PROCEEDINGS OF INTERNATIONAL MATHEMATICAL SCIENCES ISSN: 2717-6355, URL: https://dergipark.org.tr/tr/pub/pims Volume 5 Issue 2 (2023), Pages 81-86. Doi: https://doi.org/10.47086/pims.1374364

ABOUT VARIATIES OF G-SEQUENTAILLY METHODS, G-HULLS AND G-CLOSURES

SHANZA BEHRAM*, OSMAN MUCUK** *DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, ERCIYES UNIVERSITY, KAYSERI, TURKEY. ORCID NUMBER: 0000-0003-2244-7404 **DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, ERCIYES UNIVERSITY, KAYSERI, TURKEY. ORCID NUMBER: 0000-0001-7411-2871

ABSTRACT. In the first countable spaces many topological concepts such as open and closed subsets; and continuous functions are defined for convergent sequences. The concept of limit defines a function from the set of all convergence sequences in X to X itself if X is a Hausdorff space. This is extended not only to topological spaces but also to sets. More specifically a G-method is defined to be a function defined on a subset of all sequences We say that a sequence $\mathbf{x} = (x_n)$ G-convergences to a if $G(\mathbf{x}) = a$. Then many topological objects such as open and closed subsets and many others including these sets have been extended in terms of G-convergence. G-continuity, G-compactness and G-connectedness have been studied by several authors ([1], [2], [3], [4]). On the other hand we know that in a topological space X, a sequence (x_n) converges to a point $a \in X$ if any open neighbourhood of a includes all terms except finite number. Similarly we define a sequence (x_n) to be G-sequentially converging to a if any G-open neighbourhood of a includes almost all terms. In this work provided some examples we indicate that G-convergence and G-sequentially convergence are different. We will prove that G-closed and G-sequentially closed subsets and therefore many others are different.ed.

1. INTRODUCTION

Useful tools for defining topological concepts in sequential terms are the convergences of the sequences.

Some authors explored A-continuity for methods of almost convergence and for related approaches, including Savaş and Das [5], Borsik and Salat [6].

The effects of substituting G-methods defined on a subspace of the real sequences for sequential convergence were examined by Connor and Grosse-Erdmann [7]. In order to apply this idea to topological groups, Çakallı extending this concept to

²⁰²⁰ Mathematics Subject Classification. Primary: 40J05, 54A05, 22A05.

 $Key\ words\ and\ phrases.$ G-sequentially convergence; G-closure and G-hull; G-sequential continuity.

 $[\]textcircled{O}2023$ Proceedings of International Mathematical Sciences.

Submitted on 21.10.2023, Accepted on 20.11.2023.

Communicated by Ljubiša D. R. KOČÍNAC and Nazlım Deniz ARAL.

topological groups, defined G- continuity in [1] (see also [8] for various additional forms of continuities). In [9] Mucuk and Şahan introduced the concepts of G-open sets and G-neighbourhoods in topological groups and looked into additional Gcontinuity features. Recently, Lin and Liu in [10] proposed the ideas of G-methods, G-submethods and G-topologies for arbitrary sets as well as topological spaces, and they also looked into the operations involving G-hulls, G-closures, G-kernels and G-interiors.

Yongxing and Fucai [11] expanded on several findings and discussed some Gconnectedness, G-hull, and G-kernel properties. In [12] Brown and Mucuk studied the covering of disconnected topological groups. In their article [13] L. Liu and Z. Ping proposed the idea of the product G-method on sets, which results in a Ggeneralized topology. They also talked about the G-connectedness of the Cartesian product. We studied G-connectedness and G-sequential methods for product spaces in the works [14] and [15]. Authors explore the concepts of countably G- compact and sequentially GO-compact spaces in article [16]. The first countable spaces are sequences. A subset A of sequential space X is said to be closed, whenever any convergence sequence $\mathbf{x} = (x_n)$ in A has sequential limit in the same subset A. Open subsets in sequential spaces can be also defined in terms of sequences. Subset A is open if and only if any sequence converging to a point $a \in A$ is almost in A.

In [17] some counter examples of convergent G-methods are given; and G-open, G-closed subsets for these G-convergent methods are characterised. The main object of this paper is to define G-methods as G-sequential convergence and then to characterize a variety of G-open, G-closed subsets associated with these G-methods.

2. G-sequential convergence

Throughout the text, the letter X designates a topological space unless otherwise stated. The boldface letters x, y, z,... stand for the sequences of terms $\mathbf{x} = (x_n)$, $\mathbf{y} = (y_n)$, $\mathbf{z} = (z_n)$, whereas s(X) and c(X) stand for the sequences of all terms and the sequence of all convergent sequences of points in X, respectively. We define a G-method of sequential convergence for X as a map defined on a subset $c_G(X)$ of s(X) into X. When for $\mathbf{x} \in c_G(X)$ and $G(\mathbf{x}) = \ell$, a sequence $\mathbf{x} = (x_n)$ is said to be G-convergent to ℓ . In particular, the G-method with $G = \lim$ is the lim function defined on c(X). When a sequence \mathbf{x} is G-convergent to ℓ , then any subsequence of \mathbf{x} is likewise G-convergent to the same point ℓ , is referred to as the preservation of the G-convergence of subsequences. A sequence \mathbf{x} is described as regular whenever any convergent sequence $\mathbf{x} = (x_n)$ is G-convergent with $G(\mathbf{x}) = \lim \mathbf{x}$. We remind that in a topological space X, a sequence $\mathbf{x} = (x_n)$ has limit a if and only if every open neighbourhood of a includes almost all terms of $\mathbf{x} = (x_n)$. Parallel to this, we can define a variety of G-convergence as follows:

For a set X, we say that a sequence $\mathbf{x} = (x_n)$ in X is G-sequentially convergent to a point $a \in X$, if every G-open neighbourhood U of a includes almost all terms of the sequence. Note that we here use additionally the word "sequentially" to distinguish from G-convergence. The notion of G-sequentially convergence defined in this manner enables us to obtain a variety of G-open, G-closed subsets and some others. We keep to use the word "sequentially" additionally for these varieties of the notions. *G*-hull and *G*-closed subsets : The point $\ell \in X$ is said to be in the *G*-hull of A if the subset A has a sequence $\mathbf{x} = (x_n)$ with $G(\mathbf{x}) = \ell$. A is said to be *G*-closed if $[A]^G \subseteq A$, which denotes the *G*-hull of A. A is *G*-closed if and only if $[A]^G = A$ since for a regular method G, one has $A \subseteq [A]^G$. Here it should be noted that \emptyset is *G*-closed since $[\emptyset]^G = \emptyset$ and X is *G*-closed since $[X]^G \subseteq X$; and $[X]^G = X$ if G is regular. As seen in Example 2.1, even for a regular *G*-method, *G*-closed. The union of *G*-closed subsets of X is not always *G*-closed, but the intersection of *G*-closed subsets is also *G*-closed. The *G*-closure of A is defined to be the intersection of all *G*-closed subsets containing A, and denoted by \overline{A}^G which is a *G*-closed subset. By the fact that $[A]^G \subseteq [K]^G \subseteq K$ whenever $A \subseteq K$ and K is a *G*-closed subset, we can deduce that $[A]^G \subseteq \overline{A}^G$.

A subset $A \subseteq X$ is called *G*-open if $X \setminus A$ is *G*-closed.

X and \emptyset are *G*-open since they are both *G*-closed. Eventually the union of *G*-open subsets of X is *G*-open and the intersection of *G*-open subsets is not necessarily *G*-open. A subset $A \subseteq X$ is a *G*-neighborhood of *a* if there exists a *G*-open subset *U* of X such that $a \in U \subseteq A$. The union of *G*-open subsets of A is called *G*-interior of A and denoted by A^{0G} which is the largest *G*-open subset of A [9]. A is *G*-open if only if $A = A^{0G}$.

G-sequentially hull and *G*-sequentially closed subsets : We say a point $l \in X$ is in the *G*-sequentially hull of a subset *A* if there exists a sequence $\mathbf{x} = (x_n)$ of the terms in *A* which *G*-sequentially converges to *l* and write $[A]_G$ for the set of *G*-sequentially hull points of *A*. Since for $a \in A$, the constant sequence $(x_n) = (a, a, \ldots)$ is *G*-sequentially convergent to *a* we conclude that $A \subseteq [A]_G$. *A* is *G*-sequentially closed if $[A]_G \subseteq A$. Note that $[X]_G = X$ and $[\emptyset]_G = \emptyset$; and therefore \emptyset and *X* are *G*-sequentially closed.

The *G*-sequentially closure of A, denoted by \overline{A}_G , is the intersection of all *G*-sequentially closed subsets containing A, which is also a *G*-sequentially closed subset. If $A \subseteq K$ and K is a *G*-sequentially closed subset, then $[A]_G \subseteq [K]_G \subseteq K$ and therefore $[A]_G \subseteq \overline{A}_G$.

We remark that a point a in a first countable space X is an interior point of the subset A if any sequence $\mathbf{x} = (x_n)$ converging to a is almost in A. Hence we can extend this notion to a G-method as follows: A point a is said to be a Gsequentially interior point of A and write $a \in A^0_G$ whenever any sequence $\mathbf{x} = (x_n)$ with G-sequentially convergence to a is almost in A or equivalently there is no any sequence $\mathbf{x} = (x_n)$ in $X \setminus A$ with G-sequentially convergence to a. By the fact that the constant sequence $(x_n) = (a, a, ...)$ is G-sequentially convergent to a, one can see that $A^0_G \subseteq A$ and therefore A is G-sequentially open when $A \subseteq A^0_G$.

We can state following theorems to support the idea of G-sequential convergence.

Theorem 2.1. [3] Let X be a set with a G-method. A subset A is G-sequentially open if and only if $X \setminus A$ is G-sequentially closed.

Equivalently we can state the following theorem.

Theorem 2.2. A is G-sequentially closed if and only if $X \setminus A$ is G-sequentially open.

In the following examples, we shall define two G-methods and the compare Gconvergence and G-sequential convergence together with associated features of Gsequentially closed subsets.

Example 2.1. Let G be a convergent method on \mathbb{R} defined by $G(\mathbf{x}) = \lim \frac{x_n + x_{n+1}}{2}$ for some sequences $\mathbf{x} = (x_n)$. We can check the following properties for G-convergence.

(i) *G*-closed and *G*-open subsets. Since *A* is regular we have $A \subseteq \overline{A}^G$. Hence a subset *A* is *G*-closed if and only if $A = \overline{A}^G$. For the subset $A = \{0, 1\}$ one has $\overline{A}^G = \{0, \frac{1}{2}, 1\}$. Here note that since the sequence $(x_n) = (0, 1, 0, 1....)$ is *G*-converging to 1/2 one has $1/2 \in \overline{A}^G$. Hence *A* is not *G*-closed.

If $A = \{x\}$ and $y \in \overline{A}^G$, then there exists a sequence $\mathbf{x} = (x_n)$ in A with $G(\mathbf{x}) = y$. But $\mathbf{x} = (x_n) = (x, x, ...)$ and since G is regular $G(\mathbf{x}) = \lim(\mathbf{x}) = x$ and therefore y = x. Hence $A = \{x\}$ is G-closed and therefore G-open subsets are the complements $\mathbb{R} \setminus \{x\}$ for $x \in \mathbb{R}$.

(ii) G-convergence and G-sequential convergence This method is G converging for some sequences but it is not G-sequentially converging to any point. In below we give different types of examples for the G-sequentially convergence of sequences.

(a) For example the sequence $\mathbf{x} = (x_n) = (1, 3, 1, 3, ...)$ is *G*-convergent to 2 but not *G*-sequentially converging to any point, because for any point $x \in \mathbb{R}$, we can choose a *G*-open neighbourhood $\mathbb{R} \setminus \{a\}$ of x, which does not include almost all terms of $\mathbf{x} = (x_n)$.

(b) For a constant $a \in X$ consider the sequence $\mathbf{x} = (x_n)$ defined by

$$x_n = \begin{cases} n, & \text{if } n \text{ is odd} \\ a, & \text{if } n \text{ is even} \end{cases}$$

Then $\mathbf{x} = (x_n)$ is not *G*-convergent to any point but *G*-sequentially convergent to the point *a* because any *G*-open neighbourhood $\mathbb{R} \setminus \{x\}$ of *a* includes almost all terms of the sequence. For any point *x*, which is different from *a*, the subset $\mathbb{R} \setminus \{a\}$ is a *G*-open neighbourhood of *x* but it does not include almost all terms and therefore $\mathbf{x} = (x_n)$ does not *G*-sequentially convergent to *x*.

(c) The sequence $\mathbf{x} = (x_n) = (\frac{1}{n})$ is *G*-convergent to 0 *G*-sequentially convergent to all points *x*'s, because any *G*-open neighbourhood $\mathbb{R} \setminus \{a\}$ of *x* includes almost all terms of \mathbf{x} .

(iii) G-sequentially closed and G-sequentially open subsets

We can now characterize G-sequentially closure and hence G-sequentially closed subsets. Consider the following cases.

(a) If A is an infinite set, then we have a sequence $\mathbf{x} = (x_n) = (x_1, x_2, ...)$ in A with different terms and $\mathbf{x} = (x_n)$ is G-sequentially convergent to every point $x \in \mathbb{R}$, since each G-open neighbourhood $\mathbb{R} \setminus \{a\}$ of x includes almost all terms of \mathbf{x} . Hence all points of \mathbb{R} are in the G-sequentially hull of A and therefore $[A]_G = \mathbb{R}$.

(b) Let A be a finite set and $x \notin A$. If $\mathbf{x} = (x_n)$ is a sequence of the terms of A, then (x_n) is in the form $(x_n) = (.., x_{n_0}, ..., x_{n_0}, ...)$ and G-open neighbourhood $\mathbb{R} \setminus \{x_{n_0}\}$ of x does not include almost all the terms. Hence $x \notin [A]_G$ for all $x \notin A$ and therefore $[A]_G = A$. We can write the generalization

$$[A]_G = \begin{cases} \mathbb{R}, & A \text{ is infinite} \\ A, & A \text{ is finite} \end{cases}$$

Hence we can conclude that finite subsets are G-sequentially closed, cofinite subsets are G-sequentially open and

$$A_G^0 = \begin{cases} A, & \text{if } A \text{ is cofinite} \\ \emptyset, & \text{otherwise} \end{cases}$$

Example 2.2. Let $c \in X$ be a constant element and G a method on the set X defined by $G(\mathbf{x}) = c$ for any sequence $\mathbf{x} = (x_n)$. Then we check the following.

(i) *G*-closed and *G*-open subsets. One can check that $[A]^G \subseteq A$ if and only if $c \in A$. Hence *A* is *G*-closed if and only if $c \in A$ If $(a_n) \subseteq A$ and $G(a_n) = c \in A$, then $[A]^G \subseteq A$. Thus $[A]^G = \{c\}$. and therefore we can state *G*-closed and *G*-open subsets as follows

$$\begin{cases} A \text{ is G-closed,} & \text{if } c \in A \text{ or } A = \emptyset \\ A \text{ is G-open,} & \text{if } c \notin A \text{ or } A = X \end{cases}$$

- (ii) G- convergence and G-sequential convergence. For an $a \in X$ with $a \neq c$, the sequence $\mathbf{x} = (x_n)$ is G-sequentially convergent to a if and only if the terms of $\mathbf{x} = (x_n)$ is almost a since by (i) $\{a\}$ is a G-open neighbourhood of $a \in X$. Moreover by (i) the only G-open neighbourhood of c is \mathbb{R} and therefore any sequence is also G-sequentially converging to c.
- (iii) G-sequentially closed and G-sequentially open subsets.

Let $a \neq c$. Then by (i) $\{a\}$ is a *G*-open neighbourhood of *a*. Hence a sequence $\mathbf{x} = (x_n)$ in *A* is *G*-sequentially convergent to *a* if and only if the terms are almost *a*, i.e., $(x_n) = (a_1, a_2, ..., a_{n_0}, a, a, ...)$. Hence $[A]_G \subseteq A$ and therefore all subsets are *G*- sequentially closed and also *G*-sequentially open.

References

- [1] H. Çakallı, On G-continuity, Comput. Math. Appl., 61(2) (2011), 313-318.
- [2] H. Çakallı, Sequential definitions of connectedness, Appl. Math. Lett., 25(3) (2012), 461-465.
- [3] O. Mucuk, H. Çakallı, G-sequentially connectedness for topological groups with operations, Filomat, 32(3) (2018), 1079-1089.
- [4] O. Mucuk and T. Şahan, On G-sequential Continuity, Filomat, 28(6) (2014), 1181-1189.
- [5] E. Savaş, G. Das, On the A-continuity of real functions. Istanbul University Science Faculty the Journal of Mathematics Physics and Astronomy, 53 (1994), 61-66.
- [6] J.Borsik and T.Salat, On F-continuity of real functions, Tatra Mt. Math. Publ., 2 (1993), 37-42.
- [7] J. Connor, K.-G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math., 33(1) (2003), 93-121.
- [8] H. Çakallı, New kinds of continuities, Comput.Math. Appl, 61 (2011), 960-965.
- [9] O. Mucuk, T. Şahan, On G-sequential Continuity, Filomat 28-6 (2014) 1181-1189.
- [10] S. Lin, L. Liu, G-methods, G-spaces and G-continuity in topological spaces, Topology Appl., 212 (2016) 29-48.
- [11] Y. Wu, F. Lin, The G-connected property and G-topological groups, (2019).
- [12] R. Brown and O. Mucuk, Covering groups of non-connected topological groups revisited, Mathematical Proceedings of the Cambridge Philosophical Society, 115 (1994) 97-110.
- [13] L. Liu and Z. Ping, Product Methods and G-Connectedness, Acta Math. Hungar., 162 (2020), 1–13.
- [14] O. Mucuk, S. Behram, H. Cakalli, G-connectedness for product spaces, ICMS2021(AIP Conference Proceedings) 2483, 020008 (2022); https://doi.org/10.1063/5.0115542
- [15] O. Mucuk, S. Behram, G-sequential methods in product spaces, ICMS2021, AIP Conference Proceedings, 2483, 020007 (2022); https://doi.org/10.1063/5.0115533
- [16] P. Vijaya Shanthi, J. Kannan, On countably G-Compactness and sequentially GOcompactness, The Korean Journal of Mathematics, 29 (2021), 555-561.

[17] O. Mucuk, S. Behram, Counter examples of G- convergent method, ICMS2022, AIP Conf. Proc. 2879, 070001 (2023) https://doi.org/10.1063/5.0175384

Shanza Behram,

Department of Mathematics, Faculty of Science, Erciyes University, Kayseri, Turkey. Phone: +90(539)3640895 Orcid number: 0000-0003-2244-7404 Email address: shanzabehram95@gmail.com

Osman Mucuk,

Department of Mathematics, Faculty of Science, Erciyes University, Kayseri, Turkey. Phone: Orcid Number: 0000-0001-7411-2871

Email address: mucuk@erciyes.edu.tr

86