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Abstract
In this article, we obtain a saturated A-optimal design for the cubic model without a 3-way
effect for mixture experiment and get a general formula of the weights. The necessary and
sufficient condition of the A-optimality criterion is confirmed by using the corresponding
equivalence theorem.
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1. Introduction
A mixture experiment is typically used in formulation and blending experiments. In a

mixture experiment, the response is a function of the proportion and not the amount of
the ingredients. If a mixture consists of q number of components and proportions of the
ingredients are denoted by x1, x2, . . . , xq, then the experimental region containing these
mixture components becomes a (q − 1)-dimensional simplex represented as

Sq−1 =
{

x = (x1, x2, . . . , xq)T ∈ Rq|
q∑

i=1
xi = 1, 0 ≤ xi ≤ 1, i = 1, 2, . . . , q

}
. (1.1)

The construction of an optimal design aims to improve the statistical inference about
a particular quantity of interest by appropriately selecting the value of the predictors.
These values are so chosen as to minimize the variability of the estimators of the unknown
parameters based on a specific criterion. In the literature, different optimal designs are
defined like D-, A-, E-, R-, and others. Research work on optimal designs for mixture
experiment continued to be an interest to many researchers across the globe. In the last
decade, several articles on the construction of optimal designs for mixture models were
published [1, 13–17,19].

The canonical polynomial models are widely used for analyzing mixture data. In par-
ticular, Scheffès quadratic model is quite useful in analyzing agricultural and industrial
problems [18]. Nevertheless, if the goal is to model the curvature in the interior of a fac-
tor space, cubic polynomial models are preferable than quadratic models. Three different
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forms of cubic polynomial models are proposed in the literature i.e., full cubic model, cubic
model without a 3-way effect, and special cubic model [2].

In case of D-optimal design, equal weights are allocated to all the support points. In
contrast, weights associated with different support points, in general, are not same in
case of A-optimal design. Further, the weights assigned to these support points vary with
change in the value of q. Therefore, construction of an A-optimal design for higher-degree
mixture models involves much more difficulty than the D-optimal design.

Kiefer [7] derived saturated D-optimal designs for full cubic, cubic without a 3-way
effect, and special cubic models for a three-component mixture. For other works related
to optimal designs for cubic canonical polynomial models for mixture experiment, we can
refer to the work of Farrell et al. [3], Mikaeili [11,12], and Lim [10]. Panda and Sahoo [16]
obtained a saturated A-optimal design for the full cubic model, cubic model without a
three-way effect, and special cubic model for mixture experiment, where q = 3. Recently,
Zhu and Hao [20] investigated an A-optimal design for the special cubic mixture model.
Notwithstanding such works, the problem of constructing A-optimal design for cubic model
without a 3-way effect has not yet been solved. That motivated us to work on the same
problem. In this work, we prove that the saturated A-optimal design is supported by the
design points of the corresponding D-optimal design. However, the weights assigned to all
these design points are not same.

This article is structured as follows: In Section 2, we provide some preliminaries. Section
3 presents a brief discussion on A-optimal design and corresponding equivalence theorem.
Section 4 obtains an A-optimal design for the cubic model without a 3-way effect. In Sec-
tion 5, we obtain the A- efficiency of the corresponding D-optimal design for the discussed
model to compare both A-, and D-optimal designs. Finally, we infer the conclusions in
Section 6.

2. Preliminaries
In this section, some vectors and matrices are defined that we will use to define the

information matrix of the proposed model. These are as follows:
For q ≥ 2, denote the canonical unit vectors in Rq by e1, . . . , eq and those in R(q

2) by
Eij with lexicographically ordered index pairs (i, j), 1 ≤ i < j ≤ q. Here Rq and R(q

2)
are the the sets of q- and

(q
2
)
-dimensional vectors respectively. In the vector ei, the ith

element is 1 for i = 1, 2, . . . , q, and the remaining elements are 0. Similarly, in the vector
Eij the element at (i, j)th-position is 1 for 1 ≤ i < j ≤ q, and the rest of the elements of
the vector are 0. For instance, when q = 4:

We denote the identity matrices of dimension q and
(q

2
)

by U1 and W1, respectively.
We also denote the vector 1q ∈ Rq as 1q = (1, . . . , 1)⊤. Furthermore, we define

U2 = 1q1⊤
q − Iq ∈ Sym(q),
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V1 =
q∑

i,j=1
i<j

Eij(ei + ej)⊤ ∈ R(q
2)×q,

V2 =
q∑

i,j=1
i<j

q∑
k=1

k /∈{i,j}

Eije⊤
k ∈ R(q

2)×q,

X1 =
q∑

i,j=1
i<j

Eij(ej − ei)⊤ ∈ R(q
2)×q.

Here Sym(q) and R(q
2)×q are the set of symmetric matrices of order q and the set of

matrices of order
(q

2
)
× q, respectively [9].

3. A-optimal design and equivalence theorem
Let us consider a regression model of the form

η(x) = f⊤(x)β, x ∈ Sq−1, (3.1)
where η(x), x, f(x) are the expected response, input variable, and regression function
respectively. Here we assume that all the responses are independent of each other and
have a constant variance. A continuous design ξ ∈ ∆ have the following form [8]:

ξ =
{

x(1) x(2) . . . x(m)
r1 r2 . . . rm

}
, x(j) ∈ Sq−1, 0 < rj < 1,

m∑
j=1

rj = 1,

where x(1), x(2), . . . , x(m) are different design points defined over Sq−1; rj is the weight
associated with the point x(j) , j = 1, 2, , m. Here ∆ is defined as the set of all continuous
designs. A non-singular information matrix for a design ξ ∈ ∆ can be defined as

M(ξ) =
m∑

j=1
rjf(x(j))f⊤(x(j))

over Sq−1.

Definition 3.1. A design ξ∗ ∈ ∆ with an information matrix M(ξ∗) for model Equa-
tion (3.1) is called A-optimal design if it minimizes Trace(M−1(ξ)) over the set ∆.

Definition 3.2. A saturated design for any regression model (with p number of parame-
ters) is a design which is supported on exactly p distinct support points [5].

The following equivalence theorem examines the necessary and sufficient conditions of
A-optimality over the simplex region Sq−1 [4].

Theorem 3.3. A continuous design ξ∗ ∈ ∆ is said to be an A-optimal design for the
model Equation (3.1) if and only if

Maxx∈Sq−1d(x, ξ∗) = Trace[M−1(ξ∗)], (3.2)
where d(x, ξ) = f⊤(x)M−2(ξ)f(x). Furthermore, the supremum exists at the support point
of ξ∗.

Selection of support points: The pioneer work on the construction of D-optimal
design for the cubic polynomial model without a 3-way effect was due to Kiefer [7].
He considered the initial design ξa

(
0 < a <

1
2

)
and obtained the D-optimal design for

the cubic model without a 3-way effect for the three-component mixture. The design

ξa

(
a = (1− 5−1/2)

2

)
that puts equal mass 1/9 to each of the three vertices x←→ (1, 0, 0)
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and six points of the form x←→ (a, 1−a, 0) is D-optimal design for the cubic model with-
out a 3-way effect. Here x ←→ (1, 0, 0) means the design point (1, 0, 0) and its permuta-
tions i.e., (0, 1, 0),(0, 0, 1). Similarly, x←→ (a, 1−a, 0) means the design point (a, 1−a, 0)
and its permutations i.e., (a, 0, 1− a), (0, a, 1− a), (1− a, a, 0), (1− a, 0, a), (0, 1− a, a).

We, therefore, consider the design ξa

(
0 < a <

1
2

)
that assign weight r1 to each of the

vertices i.e., x ←→ (1, 0, . . . , 0) and weight r2 to each of the points i.e., x ←→ (a, 1 −
a, . . . , 0) to construct a saturated A-optimal design for the cubic model without a 3-way
effect.

4. A-optimal design for cubic model without a 3-way effect
In this Section, we obtain A-optimal design for the cubic model without a 3-way effect

that can be represented as

η1 = f1
⊤(x)β1

=
q∑

i=1
βixi +

q∑
i<j

βijxixj +
q∑

i<j

δijxixj(xi − xj), (4.1)

where f1(x) and β1 are column vectors of length q2 and are defined as

f1(x) = (x1, x2, . . . , xq, x1x2, x1x3, . . . , xq−1xq, x1x2(x1 − x2),

x1x3(x1 − x3), . . . , xq−1xq(xq−1 − xq))⊤,

β1 = (β1, β2, . . . , βq, β12, β13, . . . , βq−1q, δ12, δ13, . . . , δq−1q)⊤.

The information matrix for the model Equation (4.1) is given by

M(ξ) =
m∑

i=1
rif1(x(i))f⊤

1 (x(i)). (4.2)

In the next theorem, we obtain the A-optimal allocation ξa for the model Equation (4.1).

Theorem 4.1. The design ξa that allocates weight
√

g1(a, q)
θ

to the support points x←→

(1, 0, . . . , 0) and allocates weight
√

g2(a, q)
θ

to the support points x←→ (a, 1− a, 0, . . . , 0)
is the A-optimal allocation, where

g1(a, q) = 1 + q − 1
2

1
a2(1− a)2 ,

g2(a, q) = 2a2 + 1− 2a

2a2(1− a)2(1− 2a)2 ,

and

θ = q
√

g1(a, q) + 2
(

q

2

)√
g2(a, q).

Proof. The information matrix of model Equation (4.1) for the design ξa is given by

M(ξa) =


a1U1 + a2U2

a2
2

V⊤
1 + 0V⊤

2 a3X1
⊤

a2
2

V1 + 0V2
a2

2
2r2

W1 0
a3X1 0 a4W1

 , (4.3)
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where 0 is a
(q

2
)
×
(q

2
)

square matrix having each entry equal to 0. Here the coefficients
are given by

a1= r1 + (q − 1)(1 + 2a(a− 1))r2
a2= −2a(a− 1)r2
a3= a(a− 1)(1− 2a)2r2
a4= 2a2(1− 3a + 2a2)2r2

 . (4.4)

The computation of the inverse of the information matrix i.e., M−1(ξa) for the model
Equation (4.1) is a quite difficult job. Thus, we compute Trace(M−1(ξa)) by considering
the sum of the variance of least square estimates of the unknown parameters of the cubic
model without a 3-way effect. The least square estimate (LSE) of the parameters of the
cubic model without a 3-way effect [2, 6] based on design ξa are

β̂i = η̂i; i = 1, 2, . . . , q,

β̂ij= − 1
2a(1− a)

(η̂i + η̂j) + 1
2a(1− a)

(η̂ij + η̂ji), i < j,

δ̂ij = 1
2a(1− a)

(η̂j − η̂i) + 1
2a(1− a)(1− 2a)

(η̂ji − η̂ij), i < j

 , (4.5)

where ηi is response to xi = 1, xj = 0, j ̸= i; i = 1, 2, . . . , q; ηij is response to xi = a,
xj = 1− a, xk = 0, k ̸= i, j; i ̸= j.

The variances of the LSEs given in Equation (4.5) are

var(β̂i) = σ2

r1
,

var(β̂ij)= 1
2a2(1− a)2

( 1
r1

+ 1
r2

)
σ2,

var(δ̂ij)=
( 1

2a2(1− a)2
1
r1

+ 1
2a2(1− a)2(1− 2a)2

1
r2

)
σ2


. (4.6)

Here the real-valued function Trace(M−1(ξa)) is proportional to the sum of the variances
of LSEs as given in Equation (4.6). Hence, we get

T = Trace(M−1(ξa))

= qvar(β̂i) +
(

q

2

)
var(β̂ij) +

(
q

2

)
var(δ̂ij)

∝ qg1(a, q) 1
r1

+ 2
(

q

2

)
g2(a, q) 1

r2
, (4.7)

where
g1(a, q) = 1 + q − 1

2
1

a2(1− a)2 ,

g2(a, q) = 2a2 + 1− 2a

2a2(1− a)2(1− 2a)2 .

Now, the problem is to minimize Equation (4.7) subject to the restriction of weights

qr1 + 2
(

q

2

)
r2 = 1.

To solve this problem, we use the Lagrangian multiplier method and set the Lagrangian
function as

Ψ = Trace(M−1(ξa)) + λ

[
qr1 + 2

(
q

2

)
r2 − 1

]
.
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By taking the partial derivatives of Ψ w.r.t r1, r2, and λ and set them equal to 0, we get

−qg1(a, q)
r2

1
+ λq = 0,

−2
(q

2
)
g2(a, q) 1

r2
1

+ 2λ
(q

2
)

= 0,

qr1 + 2
(q

2
)
r2 − 1 = 0

 . (4.8)

Solving the system of Equation (4.8), we get

r1 =
√

g1(a, q)
θ

, r2 =
√

g2(a, q)
θ

. (4.9)

Hence the theorem is proved. □

Next, we find the optimal values of r1, r2 (rounded off to the fourth place of the
decimal) and the corresponding value of the Trace(M−1(ξa)) for different values of a
using Equations (4.7) and (4.9). These values are provided in Table 2 (Appendix I)
for different values of q when 3 ≤ q ≤ 20. From Table 2, we observe that the design

ξa

(
a = 1− 5−1/2

2
= 0.276393

)
is a candidate design for the cubic model without a 3-way

effect. Let us denote this design by ξ∗.
In the next theorem, we shall prove that the design ξ∗ is the A-optimal design for the

model Equation (4.1).

Theorem 4.2. The design ξ∗ is the A-optimal design for the cubic model without a three-
way effect.

Proof. We use appropriate Matlab code by following the steps of Algorithm 1 (Appendix
I) and demonstrate numerically that

Maxx∈Sq−1d(x, ξ∗) = Trace(M−1(ξ∗)).

We also find that equality hold at the support points of the design ξ∗ only. The values
of Maxx∈Sq−1d(x, ξ∗) for different values of q for 3 ≤ q ≤ 20 are provided in column (11)
of Table 2 (Appendix I). This proves that the design ξ∗ is the A-optimal design for the
model Equation (4.1) in the class of all designs ∆. □

In the next Section, we calculate the A-efficiency of the D-optimal design for different
values of q to make a comparison between the A-optimal and D-optimal designs.

5. A-efficiency
Let us denote the A- and D-optimal designs for model Equation (4.1) by ξ∗

A and ξ∗
D

respectively. To compare the efficiency, we compute the A- efficiency of the design ξ∗
D for

various values of q. Here the A-efficiency of the design ξ∗
D is defined as

∆A(ξ∗
D) = Trace(M−1(ξ∗

A))
Trace(M−1(ξ∗

D))
.

These efficiency values are displayed in Table 1.
Table 1 shows that the A-efficiency of the D-optimal design continuously decreases as q

increases except when q = 4. This indicates that ξ∗
A can significantly improve the ability

of parameter estimation.
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Table 1. Values of ∆A(ξ∗
D) for the cubic model without a 3-way effect for various

values of q.

q ∆A(ξ∗
D)

3 99.31%
4 99.99%
5 99.58%
7 98.08%
10 95.91%
12 94.70%
15 93.21%
20 91.32%
30 88.84%
40 87.24%
50 86.09%

6. Conclusions
The present article obtains a saturated A-optimal design for the cubic model without

a 3-way effect with mixture experiment. It is established that the support points of the
corresponding D-optimal design are the support points of A-optimal design. Further, the
A-optimal design has higher efficiency than the corresponding D-optimal design and this
increase in efficiency becomes significant as the number of mixture components increases.
For the three-component mixture, we also examine that the derived A-optimal design for
the cubic model without a three-way effect are similar to the result obtained by Panda
and Sahoo [16].

Finding D- and A-optimal designs for the quartic mixture polynomial model will be
interesting. Work in this direction is currently under progess, and we hope to report these
findings in a future paper.
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APPENDIX I
Algorithm 1. Algorithm to demonstrate Equivalence theorem
Input:

Step 1. Set the value of q and a = 0.276393.
Step 2. Input the values of r1 from Column (4) and r2 from Column (7) using
Table 2 for the value a = 0.276393.
Step 3. Input the column vector

f1(x) = (x1, x2, . . . , xq, x1x2, x1x3, . . . , xq−1xq, x1x2(x1 − x2),

x1x3(x1 − x3), . . . , xq−1xq(xq−1 − xq))⊤,

1q = (1, . . . , 1)⊤.
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Step 4. Read the matrices U1 = Iq, W1 = I(q
2), U2 = 1q1⊤

q − Iq,

V1 =
q∑

i,j=1
i<j

Eij(ei + ej)⊤,

V2 =
q∑

i,j=1
i<j

q∑
k=1

k /∈{i,j}

Eije⊤
k ,

X1 =
q∑

i,j=1
i<j

Eij(ej − ei)⊤.

Computation:
Step 5. Determine the values of a1, a2, a3, and a4 by using the following formulae:

a1 = r1 + (q − 1)(1 + 2a(a− 1))r2,

a2 = −2a(a− 1)r2,

a3 = a(a− 1)(1− 2a)2r2,

a4 = 2a2(1− 3a + 2a2)2r2.

Step 6. Obtain the matrix

M(ξa) =


a1U1 + a2U2

a2
2

V⊤
1 + 0V⊤

2 a3X1
⊤

a2
2

V1 + 0V2
a2

2
2r2

W1 0
a3X1 0 a4W1

 .

Step 7. Find the functional form d(x, ξ∗) where d(x, ξ) = f⊤(x)M−2(ξ)f(x).
Step 8. Estimate the value of d(x, ξ∗) at the support points of the design ξ∗.
Step 9. Find Maxx∈Sq−1d(x, ξ∗).
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