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Abstract. In the first countable spaces many topological concepts such as

open and closed subsets; and continuous functions are defined for convergent
sequences. The concept of limit defines a function from the set of all conver-

gence sequences in X to X itself if X is a Hausdorff space. This is extended

not only to topological spaces but also to sets. More specifically a G-method
is defined to be a function defined on a subset of all sequences We say that a

sequence x = (xn) G-convergences to a if G(x) = a. Then many topological
objects such as open and closed subsets and many others including these sets

have been extended in terms of G-convergence. G-continuity, G-compactness

and G-connectedness have been studied by several authors ([1], [2], [3], [4]).
On the other hand we know that in a topological space X, a sequence (xn)

converges to a point a ∈ X if any open neighbourhood of a includes all terms

except finite number. Similarly we define a sequence (xn) to be G-sequentially
converging to a if any G-open neighbourhood of a includes almost all terms.

In this work provided some examples we indicate that G-convergence and

G-sequentially convergence are different. We will prove that G-closed and
G-sequentially closed subsets and therefore many others are different.ed.

1. Introduction

Useful tools for defining topological concepts in sequential terms are the conver-
gences of the sequences.

Some authors explored A-continuity for methods of almost convergence and for
related approaches, including Savaş and Das [5], Borsik and Salat [6].

The effects of substituting G-methods defined on a subspace of the real sequences
for sequential convergence were examined by Connor and Grosse-Erdmann [7]. In
order to apply this idea to topological groups, Çakallı extending this concept to
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topological groups, defined G- continuity in [1] (see also [8] for various additional
forms of continuities). In [9] Mucuk and Şahan introduced the concepts of G-open
sets and G-neighbourhoods in topological groups and looked into additional G-
continuity features. Recently, Lin and Liu in [10] proposed the ideas of G-methods,
G-submethods and G-topologies for arbitrary sets as well as topological spaces, and
they also looked into the operations involving G-hulls, G-closures, G-kernels and
G-interiors.

Yongxing and Fucai [11] expanded on several findings and discussed some G-
connectedness, G-hull, and G-kernel properties. In [12] Brown and Mucuk studied
the covering of disconnected topological groups. In their article [13] L. Liu and Z.
Ping proposed the idea of the product G-method on sets, which results in a G-
generalized topology. They also talked about the G-connectedness of the Cartesian
product. We studied G-connectedness and G-sequential methods for product spaces
in the works [14] and [15]. Authors explore the concepts of countably G- compact
and sequentially GO-compact spaces in article [16]. The first countable spaces are
sequential topological spaces and can be completely characterized by convergent
sequences. A subset A of sequential space X is said to be closed, whenever any
convergence sequence x = (xn) in A has sequential limit in the same subset A.
Open subsets in sequential spaces can be also defined in terms of sequences. Subset
A is open if and only if any sequence converging to a point a ∈ A is almost in A.

In [17] some counter examples of convergent G-methods are given; and G-open,
G-closed subsets for these G-convergent methods are characterised. The main ob-
ject of this paper is to define G-methods as G-sequential convergence and then to
characterize a variety of G-open, G-closed subsets associated with these G-methods.

2. G-sequential convergence

Throughout the text, the letterX designates a topological space unless otherwise
stated. The boldface letters x, y, z,... stand for the sequences of terms x = (xn),
y = (yn), z = (zn),, whereas s(X) and c(X) stand for the sequences of all terms
and the sequence of all convergent sequences of points in X, respectively. We define
a G-method of sequential convergence for X as a map defined on a subset cG(X)
of s(X) into X. When for x ∈ cG(X) and G(x) = ℓ, a sequence x = (xn) is said to
be G-convergent to ℓ. In particular, the G-method with G = lim is the lim function
defined on c(X). When a sequence x is G-convergent to ℓ, then any subsequence of
x is likewise G-convergent to the same point ℓ, is referred to as the preservation of
the G-convergence of subsequences. A sequence x is described as regular whenever
any convergent sequence x = (xn) is G-convergent with G(x) = limx. We remind
that in a topological space X, a sequence x = (xn) has limit a if and only if every
open neighbourhood of a includes almost all terms of x = (xn). Parallel to this, we
can define a variety of G-convergence as follows:

For a set X, we say that a sequence x = (xn) in X is G-sequentially convergent
to a point a ∈ X, if every G-open neighbourhood U of a includes almost all terms
of the sequence. Note that we here use additionally the word “sequentially” to
distinguish from G-convergence. The notion of G-sequentially convergence defined
in this manner enables us to obtain a variety of G-open, G-closed subsets and some
others. We keep to use the word “sequentially” additionally for these varieties of
the notions.
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G-hull and G-closed subsets : The point ℓ ∈ X is said to be in the G-hull of
A if the subset A has a sequence x = (xn) with G(x) = ℓ. A is said to be G-closed
if [A]G ⊆ A, which denotes the G-hull of A. A is G-closed if and only if [A]G = A
since for a regular method G, one has A ⊆ [A]G. Here it should be noted that ∅ is
G-closed since [∅]G = ∅ and X is G-closed since [X]G ⊆ X; and [X]G = X if G is
regular. As seen in Example 2.1, even for a regular G-method, G-closure [A]G is
not necessarily a G-closed subset. A subset A with [A]G = ∅ is G-closed. The union
of G-closed subsets of X is not always G-closed, but the intersection of G-closed
subsets is also G-closed. The G-closure of A is defined to be the intersection of all
G-closed subsets containing A, and denoted by A

G
which is a G-closed subset. By

the fact that [A]G ⊆ [K]G ⊆ K whenever A ⊆ K and K is a G-closed subset, we

can deduce that [A]G ⊆ A
G
.

A subset A ⊆ X is called G-open if X \A is G-closed.
X and ∅ are G-open since they are both G-closed. Eventually the union of G-

open subsets ofX isG-open and the intersection ofG-open subsets is not necessarily
G-open. A subset A ⊆ X is a G-neighborhood of a if there exists a G-open subset U
of X such that a ∈ U ⊆ A. The union of G-open subsets of A is called G-interior
of A and denoted by A0G which is the largest G-open subset of A [9]. A is G-open
if only if A = A0G.

G-sequentially hull and G-sequentially closed subsets : We say a point
l ∈ X is in the G-sequentially hull of a subset A if there exists a sequence x = (xn)
of the terms in A which G-sequentially converges to l and write [A]G for the set
of G-sequentially hull points of A. Since for a ∈ A, the constant sequence (xn) =
(a, a, . . . ) is G-sequentially convergent to a we conclude that A ⊆ [A]G. A is G-
sequentially closed if [A]G ⊆ A. Note that [X]G = X and [∅]G = ∅; and therefore ∅
and X are G-sequentially closed.

The G-sequentially closure of A, denoted by AG, is the intersection of all G-
sequentially closed subsets containing A, which is also a G-sequentially closed sub-
set. If A ⊆ K and K is a G-sequentially closed subset, then [A]G ⊆ [K]G ⊆ K and
therefore [A]G ⊆ AG.

We remark that a point a in a first countable space X is an interior point of
the subset A if any sequence x = (xn) converging to a is almost in A. Hence we
can extend this notion to a G-method as follows: A point a is said to be a G-
sequentially interior point of A and write a ∈ A0

G whenever any sequence x = (xn)
with G-sequentially convergence to a is almost in A or equivalently there is no any
sequence x = (xn) in X \A with G-sequentially convergence to a. By the fact that
the constant sequence (xn) = (a, a, . . . ) is G-sequentially convergent to a, one can
see that A0

G ⊆ A and therefore A is G-sequentially open when A ⊆ A0
G.

We can state following theorems to support the idea of G-sequential convergence.

Theorem 2.1. [3] Let X be a set with a G-method. A subset A is G-sequentially
open if and only if X \A is G-sequentially closed.

Equivalently we can state the following theorem.

Theorem 2.2. A is G-sequentially closed if and only if X \ A is G-sequentially
open.

In the following examples, we shall define two G-methods and the compare G-
convergence and G-sequential convergence together with associated features of G-
sequentially closed subsets.
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Example 2.1. Let G be a convergent method on R defined by G(x) = lim xn+xn+1

2
for some sequences x = (xn). We can check the following properties for G-
convergence.

(i) G-closed and G-open subsets. Since A is regular we have A ⊆ A
G
. Hence

a subset A is G-closed if and only if A = A
G
. For the subset A = {0, 1} one

has A
G
= {0, 1

2 , 1}. Here note that since the sequence (xn) = (0, 1, 0, 1....) is

G-converging to 1/2 one has 1/2 ∈ A
G
. Hence A is not G-closed.

If A = {x} and y ∈ A
G
, then there exists a sequence x = (xn) in A with

G(x) = y. But x = (xn) = (x, x, . . . ) and since G is regular G(x) = lim(x) =
x and therefore y = x. Hence A = {x} is G-closed and therefore G-open
subsets are the complements R \ {x} for x ∈ R.

(ii) G-convergence and G-sequential convergence This method is G converg-
ing for some sequences but it is not G-sequentially converging to any point. In
below we give different types of examples for the G-sequentially convergence
of sequences.

(a) For example the sequence x = (xn) = (1, 3, 1, 3, . . . ) is G-convergent
to 2 but not G-sequentially converging to any point, because for any point
x ∈ R, we can choose a G-open neighbourhood R \ {a} of x, which does not
include almost all terms of x = (xn).

(b) For a constant a ∈ X consider the sequence x = (xn) defined by

xn =

{
n, if n is odd
a, if n is even

Then x = (xn) is not G-convergent to any point but G-sequentially conver-
gent to the point a because any G-open neighbourhood R \ {x} of a includes
almost all terms of the sequence. For any point x, which is different from a,
the subset R \ {a} is a G-open neighbourhood of x but it does not include
almost all terms and therefore x = (xn) does not G-sequentially convergent
to x.

(c) The sequence x = (xn) = ( 1n ) is G-convergent to 0 G-sequentially
convergent to all points x’s, because any G-open neighbourhood R \ {a} of x
includes almost all terms of x.

(iii) G-sequentially closed and G-sequentially open subsets
We can now characterize G-sequentially closure and hence G-sequentially

closed subsets. Consider the following cases.
(a) If A is an infinite set, then we have a sequence x = (xn) = (x1, x2, . . . )

in A with different terms and x = (xn) is G-sequentially convergent to every
point x ∈ R, since each G-open neighbourhood R \ {a} of x includes almost
all terms of x. Hence all points of R are in the G-sequentially hull of A and
therefore [A]G = R.

(b) Let A be a finite set and x /∈ A. If x = (xn) is a sequence of the
terms of A, then (xn) is in the form (xn) = (.., xn0 , . . . , xn0 , ...) and G-open
neighbourhood R \ {xn0} of x does not include almost all the terms. Hence
x /∈ [A]G for all x /∈ A and therefore [A]G = A. We can write the generalization

[A]G =

{
R, A is infinite
A, A is finite
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Hence we can conclude that finite subsets are G-sequentially closed, cofinite
subsets are G-sequentially open and

A0
G =

{
A, if A is cofinite
∅, otherwise

Example 2.2. Let c ∈ X be a constant element and G a method on the set X
defined by G(x) = c for any sequence x = (xn) . Then we check the following.

(i) G-closed and G-open subsets. One can check that [A]G ⊆ A if and only if
c ∈ A. Hence A is G-closed if and only if c ∈ A If (an) ⊆ A and G(an) = c ∈ A,
then [A]G ⊆ A. Thus [A]G = {c}. and therefore we can state G-closed and
G-open subsets as follows{

A is G-closed, if c ∈ A or A = ∅
A is G-open, if c /∈ A or A = X

(ii) G- convergence and G-sequential convergence. For an a ∈ X with
a ̸= c, the sequence x = (xn) is G-sequentially convergent to a if and only if
the terms of x = (xn) is almost a since by (i) {a} is a G-open neighbourhood
of a ∈ X. Moreover by (i) the only G-open neighbourhood of c is R and
therefore any sequence is also G-sequentially converging to c.

(iii) G-sequentially closed and G-sequentially open subsets.
Let a ̸= c. Then by (i) {a} is a G-open neighbourhood of a. Hence a

sequence x = (xn) in A is G-sequentially convergent to a if and only if the
terms are almost a, i.e., (xn) = (a1, a2, ..., an0

, a, a, . . . ). Hence [A]G ⊆ A and
therefore all subsets are G- sequentially closed and also G-sequentially open.
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