the PI controller is obtained as (kp, ki) = (-5185, -

20870). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The stability boundary curve and stability 

region of PD controller 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. (kp, ki) pairs corresponding to each value of ω 

for stability boundary locus and the weighted 

geometrical center point. 

 

3. Results and Discussion 
Simulations were performed with MATLAB-Simulink 

software to examine the effectiveness of the proposed 

control method on the system. In the quarter vehicle 
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model, the displacement and acceleration responses of 

the vehicle body were evaluated. In addition, the PSD 

(Power Spectral Density) response of the system was 

examined for performance analysis in the frequency 

domain. ISO 8606 Norm is used for road surface profile 

classification (Agostinacchio et al., 2014). This standard, 

in which road pression is classified according to different 

categories, is often preferred to test control 

performances in vehicle vibrations (Paksoy & Metin, 

2020). An ISO 8608 standard C class road entrance seen 

in Figure 8 has been applied to the system. Vehicle speed 

is accepted as 30 m/s. 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. ISO C class road entrance. 

 

In the simulations, the passive situation where there is 

no control application in the system and the situation 

with the PI-PD controller designed with the WGC method 

are compared. The most important data in terms of 

comfort in vehicles are acceleration responses. Another 

important data is the displacement responses. 

Displacement responses are given in Figure 9 and 

simulation results of acceleration responses are given in 

Figure 10. It is clearly seen that the controlled state is 

more effective than the passive state in suppressing both 

displacement and acceleration responses. 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Suspension displacement 

 

 

 

 

 

 

 

 

 

 

Figure 10. The acceleration of the vehicle body. 

In order to analyze the system responses in the 

frequency domain, the PSD values of the system were 

examined. Figure 11 shows the acceleration PSD values 

of the vehicle body. It has been observed that the state in 

which the controller acts suppress the resonance peaks 

more effectively than the passive state. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. PSD response of vehicle body acceleration. 

 

In order to see the results more clearly, RMS (Root Mean 

Square) values are given in Table 1 for the numerical 

evaluation of the system responses. The amount of 

improvement in displacement RMS value of the body is 

16.6%, and in acceleration values it is 21%. 

 

Table 1. RMS values 

Control cases 𝑧1 �̈�1 

Passive 0.0141 0.4767 

PI − PDWGC 0.0117 0.3765 

 

While evaluating control performance, suspension 

displacement (z1-z2), whose limits are set according to 

the passive control situation, also needs to be considered. 

In Figure 12, PI − PD𝑊𝐺𝐶 control condition also reduced 

suspension displacements. 

 

4. Conclusion 
In this study, PI-PD was designed with the WGC method, 

which is an effective and simple tuning method for a 

time-delayed quarter vehicle model. The method is based 

on calculating stabilizing PD and PI controller parameter 

regions plotted using the stability boundary locus in the 

(kf, kd)‐plane and the (kp, ki)‐plane and computing the 

weighted geometrical centres of these regions. The 

proposed method does not use any circular optimization 

algorithm. The fact that the method allows to calculate 

the controller parameters numerically on the model 

offers a good numerical solution to control engineers, 

especially for practical applications. The simulation 

results clearly show that the PI PD controller designed 

with the proposed method for the quarter-car model 

with the targeted delay time is successful in suppressing 

the system responses. 

Designed using the WGC method, the PI-PD controller 

can be easily applied to any system class to improve the 
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performance of processes. In future studies, controller 

parameters can be optimized with meta-heuristic 

algorithms using artificial intelligence techniques. 
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