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ABSTRACT

In this paper, we focus on biconservative Riemannian submanifolds with parallel normalized
mean curvature vector field (PNMCV) in E5

1. We obtain explicit classifications for the biconservative
PNMCV submanifolds with exactly two distinct principal curvatures of the shape operator along
the mean curvature vector field. In particular, we investigate these submanifolds which have time-
like and space-like mean curvature vector field in E5

1.
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1. Introduction

Biharmonic maps are the critical points of the bienergy functional

E2 : C∞ : (M,N) → R, E2(ψ) =
1

2

∫
M

|τ(ψ)|2vg,

where τ(ψ) = tr∇dψ is the tension field of ψ and vg is the volume element of g. By considering the first variation
of E2, it was showed that ψ is biharmonic if and only if the associated Euler-Lagrange equation

τ2(ψ) = −∆τ(ψ)− tr R̃(dψ, τ(ψ))dψ = 0 (1.1)

is satisfied where τ2 is the bitension field of ψ, ∆ is the rough Laplacian and R̃ denotes the curvature tensor
field of N , [6].

The study of biharmonic submanifolds has been an active research since the well-known conjecture was
proposed by B.-Y. Chen in 1991.

Chen’s conjecture: Any biharmonic submanifold in the Euclidean space is minimal.
The conjecture is still open although it was proved to be true when additional geometric properties for these

submanifolds were assumed, (see, for example, [4, 7, 10, 14]).
On the other hand, if ψ : (M, g) → (N, g̃) is an isometric immersion satisfying the condition

⟨τ2(ψ), dψ⟩ = 0, (1.2)

then it is called biconservative immersion, [1, 7].
Assume that the ambient manifold N is flat. Then by splitting of the bitension field τ2(ψ) from (1.1) with

respect to its tangential and normal components, we obtain that ψ is biconservative if and only if the equation

n∇∥H∥2 + 4trA∇⊥
· H(·) = 0 (1.3)

is satisfied, where H is the mean curvature, ∇⊥ is the normal connection, A is the shape operator of M and n
is the dimension of M , [3, 8].
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Obviously, biharmonic submanifolds are always biconservative. Therefore, biconservative submanifolds
form a much bigger family that includes the biharmonic submanifolds. One interesting problem is the
classification of biconservative submanifolds. There are many articles in the literature about biconservative
submanifolds, (see [5], [8]-[14]). In [5], Y. Fu studied for space-like and time-like biconservative surfaces
in E3

1. In [14], the author and N.C. Turgay studied biconservative surfaces in E4 with parallel normalized
mean curvature vector field. They completely classified the biconservative meridian surfaces. Moreover, the
author studied biconservative m-dimensional submanifolds with parallel normalized mean curvature vector
field (PNMCV) in Em+2, [13]. Recently, the author and N.C. Turgay have investigated biconservative and
biharmonic submanifolds of E5 in [10]. They have showed that Chen’s Biharmonic Conjecture is true for these
submanifolds.

In this paper, we investigate 3-dimensional biconservative PNMCV submanifolds in E5
1. We find the shape

operators of such submanifolds under the assumption that their shape operator in the direction of the mean
curvature vector field has two distinct principal curvatures. We investigate such submanifolds for which the
mean curvature vector field is either time-like or space-like in E5

1 by separately.

2. Preliminaries

Let Em
s denote the pseudo-Euclidean m-space with the canonical pseudo-Euclidean metric tensor g̃ of index

s given by

g̃ = −
s∑

i=1

dx2i +

m∑
i=s+1

dx2i ,

where (x1, x2, . . . , xm) is a rectangular coordinate system in Em
s .

Consider an isometric immersion ψ from a 3-dimensional Riemannian manifold (M3, g) into a Minkowski
5-space E5

1. We denote the Levi-Civita connections of M3 and E5
1 by ∇ and ∇̃, respectively. For any tangent

vector field X,Y of M3 in E5
1, the Gauss formula is given by

∇̃XY = ∇XY + h(X,Y ), (2.1)

where h is the the second fundamental form. For any tangent vector field X and normal vector field ξ of M3 in
E5
1, the Weingarten formula is given by

∇̃Xξ = −Aξ(X) +∇⊥
Xξ, (2.2)

where ∇⊥ is the normal connection and A is the shape operator. Moreover, it is well known that h and Aξ are
related by

g(Aξ(X), Y ) = g̃(h(X,Y ), ξ). (2.3)

The Ricci tensor of M3 denoted by Ric is defined as follows:

Ric(X,Y ) = tr {Z ↪→ R(Z,X)Y )} (2.4)

for any tangent vector field X,Y, Z of M3. For a unit vector ei, the Ricci curvature Ric(ei) is defined by
Ric(ei) = Ric(ei, ei).

The scalar curvature S of M3 is defined by

S = tr (Ric(ei) ) . (2.5)

The mean curvature vector field H of M3 is given by

H =
1

3
trh (2.6)

and the mean curvature function is expressed as f = |⟨H,H⟩|1/2. A submanifold M3 is called minimal, if H
vanishes identically.

A normal vector field η is called parallel if ∇⊥
Xη = 0 whenever X is a tangent vector field. Assume that M3 is

not minimal, i.e., f > 0. If the unit normal vector fieldH/f is parallel, thenM3 is called a PNMCV submanifold.
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Let R̃ and R be the curvature tensor of M3 and E5
1, respectively. Since the ambient space E5

1 is flat, R̃ = 0 and
then the Gauss equation is given by

⟨R(X,Y )Z,W ⟩ = ⟨h(X,W ), h(Y,Z)⟩ − ⟨h(Y,W ), h(X,Z)⟩ (2.7)

for X,Y, Z,W tangent to M3.
The Codazzi equation is given by

(∇̄Xh)(Y,Z) = (∇̄Y h)(X,Z) (2.8)

where ∇̄h(Y, Z) is defined by

(∇̄Xh)(Y,Z) = ∇⊥
Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)

for any tangent vector field X,Y and Z on M3.
On the other hand, we suppose that ψ has parallel normalized mean curvature vector e4. By using the

Ricci equation, we have
(
R̃(X,Y )e4

)T
= 0 which gives that all the shape operators of ψ can be diagonalized

simultaneously.

3. Biconservative PNMCV Riemannian Submanifolds

In this section, we focus biconservative PNMCV submanifolds in E5
1.

Let ψ be a biconservative PNMCV isometric immersion of a Riemannian 3-manifold M3 into E5
1.

Remark 3.1. To avoid trivial cases, we assume that M3 is completely contained in E5
1.

We choose the frame field {e4, e5} of the normal bundle ofM3 with e4 is defined by e4 = H
f . Since e4 is parallel

and co-dimension of M3 is 2, e5 is also parallel. Therefore, we have

∇⊥
Xe4 = 0, ∇⊥

Xe5 = 0 (3.1)

for any tangent vector field X . Then, we obtain that biconservativity condition (1.3) is equivalent to

Ae4(grad f) = −ε4
3f

2
(grad f), (3.2)

where Ae4 is the shape operator with respect to e4 and

ε4 =

{
1, if H is space-like
−1, if H is time-like.

Remark 3.2. In order to avoid trivial cases, we will suppose that a biconservative PNMCV immersion in E5
1 has

positive mean curvature function on M3 and its gradient is nowhere vanishing. Moreover, these submanifolds
are called be as proper. In this paper, we investigate smooth, connected and proper submanifolds unless
otherwise is stated.

Since H is proportional to e4, we have
H = ε4fe4. (3.3)

By using (3.2) and (3.3), we have
trA4 = 3f, trA5 = 0. (3.4)

On the other hand, if we consider e1 = grad f
|grad f | , we obtain

e1(f) ̸= 0, e2(f) = e3(f) = 0 (3.5)

and k1 = −ε4 3f
2 from (3.2). Therefore, the matrix representations of the shape operators along e4 and e5 are

given respectively by

Ae4 =

 −ε4 3f
2 0 0

0 k2 0
0 0 k3

 , Ae5 =

 l1 0 0
0 l2 0
0 0 l3

 (3.6)
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for some smooth functions f, k2, k3, l1, l2, l3. By using (3.4), we get

k2 + k3 = 3f + ε4
3f

2
and l1 + l2 + l3 = 0. (3.7)

Let lf be the number of distinct principle curvatures of Ae4 . Then, we have two cases: lf = 2 or lf = 3. In this
paper, we investigate only lf = 2.

On the other hand, since M3 is a Riemannian manifold in E5
1, the mean curvature vector H is time-like or

space-like.

3.1. H is time-like in E5
1

In this subsection, we focus on biconservative PNMCV submanifolds having time-like mean curvature vector
field H in E5

1 and lf = 2; that is, k2 = k3. By using (3.2) and (3.4), the shape operators corresponding to e4 and
e5 are given, with respect to {e1, e2, e3}, by

Ae4 =

 3f
2 0 0

0 3f
4 0

0 0 3f
4

 , Ae5 =

 l1 0 0
0 l2 0
0 0 l3

, (3.8)

for some smooth functions l1, l2, l3 satisfying l1 + l2 + l3 = 0.
By applying Codazzi equation for (X,Y, Z) = (e1, eA, e1) such that A = 2, 3, we have

ω1A(e1) = 0, eA(l1) = 0. (3.9)

If we apply Codazzi equation for (X,Y, Z) = (eA, e1, eA) such that A = 2, 3, we obtain

ω1A(eA) =
e1(f)

f
, (3.10a)

e1(lA) = ω1A(eA)(l1 − lA), (3.10b)

which give l1 = 2cf−3 for a smooth function c such that e1(c) = 0. Considering (3.9), we get e2(c) = e3(c) = 0
which gives c is a constant.

On the other hand, using (3.10a) and (3.10b), we find

l2 = −cf−3 + f2f
−1 (3.11)

for a smooth function f2 satisfying e1(f2) = 0. Moreover, using (3.7) we get

l3 = −cf−3 − f2f
−1. (3.12)

Consequently, we have the following.

Proposition 3.1. Let ψ : (M3, g) ↪→ E5
1 be a biconservative PNMCV immersion with two distinct principal curvatures

in the direction of the mean curvature vector. Then, H is time-like vector in E5
1 if and only if there exists an orthonormal

frame field {e1, e2, e3; e4, e5} such that shape operators along e4 and e5 given by the matrices

Ae4 =

 3f
2 0 0

0 3f
4 0

0 0 3f
4

 , Ae5 =

 2cf−3 0 0
0 −cf−3 + f2f

−1 0
0 0 −cf3 − f2f

−1

 (3.13)

and
∇⊥e4 = ∇⊥e5 = 0

where c is a non-zero constant and f, f2 are some smooth functions satisfy e1(f2) = e2(f) = e3(f) = 0.

Proof. From the above results, the proof of the necessary condition is completed. The converse of this
proposition is trivial. □

Next, by using Proposition 3.1, we give the following theorem for biconservative PNMCV immersions.
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Theorem 3.1. Let ψ : (M3, g) ↪→ E5
1 be a biconservative PNMCV immersion with two distinct principal curvatures

in the direction of the mean curvature vector. Then, H is time-like vector in E5
1 if and only if ψ is one of the following

immersions given below.
Case I. An isometric immersion ψ1 which has an orthonormal frame field {e1, e2, e3; e4, e5} such that

Ae4 =

 3f
2 0 0

0 3f
4 0

0 0 3f
4

, Ae5 =

 0 0 0
0 f2f 0
0 0 −f2f

, (3.14)

and

ω12(e1) = ω13(e1) = ω12(e3) = ω13(e2) = ω23(e1) = 0,

ω12(e2) = ω13(e3) =
e1(f)

f
,

ω23(e2) =
1

2

e3(f2)

f2
, ω23(e3) = −1

2

e2(f2)

f2

(3.15)

for some smooth functions f and f2 such that e2(f) = e3(f) = e1(f2) = 0 and f does not vanish.
Case II. An isometric immersion ψ2 which has an orthonormal frame field {e1, e2, e3; e4, e5} such that

Ae4 =

 3f
2 0 0

0 3f
4 0

0 0 3f
4

, Ae5 =

 2cf−3 0 0
0 −cf−3 0
0 0 −cf−3

, (3.16)

and

ω12(e1) = ω13(e1) = ω12(e3) = ω13(e2) = ω23(e2) = ω23(e3) = 0,

ω12(e2) = ω13(e3) =
e1(f)

f

(3.17)

for a smooth non-vanishing function f satisfying e2(f) = e3(f) = 0.

Proof. Suppose that ψ is a biconservative PNMCV immersion. By using Proposition 3.1, we obtain that
the shape operators of ψ have the matrix representations given in (3.13). If we apply Codazzi equations for
(X,Y, Z) = (e2, e3, e3) and (X,Y, Z) = (e3, e2, e2), we obtain

ω23(e3) = −e2(f2)
2f2

(3.18)

and
ω23(e2) =

e3(f2)

2f2
, (3.19)

respectively. Moreover, by considering the Codazzi equations for (X,Y, Z) = (e1, e2, e3) and (X,Y, Z) =
(e1, e3, e2) , we have

ω13(e2) = ω12(e3) = 0

and
f2ω23(e1) = 0. (3.20)

Firstly, assume that f2 ̸= 0. Then, (3.20) gives ω23(e1) = 0. From the Gauss equation we find

R(e1, e2, e2, e1) = −e1(α)− α2 = −9f2

8
− 2c2f−6 + 2cf2f

−4, (3.21)

where α = ω12(e2). Also,

R(e1, e2, e2, e1) = R(e1, e3, e3, e1) = −e1(α)− α2 (3.22)

and
⟨h(e1, e1), h(e2, e2)− h(e3, e3)⟩ = 0. (3.23)
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By using equations (3.21), (3.22) and (3.23), we find c = 0. Therefore, we obtain the Case I of the theorem.
Now, we are going to consider the case f2 = 0. From (3.18) and (3.19) we obtain ω23(e2) = ω23(e3) = 0.

Substituting f2 = 0 in (3.13), the shape operators along e4 and e5 become (3.16). Hence, we have the Case II
of the theorem. □

Next, we have the following lemma.

Lemma 3.1. Let (M3, g) be a Riemannian manifold described in Theorem 3.1.
Case I. If M3 admits a biconservative PNMCV isometric immersion ψ = ψ1, then

i. The scalar curvature of M3 satisfies

S = −(
45f2

16
+ f22 f

−2), (3.24)

ii. The Ricci tensor of M3 satisfies Ric(ei) = λiei and

λ1 = −9f2

4
, λ2 = λ3 =

−27f2

16
− f22 f

−2. (3.25)

iii. The set span{∇λ1,∇λ2,∇λ3} has dimension 2.

Case II. If M3 admits a biconservative PNMCV isometric immersion ψ = ψ2, then

i. The scalar curvature of M3 satisfies

S = −(
45f2

16
+ 3c2f−6), (3.26)

ii. The Ricci tensor of M3 satisfies Ric(ei) = λiei and

λ1 = −9f2

4
− 4c2f−6, λ2 = λ3 =

−27f2

16
− c2f−6. (3.27)

iii. The set span{∇λ1,∇λ2,∇λ3} has dimension 1.

Proof. We suppose that M3 admits the isometric immersion ψ1 introduced in Case I of Theorem 3.1. It follows
from (2.3) and (3.14), we find

h(e1, e1) = −3f

2
e4, h(e2, e2) =

−3f

4
e4 + f2f

−1e5,

h(e3, e3) =
−3f

4
e4 − f2f

−1e5.

By a straightforward computation with using the Gauss equation (2.7), we have

R(e1, e2, e2, e1) = R(e1, e3, e3, e1) = −9f2

8
,

R(e2, e3, e3, e2) =
−9f2

16
− f22 f

−2.

(3.28)

It follows from the Ric of M3 satisfies Ric(ei) = λiei, we obtain functions λi as (3.25).
From (2.5), we calculate the scalar curvature of M3 as (3.24). On the other hand, by using (3.25), we get

∇λ1 =
−9

2
fe1(f)e1, (3.29)

∇λ2 = ∇λ3 =

(
−27f

8
+ 2f22 f

−35

)
e1(f)e1 − 2f2f

−2(e2(f2)e2 + e3(f2)e3) (3.30)

which implies that the set span{∇λ1,∇λ2,∇λ3} has dimension 2.
Moreover, we assume thatM3 admits the isometric immersion ψ2 given in Case II of Theorem 3.1. By making

similar calculations, we find the eigenvalues of Ric as (3.27).
From (2.5), the scalar curvature of M3 is

S = −
(
45f2

16
+ 3c2f−6

)
.
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Therefore, we find f2 and c2 in terms of λ1, λ2. Also, from (3.27) we have

dim (span {∇λ1,∇λ2,∇λ3}) = 1.

As an immediate consequence of Theorem 3.1, we would like to state the following corollary.

Corollary 3.1. Let ψ : (M3, g) ↪→ E5
1 be a biconservative PNMCV immersion with two distinct principal curvatures in

the direction of the mean curvature vector field. Then, the vector field e1 and the functions f, f2, c appearing in Theorem
3.1 can be computed intrinsically.

3.2. H is space-like in E5
1

In this subsection, we investigate biconservative PNMCV submanifolds having space-like mean curvature
vector field H in E5

1 and lf = 2; that is, k2 = k3. From (3.2) and (3.4), the matrix representations of the shape
operators e4 and e5 take the form

Ae4 =

 −3f
2 0 0

0 9f
4 0

0 0 9f
4

 , Ae5 =

 l1 0 0
0 l2 0
0 0 l3

 (3.31)

with respect to {e1, e2, e3} for some smooth functions l1, l2, l3 satisfying l1 + l2 + l3 = 0. By making similar
calculations, we give the following proposition.

Proposition 3.2. Let ψ : (M3, g) ↪→ E5
1 be a biconservative PNMCV immersion with two distinct principal curvatures

in the direction of the mean curvature vector. Then, H is space-like vector if and only if there exists an orthonormal frame
field {e1, e2, e3; e4, e5} such that shape operators along e4 and e5 given by the matrices

Ae4 =

 −3f
2 0 0

0 9f
4 0

0 0 9f
4

 , Ae5 =

 2cf9/5 0 0
0 −cf9/5 + f2f

3/5 0
0 0 −cf9/5 − f2f

3/5

 (3.32)

and
∇⊥e4 = ∇⊥e5 = 0

where c is a non-zero constant and f, f2 are some smooth functions such that e2(f) = e3(f) = e1(f2) = 0.

Next, by using Proposition 3.2, we have the following theorem.

Theorem 3.2. Let ψ : (M3, g) ↪→ E5
1 be a biconservative PNMCV immersion with two distinct principal curvatures in

the direction of the mean curvature vector. Then, H is space-like vector if and only if ψ is one of the following immersions.
Case I. An isometric immersion ψ1 which has an orthonormal frame field {e1, e2, e3; e4, e5} such that

Ae4 =

 −3f
2 0 0

0 9f
4 0

0 0 9f
4

, Ae5 =

 0 0 0
0 f2f

3/5 0
0 0 −f2f3/5

, (3.33)

and

ω12(e1) = ω13(e1) = ω12(e3) = ω13(e2) = ω23(e1) = 0,

ω12(e2) = ω13(e3) =
−3

5

e1(f)

f
,

ω23(e2) =
1

2

e3(f2)

f2
, ω23(e3) = −1

2

e2(f2)

f2

(3.34)

for some smooth functions f and f2 such that e2(f) = e3(f) = e1(f2) = 0 and f does not vanish.
Case II. An isometric immersion ψ2 which has an orthonormal frame field {e1, e2, e3; e4, e5} such that

Ae4 =

 −3f
2 0 0

0 9f
4 0

0 0 9f
4

, Ae5 =

 2cf9/5 0 0
0 −cf9/5 0
0 0 −cf9/5

, (3.35)
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and

ω12(e1) = ω13(e1) = ω12(e3) = ω13(e2) = ω23(e2) = ω23(e3) = 0,

ω12(e2) = ω13(e3) =
e1(f)

f

(3.36)

for a smooth non-vanishing function f satisfying e2(f) = e3(f) = 0.

Proof. The proof of theorem can be obtained by using similar way as given in Theorem 3.1. □
Finally, we obtain the following theorem.

Theorem 3.3. Let ψ : (M3, g) ↪→ E5
1 be a biconservative PNMCV immersion with two distinct principal curvatures in

the direction of the mean curvature vector field. Then, the vector field e1 and the functions f, f2, c appearing in Theorem
3.2 can be computed intrinsically.

Proof. We suppose that M3 admits the isometric immersion ψ1 given in Case I of Theorem 3.2. By making
similar calculations given in the Section 3.1, we obtain the eigenvalues of Ric as

λ1 = −27f2

4
, λ2 = λ3 =

27

16
f2 + f22 f

6/5 (3.37)

which implies that we can find f2 and f22 in terms of eigenvalues of Ric and

e1 =
∇λ1
∥∇λ1∥

.

Moreover, we suppose that M3 admits the isometric immersion ψ2 given in Case II of Theorem 3.2. Similarly,
we find the eigenvalues of Ric as

λ1 =
−27f2

4
+ 4c2f18/5, λ2 = λ3 =

27f2

16
+ c2f18/5

which implies that f2 and c2 can be calculated in terms of λ1, λ2. This completes the proof.
□
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