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Abstract: This study delves into fundamental set properties within the framework of virtual fuzzy parameterized (VFP-)soft 
set theory. It provides a comprehensive examination of these properties, offering essential insights and considerations. The 
study also simplifies the definition of VFP-soft sets to streamline data analysis, making it more accessible and less complex. 
Furthermore, the paper explores the integration of two distinct approaches for parameter weighting in VFP-soft sets. Notably, 
the research introduces a novel decision-making algorithm grounded in VFP-soft sets and conducts a comparative analysis to 
evaluate its effectiveness. This work contributes to the field by enhancing the understanding of VFP-soft sets and their 
applications, while also providing a practical decision-making tool for real-world scenarios. 
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VFP-Esnek Kümelerle Yenilikçi Karar Verme: Karşılaştırmalı Bir Analiz 
 
Öz: Bu çalışma sanal bulanık parametreli (VFP-)yumuşak küme teorisi çerçevesinde temel küme özelliklerini incelemektedir. 
Bu özelliklerin kapsamlı bir incelemesini sağlayarak temel içgörüleri ve değerlendirmeleri sunar. Çalışma aynı zamanda veri 
analizini kolaylaştırmak için VFP-soft kümelerinin tanımını basitleştirerek onu daha erişilebilir ve daha az karmaşık hale 
getiriyor. Ayrıca makale, VFP-soft kümelerinde parametre ağırlıklandırmaya yönelik iki farklı yaklaşımın entegrasyonunu 
araştırıyor. Özellikle araştırma, VFP-soft kümelerine dayanan yeni bir karar verme algoritması sunmakta ve bunun etkinliğini 
değerlendirmek için karşılaştırmalı bir analiz gerçekleştirmektedir. Bu çalışma, VFP-soft kümelerinin ve uygulamalarının 
anlaşılmasını geliştirerek alana katkıda bulunurken, aynı zamanda gerçek dünya senaryoları için pratik bir karar verme aracı 
da sağlıyor. 
 
Anahtar kelimeler: Bulanık küme, esnek küme, VFP-esnek küme, algoritma, karar verme. 
 
1. Introduction 
 

Uncertainty is an important feature that must be addressed during data analysis to increase the robustness of 
the results. However, parsing the uncertainty of the data is generally not that easy. Therefore, many mathematical 
approaches based on the analysis of specific data may be insufficient to capture this component. Many theories 
have been introduced to deal with the uncertainty in the data. One of these theories is the fuzzy set (FS) theory, 
introduced to the literature by Zadeh [1] in 1965. In the following years, another important mathematical model 
of the effort to cope with uncertainty, the rough set (RS) theory [2] was proposed. However, FS and RS theories 
are difficult to apply objectively to uncertainty problems. Molodtsov [3], who thinks that the reason for this 
difficulty is due to the lack of a parameterization tool, proposed the soft set (SS) theory in 1999. Then, Maji et al. 
[4] defined the basic operations of SSs in order to make a detailed theoretical study on SSs. In addition, in the 
following years, Maji et al. [5] defined the concept of fuzzy soft sets (FSS) and gave an application based on FSS 
theory for a decision-making problem in [6]. In addition, Çağman and Enginoğlu [7] have worked on soft decision-
making problems and Çağman et al. proposed an application of SS theory for a decision-making problem in [8]. 
On the other hand, Chen et al. [9] discussed the parameterization reduction and applications of SS. Moreover, an 
adjustable approach for FSS based on decision-making has been given by Feng et al. [10]. Later, Çağman et al. 
presented a new perspective on FSSs in their studies [11]. The combination of SS and FSS theories enabled the 
development of different algorithms for solving uncertainty problems [12-21]. 

In the following years, Çağman [22] defined the concept of fuzzy parameterized (FP-)soft set (FPSS) in order 
to achieve near ideal results for uncertainty problems encountered in almost every field. However, FPSSs were 
insufficient to express this situation when the uncertainty consisted of more than one stage. In order to overcome 
this deficiency, virtual fuzzy parameterized (VFP)-soft sets (VFPSSs) were proposed by Dalkılıç and Demirtaş 
[23] in 2021. This set theory [23] consists of lower and upper approximate functions in expressing more than one 
stage, so three FP-soft sets can be evaluated. This novel set theory incorporated lower and upper approximate 
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functions, facilitating evaluation across multiple stages of uncertainty, effectively surpassing the limitations of 
FPSSs. Motivated by the need for a comprehensive approach to uncertainty management, this study revisits VFP-
soft sets, aiming to streamline their representation and enhance their utility in decision-making contexts. The 
primary motivations and contributions of this paper are outlined as follows: 
 

• Simplification of Complex Structures: We propose a streamlined representation of VFP-soft sets to 
tackle complex data, enhancing accessibility and usability. 

 
• Exploration of Incomplete Operations: We examine incomplete basic set operations on VFP-soft sets, 

contributing to the ongoing development of the theory and expanding its applicability. 
 

• Development of a New Decision-Making Algorithm: We present a novel decision-making algorithm 
leveraging fuzzy decision sets. Notably, this algorithm integrates the importance weights of parameters, 
accommodating two distinct approaches within VFP-soft sets. The most important feature of this 
algorithm is that it also considers the importance weights of the parameters for VFP-soft sets that focus 
on two different approaches. 

 
Through this study, we aim to provide a comprehensive overview of VFP-soft sets, elucidating their potential 

in addressing uncertainty challenges. A short representation is expressed for this analyzed set theory and some 
new properties and remarks were included. Additionally, we introduce a new algorithm tailored to optimize 
decision-making processes within this framework, offering a comparative analysis with existing methodologies 
[23]. By addressing these key points, we endeavor to enhance the understanding and applicability of VFP-soft sets, 
ultimately contributing to more effective uncertainty management across diverse domains. 
 
2. Preliminaries 
 

In this section, some definitions and results are reminded. Detailed explanations related to VFPSSs can be 
found in [23]. 
 

Throughout this paper, let 𝑈 = {𝑢!, 𝑢", … } be a universe set, 𝑃 = {𝑝!, 𝑝", … } be a set of parameters and 𝑋 be 
a FS over 𝑃. In this case, the lower virtual parameter set and the upper virtual parameter set are expressed as  𝑃 =
+𝑝!

#! , 𝑝"
#" , … , and 𝑃 = +𝑝!

#! , 𝑝"
#" , … ,, respectively. Also, let 2$ denote the power set of 𝑈 and ∅ ≠ 𝐴 ⊆ 𝑃. 

 
Definition 1. [1] A FS 𝑋 over 𝑈 is a set defined by 𝜇%: 𝑈 → [0,1]. 𝜇% is called the membership function of 𝑋, and 
the value 𝜇%(𝑢) is called the grade of membership of 𝑢 ∈ 𝑈. Thus, as given in Equation (1), a FS 𝑋 over 𝑈 can be 
represented as follows: 
 
𝑋 = {(𝜇%(𝑢)/𝑢): 𝑢 ∈ 𝑈, 𝜇%(𝑢) ∈ [0,1]}.                                                                                                                     (1) 
    
Definition 2. [3] A pair (𝐹, 𝑃) is called a SS over 𝑈, where 𝐹 is a mapping given by 𝐹: 𝑃 → 2$. In other words, a 
SS over 𝑈 is a parameterized family of subsets of 𝑈 for 𝑝 ∈ 𝑃, 𝐹(𝑝) may be considered as the set of 𝑝-approximate 
elements of (𝐹, 𝑃). 
 
Definition 3. [22] A FPSS 𝛷% on 𝑈 is defined by the set of ordered pairs, given in Equation (2) 
 

𝛷% = ?@&#(()
(

, 𝜑%(𝑝)B : 𝑝 ∈ 𝑃, 𝜇%(𝑝) ∈ [0,1]C,                                                                                                                  (2) 

 
where the function 𝜑%: 𝑃 → 2$ is called approximate function such that 𝜑%(𝑝) = ∅ if 𝜇%(𝑝) = 0, and the function 
𝜇%: 𝑈 → [0,1] is called membership function of FPSS 𝛷%. 
 

State that the set of all FPSSs over 𝑈 will be denoted by 𝐹𝑃𝑆(𝑈). 
 
Definition 4. [22] Let 𝛷% ∈ 𝐹𝑃𝑆(𝑈). Then a fuzzy decision set of 𝛷%, denoted by 𝛷%*, is defined by Equation (3). 
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𝛷%* = +𝜇+#$(𝑢)/𝑢: 𝑢 ∈ 𝑈,                                                                                                                                            (3) 
 
which is a FS over 𝑈, its membership function 𝜇+#$  is defined by 𝜇+#$ : 𝑈 → [0,1], given in Equation (4) 
 
𝜇+#$(𝑢) =

!
|-.(((%)|

∑ 𝜇%(𝑝)𝜒/#(()(𝑢)(∈-.(((%)                                                                                                                 (4) 
 
where 𝑠𝑢𝑝𝑝(𝑋) is the support set of 𝑋, 𝜑%(𝑝) is the crisp subset determined by the parameter 𝑝 and 
 

𝜒/#(()(𝑢) = H1,				𝑢 ∈ 𝜑%
(𝑝)

0,				𝑢 ∉ 𝜑%(𝑝)
.                                                                                                                                           (5) 

 
as given in Equation (5). 
 
Definition 5. [23] Let 𝑋, 𝑋, 𝑋 be a FS over 𝑃, 𝑃, 𝑃, respectively. Thus, in Equations (6), (7), (8) and (9), a VFPSS 
𝛹% over 𝑈 is defined as follows: 
 
 𝛹% = 𝛶% ∪ 𝛶% ∪ 𝛶%                                                                                                                                                            (6) 
 
such that 
 

𝛶% = ?@&#(()1#
(

, 𝜓%(𝑝#)B : 𝑝# ∈ 𝑃, 𝑝 ∈ 𝑃, 𝜇%(𝑝) ∈ [0,1], 0 ≤ 𝛼 < 𝜇%(𝑝)C,                                                               (7) 

 

𝛶% = ?@&#(()
(

, 𝜓%(𝑝)B : 𝑝 ∈ 𝑃, 𝜇%(𝑝) ∈ [0,1]C,                                                                                                              (8) 

 

𝛶% = ?@&#(()2#
(

, 𝜓%R𝑝#SB : 𝑝 ∈ 𝑃, 𝑝# ∈ 𝑃, 𝜇%(𝑝) ∈ [0,1], 0 ≤ 𝛼 ≤ 1 − 𝜇%(𝑝)C,                                                            (9) 

 
where the functions 𝜓%: 𝑃 → 2$, 𝜓%: 𝑃 → 2$, 𝜓%: 𝑃 → 2$ are called lower approximate function, approximate 
function, upper approximate function, respectively, and the functions 𝜇%: 𝑃 → [0,1] is called membership function 
of the set 𝑋. Here 𝜓%(𝑝) = ∅ if 𝜇%(𝑝) = 0. Moreover, 𝜓%(𝑝#) = ∅ if 𝜇%(𝑝) − 𝛼 = 0 and 𝜓%R𝑝#S = ∅ if 𝜇%(𝑝) +
𝛼 = 0. 
 
Obviously, each ordinary SSs can be written as VFPSSs. 
 
From now on, 𝑉𝐹𝑃𝑆(𝑈) denotes the family of all VFPSSs over 𝑈 with 𝑃 as the set of parameters. 
 
Example 1. Let 𝑈 = {𝑢!, 𝑢", 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7} be an universe set, 𝑃 = {𝑝!, 𝑝", 𝑝3, 𝑝4} be the set of parameters and 
𝑋 = {0.45/𝑝", 0.6/𝑝4} be a FS over 𝑃. If 𝑋 = {0.32/𝑝", 0.24/𝑝4}, 𝑋 = {0.8/𝑝", 0.92/𝑝4}, and 
 

𝜓%(𝑝"8.!3) = {𝑢", 𝑢4, 𝑢5, 𝑢6, 𝑢7},										𝜓%(𝑝48.36) = {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢6}, 
𝜓%(𝑝") = {𝑢", 𝑢5, 𝑢6, 𝑢7},										𝜓%(𝑝4) = {𝑢", 𝑢3, 𝑢5, 𝑢6}, 
𝜓%(𝑝"8.35) = {𝑢5, 𝑢6, 𝑢7},										𝜓%(𝑝48.3") = {𝑢3, 𝑢5, 𝑢6}, 

 
then the VFPSS 𝛹% is written by 
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𝛹% = ^
(0.32/𝑝", {𝑢", 𝑢4, 𝑢5, 𝑢6, 𝑢7}), (0.24/𝑝4, {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢6})

(0.45/𝑝", {𝑢", 𝑢5, 𝑢6, 𝑢7}), (0.6/𝑝4, {𝑢", 𝑢3, 𝑢5, 𝑢6})
(0.8/𝑝", {𝑢5, 𝑢6, 𝑢7}), (0.92/𝑝4, {𝑢3, 𝑢5, 𝑢6})

_ 

where  
 

𝛶% = {(0.32/𝑝", {𝑢", 𝑢4, 𝑢5, 𝑢6, 𝑢7}), (0.24/𝑝4, {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢6})}, 
 

𝛶% = {(0.45/𝑝", {𝑢", 𝑢5, 𝑢6, 𝑢7}), (0.6/𝑝4, {𝑢", 𝑢3, 𝑢5, 𝑢6})} 
 
and 

𝛶% = {(0.8/𝑝", {𝑢5, 𝑢6, 𝑢7}), (0.92/𝑝4, {𝑢3, 𝑢5, 𝑢6})}. 
 
Definition 6. [23] Let 𝛹% ∈ 𝑉𝐹𝑃𝑆(𝑈). 
 

i. If 𝜓%(𝑝#) = 𝜓%(𝑝) = 𝜓%R𝑝#S = ∅ for all 𝑝# ∈ 𝑃, 𝑝 ∈ 𝑃, 𝑝# ∈ 𝑃, then VFPSS 𝛹% is called an 𝑋-
empty VFPSS, denoted by 𝛹∅#. If 𝑋 = ∅, then 𝛹% is called an empty VFPSS, denoted by 𝛹∅. 

 
ii. If 𝑋, 𝑋, 𝑋 is a crisp subset of 𝑃, 𝑃, 𝑃, respectively, and 𝜓%(𝑝#) = 𝜓%(𝑝) = 𝜓%R𝑝#S = 𝑈 for all 

𝑝# ∈ 𝑃, 𝑝 ∈ 𝑃, 𝑝# ∈ 𝑃, then VFPSS 𝛹% is called an 𝑋-universal VFPSS, denoted by 𝛹%; . If 𝑋 = 𝑃, 
then the 𝑋-universal VFPSS is called universal VFPSS, denoted by 𝛹<; . 

 
Definition 7. [23] Let 𝛹%, 𝛹= ∈ 𝑉𝐹𝑃𝑆(𝑈). Then, 𝛹% is a VFP-soft subset of 𝛹=, denoted by 𝛹% ⊑a 𝛹=, if 
 

i. 𝜇%(𝑝) − 𝛼 ≤ 𝜇=(𝑝) − 𝛽 and 𝜓%(𝑝#) ⊆ 𝜓=R𝑝
>S for all 𝑝# , 𝑝> ∈ 𝑃, 

ii. 𝜇%(𝑝) ≤ 𝜇=(𝑝) and 𝜓%(𝑝) ⊆ 𝜓=(𝑝) for all 𝑝 ∈ 𝑃, 
iii. 𝜇%(𝑝) + 𝛼 ≤ 𝜇=(𝑝) + 𝛽 and 𝜓%R𝑝#S ⊆ 𝜓= c𝑝>d for all 𝑝# , 𝑝> ∈ 𝑃. 

 
Also, 𝛹% is a VFP-soft equal to 𝛹=, denoted by 𝛹% = 𝛹=, if 
 

i. 𝜇%(𝑝) − 𝛼 = 𝜇=(𝑝) − 𝛽 and 𝜓%(𝑝#) = 𝜓=R𝑝
>S for all 𝑝# , 𝑝> ∈ 𝑃, 

ii. 𝜇%(𝑝) = 𝜇=(𝑝) and 𝜓%(𝑝) = 𝜓=(𝑝) for all 𝑝 ∈ 𝑃, 
iii. 𝜇%(𝑝) + 𝛼 = 𝜇=(𝑝) + 𝛽 and 𝜓%R𝑝#S = 𝜓= c𝑝>d for all 𝑝# , 𝑝> ∈ 𝑃. 

Proposition 1. [23] Let 𝛹% ∈ 𝑉𝐹𝑃𝑆(𝑈). 𝑠 c	𝜓%R𝑝#Sd ⊆ 𝑠R𝜓=(𝑝)S ⊆ 𝑠 e𝜓%(𝑝#)f is valid for all 𝑝# ∈ 𝑃, 𝑝 ∈

𝑃, 𝑝# ∈ 𝑃. 
 
Definition 8. [23] Let 𝛹% ∈ 𝑉𝐹𝑃𝑆(𝑈). Then, complement 𝛹%, denoted by 𝛹%?, is a VFPSS defined by the 
approximate and membership functions as 
 

i. 𝜇%%(𝑝) − 𝛼g = 1 − R𝜇%(𝑝) − 𝛼S and 𝜓%%R𝑝#@S = 𝑈/𝜓%(𝑝#) for all 𝑝# , 𝑝#@ ∈ 𝑃, 
ii. 𝜇%%(𝑝) = 1 − 𝜇%(𝑝) and 𝜓%%(𝑝) = 𝑈/𝜓%(𝑝) for all 𝑝 ∈ 𝑃, 

iii. 𝜇%%(𝑝) + 𝛼h = 1 − (𝜇%(𝑝) + 𝛼) and 𝜓%% c𝑝#
Ad = 𝑈/𝜓%R𝑝#S for all 𝑝# , 𝑝#A ∈ 𝑃. 

 
Definition 9. [23] Let 𝛹%, 𝛹= ∈ 𝑉𝐹𝑃𝑆(𝑈). Then, union 𝛹% and 𝛹=, denoted by 𝛹% ⊔a 𝛹=, is defined by 
 

i. 𝜇%∪=(𝑝) − 𝛾 = 𝑚𝑎𝑥 +𝜇%(𝑝) − 𝛼, 𝜇=(𝑝) − 𝛽, and 𝜓%∪=(𝑝C) = 𝜓%(𝑝#) ∪ 𝜓=R𝑝
>S for all 𝑝# , 𝑝> , 𝑝C ∈

𝑃, 
ii. 𝜇%∪=(𝑝) = 𝑚𝑎𝑥{𝜇%(𝑝), 𝜇=(𝑝)} and 𝜓%∪=(𝑝) = 𝜓%(𝑝) ∪ 𝜓=(𝑝) for all 𝑝 ∈ 𝑃, 
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iii. 𝜇%∪=(𝑝) + 𝛾 = 𝑚𝑎𝑥n𝜇%(𝑝) + 𝛼, 𝜇=(𝑝) + 𝛽o and 𝜓%∪=R𝑝CS = 𝜓%R𝑝#S ∪ 𝜓= c𝑝>d for all 𝑝# , 𝑝> , 𝑝C ∈
𝑃. 

 
Definition 10. [23] Let 𝛹%, 𝛹= ∈ 𝑉𝐹𝑃𝑆(𝑈). Then, intersection 𝛹% and 𝛹=, denoted by 𝛹% ⊓a 𝛹=, is defined by 
 

i. 𝜇%∩=(𝑝) − 𝛾 = 𝑚𝑖𝑛 +𝜇%(𝑝) − 𝛼, 𝜇=(𝑝) − 𝛽, and 𝜓%∩=(𝑝C) = 𝜓%(𝑝#) ∩ 𝜓=R𝑝
>S for all 𝑝# , 𝑝> , 𝑝C ∈ 𝑃, 

ii. 𝜇%∩=(𝑝) = 𝑚𝑖𝑛{𝜇%(𝑝), 𝜇=(𝑝)} and 𝜓%∩=(𝑝) = 𝜓%(𝑝) ∩ 𝜓=(𝑝) for all 𝑝 ∈ 𝑃, 
iii. 𝜇%∩=(𝑝) + 𝛾 = 𝑚𝑖𝑛n𝜇%(𝑝) + 𝛼, 𝜇=(𝑝) + 𝛽o and 𝜓%∩=R𝑝CS = 𝜓%R𝑝#S ∩ 𝜓= c𝑝>d for all 𝑝# , 𝑝> , 𝑝C ∈

𝑃. 
 
3. On VFP-Soft Sets 
 

In this section; in order to avoid complex representations in data analysis, a simpler representation for VFP-
soft sets is proposed. Moreover, some new properties of VFP-soft sets are studied. In addition, a fuzzy decision 
set is given for the decision-making algorithm built in the next section. 
 
Definition 11. Let 𝛹% ∈ 𝑉𝐹𝑃𝑆(𝑈). The presentation of  
 

𝛹% =

⎩
⎪⎪
⎨

⎪⎪
⎧@&#(()1#

(
, 𝜓%(𝑝#)B ∪

@&#(()
(

, 𝜓%(𝑝)B ∪

@&#(()2#(
, 𝜓%R𝑝#SB

:
𝑝# ∈ 𝑃
𝑝 ∈ 𝑃
𝑝# ∈ 𝑃

,
0 ≤ 𝛼 < 𝜇%(𝑝)
𝜇%(𝑝) ∈ [0,1]

0 ≤ 𝛼 ≤ 1 − 𝜇%(𝑝)

⎭
⎪⎪
⎬

⎪⎪
⎫

                                                                                        (10) 

 
is said to be a short representation of VFPSS 𝛹% as given in Equation (10). Here, the internal structure of the set 
expressed in (10) denotes the union of the sets (7), (8) and (9). It is the same as the definition of VFP-soft set given 
in Definition 5, but this representation is shorter and clearer. In this way, it is aimed to express indefinite data sets 
more easily.                                  
 
 
Remark 1. 𝛹% ⊑a 𝛹= does not imply that every element of 𝛹% is an element of 𝛹=. For example, let’s consider the 
VFPSSs 𝛹= given below and 𝛹% of Example 1, 
 

𝛹% = ^
(0.32/𝑝", {𝑢", 𝑢4, 𝑢5, 𝑢6, 𝑢7}), (0.24/𝑝4, {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢6})

(0.45/𝑝", {𝑢", 𝑢5, 𝑢6, 𝑢7}), (0.6/𝑝4, {𝑢", 𝑢3, 𝑢5, 𝑢6})
(0.8/𝑝", {𝑢5, 𝑢6, 𝑢7}), (0.92/𝑝4, {𝑢3, 𝑢5, 𝑢6})

_, 

 

𝛹= = ^
(0.5/𝑝", {𝑢!, 𝑢", 𝑢4, 𝑢5, 𝑢6, 𝑢7}), (0.4/𝑝4, {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢6, 𝑢7})

(0.65/𝑝", {𝑢", 𝑢5, 𝑢6, 𝑢7}), (0.7/𝑝4, {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢6})
(0.9/𝑝", {𝑢5, 𝑢6, 𝑢7}), (0.95/𝑝4, {𝑢", 𝑢3, 𝑢5, 𝑢6})

_. 

 
Then, for 𝑝4 
 

i. 0.24 = 𝜇%(𝑝4) − 0.36 ≤ 𝜇=(𝑝4) − 0.3 = 0.4 and 𝜓%(𝑝48.36) ⊆ 𝜓=(𝑝48.3) for 𝑝48.36, 𝑝48.3 ∈ 𝑃, 
ii. 0.6 = 𝜇%(𝑝4) ≤ 𝜇=(𝑝4) = 0.7 and 𝜓%(𝑝) ⊆ 𝜓=(𝑝) for all 𝑝 ∈ 𝑃, 

iii. 0.92 = 𝜇%(𝑝4) + 0.32 ≤ 𝜇=(𝑝4) + 0.25 = 0.95 and 𝜓%(𝑝48.3") ⊆ 𝜓=(𝑝48."5) for 𝑝48.3", 𝑝48."5 ∈ 𝑃. 
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It can be shown similarly for 𝑝". Therefore, 𝛹% ⊑a 𝛹=. It is clear that (0.24/𝑝4, {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢6}) ∈ 𝛹% but 
(0.24/𝑝4, {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢6}) ∉ 𝛹=.  
 
Proposition 2. Let 𝛹%, 𝛹= ∈ 𝑉𝐹𝑃𝑆(𝑈). Then, 
 

i. 𝛹∅ ⊑a 𝛹% ⊑a 𝛹% ⊑a 𝛹<; , 
ii. If 𝛹% ⊑a 𝛹= and 𝛹= ⊑a 𝛹E, then 𝛹% ⊑a 𝛹E, 

iii. If 𝛹% = 𝛹= and 𝛹= = 𝛹E, then 𝛹% = 𝛹E, 
iv. If 𝛹% ⊑a 𝛹= and 𝛹= ⊑a 𝛹%, then 𝛹% = 𝛹=. 

 
Proof. They can be proved easily by using the approximate and membership functions of the VFPSSs. 
 
Remark 2. Let 𝛹% ∈ 𝑉𝐹𝑃𝑆(𝑈). If 𝛹∅ ≠ 𝛹% ≠ 𝛹<; , then 𝛹% ⊔a 𝛹%? ≠ 𝛹<;  and 𝛹% ⊓a 𝛹%? ≠ 𝛹∅. 
 
Proposition 3. Let 𝛹%, 𝛹= ∈ 𝑉𝐹𝑃𝑆(𝑈). Then De Morgan’s laws are valid 
 

i. (𝛹% ⊔a 𝛹=)? = 𝛹%? ⊓a 𝛹=?, 
ii. (𝛹% ⊓a 𝛹=)? = 𝛹%? ⊔a 𝛹=?. 

 
Proof. For all 𝑝# ∈ 𝑃, 𝑝 ∈ 𝑃, 𝑝# ∈ 𝑃; 
 

i. 𝜇(%∪=)%(𝑝) − 𝛾g = 1 − c𝜇%∪=(𝑝) − 𝛾d = 1 −𝑚𝑎𝑥 +𝜇%(𝑝) − 𝛼, 𝜇=(𝑝) − 𝛽, = 𝑚𝑖𝑛 +1 −

																																	R𝜇%(𝑝) − 𝛼S, 1 − c𝜇=(𝑝) − 𝛽d, = 𝑚𝑖𝑛 +𝜇%%(𝑝) − 𝛼g, 𝜇=%(𝑝) − 𝛽|, =
																																		𝜇%%∩=%(𝑝) − 𝛾g 

ii. 𝜇(%∪=)%(𝑝) = 1 − 𝜇%∪=(𝑝) = 1 −𝑚𝑎𝑥{𝜇%(𝑝), 𝜇=(𝑝)} = 𝑚𝑖𝑛{1 − 𝜇%(𝑝), 1 − 𝜇=(𝑝)} =
																						𝑚𝑖𝑛{𝜇%%(𝑝), 𝜇=%(𝑝)} = 𝜇%%∩=%(𝑝)																									 

iii. 𝜇(%∪=)%(𝑝) + 𝛾| = 1 − (𝜇%∪=(𝑝) + 𝛾) = 1 −𝑚𝑎𝑥n𝜇%(𝑝) + 𝛼, 𝜇=(𝑝) + 𝛽o = 𝑚𝑖𝑛n1 −

																																	(𝜇%(𝑝) + 𝛼), 1 − R𝜇=(𝑝) + 𝛽So = 𝑚𝑖𝑛 +𝜇%%(𝑝) + 𝛼h, 𝜇=%(𝑝) + 𝛽
h, =

																																		𝜇%%∩=%(𝑝) + 𝛾|  
and 
 

i. 𝜓(%∪=)%R𝑝C
@S = 𝑈 ∖ 𝜓%∪=(𝑝C) = 𝑈 ∖ e𝜓%(𝑝#) ∪ 𝜓=R𝑝

>Sf = e𝑈 ∖ 𝜓%(𝑝#)f ∩ e𝑈 ∖

																														𝜓=R𝑝
>Sf = 𝜓%%R𝑝#@S ∩ 𝜓=% c𝑝

>Ad = 𝜓%%∩=%R𝑝C
@S 

ii. 𝜓(%∪=)%(𝑝) = 𝑈 ∖ 𝜓%∪=(𝑝) = 𝑈 ∖ R𝜓%(𝑝) ∪ 𝜓=(𝑝)S = R𝑈 ∖ 𝜓%(𝑝)S ∩ R𝑈 ∖ 𝜓=(𝑝)S =
																										𝜓%%(𝑝) ∩ 𝜓=%(𝑝) = 𝜓%%∩=%(𝑝) 

iii. 𝜓(%∪=)% c𝑝C
Ad = 𝑈 ∖ 𝜓%∪=R𝑝CS = 𝑈 ∖ e𝜓%R𝑝#S ∪ 𝜓= c𝑝>df = c𝑈 ∖ 𝜓%R𝑝#Sd ∩ e𝑈 ∖ 𝜓= c𝑝>df =

𝜓%% c𝑝#
Ad ∩ 𝜓=% c𝑝>

A
d = 𝜓%%∩=% c𝑝C

Ad 
 
Likewise, the proof of (ii) can be made similarly. 
Proposition 4. Let 𝛹% ∈ 𝑉𝐹𝑃𝑆(𝑈). Then, 
 

i. (𝛹%?	)? = 𝛹%, 
ii. 𝛹∅? = 𝛹<; . 

 
Proof. Straightforward. 
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Proposition 5. Let 𝛹%, 𝛹=, 𝛹E ∈ 𝑉𝐹𝑃𝑆(𝑈). Then, 
 

i. 𝛹% ⊔a (𝛹= ⊓a 𝛹E) = (𝛹% ⊔a 𝛹=) ⊓a (𝛹% ⊔a 𝛹E), 
ii. 𝛹% ⊓a (𝛹= ⊔a 𝛹E) = (𝛹% ⊓a 𝛹=) ⊔a (𝛹% ⊓a 𝛹E). 

 
Proof. For all 𝑝# ∈ 𝑃, 𝑝 ∈ 𝑃, 𝑝# ∈ 𝑃 
 

i. 𝜇%∪(=∩E)(𝑝) − 𝛼!,",3 = 𝑚𝑎𝑥 +𝜇%(𝑝) − 𝛼!, 𝜇=∩E(𝑝) − 𝛼",3, = 𝑚𝑎𝑥 H𝜇%(𝑝) − 𝛼!, 𝑚𝑖𝑛 +𝜇=(𝑝) −

𝛼", 𝜇E(𝑝) − 𝛼3,~ = 𝑚𝑖𝑛 H𝑚𝑎𝑥 +𝜇%(𝑝) − 𝛼!, 𝜇=(𝑝) − 𝛼", ,𝑚𝑎𝑥 +𝜇%(𝑝) − 𝛼!, 𝜇E(𝑝) − 𝛼3,~ =

𝑚𝑖𝑛 +𝜇%∪=(𝑝) − 𝛼!,", 𝜇%∪E(𝑝) − 𝛼!,3, = 𝜇(%∪=)∩(%∪E)(𝑝) − 𝛼!,",3 
ii. 𝜇%∪(=∩E)(𝑝) = 𝑚𝑎𝑥{𝜇%(𝑝), 𝜇=∩E(𝑝)} = 𝑚𝑎𝑥n𝜇%(𝑝),𝑚𝑖𝑛{𝜇=(𝑝), 𝜇E(𝑝)}o =

𝑚𝑖𝑛n𝑚𝑎𝑥{𝜇%(𝑝), 𝜇=(𝑝)},𝑚𝑎𝑥{𝜇%(𝑝), 𝜇E(𝑝)}o = 𝑚𝑖𝑛{𝜇%∪=(𝑝), 𝜇%∪E(𝑝)} = 𝜇(%∪=)∩(%∪E)(𝑝) 
iii. 𝜇%∪(=∩E)(𝑝) + 𝛼!,",3 = 𝑚𝑎𝑥n𝜇%(𝑝) + 𝛼!, 𝜇=∩E(𝑝) + 𝛼",3o = 𝑚𝑎𝑥n𝜇%(𝑝) + 𝛼!, 𝑚𝑖𝑛{𝜇=(𝑝) +

𝛼", 𝜇E(𝑝) + 𝛼3}o = 𝑚𝑖𝑛n𝑚𝑎𝑥{𝜇%(𝑝) + 𝛼!, 𝜇=(𝑝) + 𝛼"},𝑚𝑎𝑥{𝜇%(𝑝) + 𝛼!, 𝜇E(𝑝) + 𝛼3}o =
𝑚𝑖𝑛n𝜇%∪=(𝑝) + 𝛼!,", 𝜇%∪E(𝑝) + 𝛼!,3o = 𝜇(%∪=)∩(%∪E)(𝑝) + 𝛼!,",3 

 
and 
 

i. 𝜓%∪(=∩E)R𝑝
#!,",'S = 𝜓%(𝑝

#!) ∪ 𝜓=∩ER𝑝
#",'S = 𝜓%(𝑝

#!) ∪ e𝜓=(𝑝
#") ∩ 𝜓E(𝑝

#')f = e𝜓%(𝑝
#!) ∪

𝜓=(𝑝
#")f ∩ e𝜓%(𝑝

#!) ∪ 𝜓E(𝑝
#')f = 𝜓%∪=R𝑝

#!,"S ∩ 𝜓%∪ER𝑝
#!,'S = 𝜓(%∪=)∩(%∪E)R𝑝

#!,",'S 

ii. 𝜓%∪(=∩E)(𝑝) = 𝜓%(𝑝) ∪ 𝜓=∩E(𝑝) = 𝜓%(𝑝) ∪ R𝜓=(𝑝) ∩ 𝜓E(𝑝)S = R𝜓%(𝑝) ∪ 𝜓=(𝑝)S ∩ R𝜓%(𝑝) ∪
𝜓E(𝑝)S = 𝜓%∪=(𝑝) ∩ 𝜓%∪E(𝑝) = 𝜓(%∪=)∩(%∪E)(𝑝) 

iii. 𝜓%∪(=∩E)R𝑝#!,",'S = 𝜓%R𝑝#!S ∪ 𝜓=∩ER𝑝#",'S = 𝜓%R𝑝#!S ∪ c𝜓=R𝑝#"S ∩ 𝜓ER𝑝#'Sd = c𝜓%R𝑝#!S ∪

𝜓=R𝑝#"Sd ∩ c𝜓%R𝑝#!S ∪ 𝜓ER𝑝#'Sd = 𝜓%∪=R𝑝#!,"S ∩ 𝜓%∪ER𝑝#!,'S = 𝜓(%∪=)∩(%∪E)R𝑝#!,",'S 
 
Likewise, the proof of (ii) can be made in a similar way. 
 
Proposition 6. Let 𝛹%, 𝛹=, 𝛹E ∈ 𝑉𝐹𝑃𝑆(𝑈). Then, 
 

i. 𝛹% ⊔a 𝛹% = 𝛹% and 𝛹% ⊓a 𝛹% = 𝛹%, 
ii. 𝛹% ⊔a 𝛹∅ = 𝛹% and 𝛹% ⊓a 𝛹∅ = 𝛹∅, 

iii. 𝛹% ⊔a 𝛹<; = 𝛹<;  and 𝛹% ⊓a 𝛹<; = 𝛹%, 
iv. 𝛹% ⊔a 𝛹= = 𝛹= ⊔a 𝛹% and 𝛹% ⊓a 𝛹= = 𝛹= ⊓a 𝛹%, 
v. (𝛹% ⊔a 𝛹=) ⊔a 𝛹E = 𝛹% ⊔a (𝛹= ⊔a 𝛹E)  and (𝛹% ⊓a 𝛹=) ⊓a 𝛹E = 𝛹% ⊓a (𝛹= ⊓a 𝛹E). 

 
Proof. The proofs can be easily obtained from Definition 8 and 9. 
 
Definition 12. Let 𝛹% ∈ 𝑉𝐹𝑃𝑆(𝑈). Then a fuzzy decision set of 𝛹%, denoted by 𝛹%*, is defined by Equations (11), 
(12), (13), (14) and (15) 
 
𝛹%* = +𝜇G#$(𝑢)/𝑢: 𝑢 ∈ 𝑈,                                                                                                                                                   (11) 
 
which is a FS over 𝑈 and 𝜇G#$ is defined by 𝜇G#$: 𝑈 → [0,1], (as shown in Equation (12), (13), (14) and (15)) 
 

𝜇G#$(𝑢) =
!
3
@∑

H&#(()1#I	K(#)*+,
(.)

LM%M(+∈% +∑
&#(()	K(#(*)(.)

L|%|(∈% +∑
(&#(()2#)	K(#/*+0

(.)

LM%M(+∈% B                               (12) 



Innovative Decision-Making with VFP-Soft Sets: A Comparative Analysis 
 

116 
 
 

where �𝑋�, |𝑋|, �𝑋� are the cardinality of 𝑋, 𝑋, 𝑋 and 
 

𝜒N#((+)(𝑢) = ?
1,				𝑢 ∈ 𝜓%(𝑝#)
0,				𝑢 ∉ 𝜓%(𝑝#)

                                                                                                                                    (13) 

 

𝜒N#(()(𝑢) = H1,				𝑢 ∈ 𝜓%
(𝑝)

0,				𝑢 ∉ 𝜓%(𝑝)
			                                                                                                                                     (14) 

 

𝜒N#O(+P(𝑢) = ?
1,				𝑢 ∈ 𝜓%R𝑝#S
0,				𝑢 ∉ 𝜓%R𝑝#S

                                                                                                                              (15) 

 
Here, 𝑤,𝑤,𝑤 represent the total weight of objects with membership degrees 𝜇%(𝑝) − 𝛼, the total weight of 

objects with membership degrees 𝜇%(𝑝), the total weight of objects with membership degrees 𝜇%(𝑝) + 𝛼, 
respectively, for all 𝑝 ∈ 𝑃 and 𝑤,𝑤,𝑤 ∈ ℝ2. 
 
Remark 3. As the membership degree of a parameter in Proposition 1 decreases, the number of objects that provide 
that parameter increases. For this reason, when we increase the membership degree, it is clear that there should be 
a relationship w < 𝑤 < w between the total weights in order to highlight the objects that still provide that 
parameter. So the choice of weights is not random. In this case, if there is a contrary situation between the total 
weights, it becomes difficult to highlight the best objects that meet the desired parameters. 
 
4. Numerical Example 
 

In this section, a decision-making algorithm is proposed for the selection of the best choice. Moreover, the 
given algorithm has been analyzed comparatively with an algorithm proposed for VFPSS. 
 
Firstly; let’s construct a decision-making method over a fuzzy decision set of 𝛹% by the following algorithm; 
 
Algorithm. The algorithm for the selection of the best choice is given as: 
 
Step 1: Express the uncertainty encountered with the help of a VFPSS 𝛹%. 
Step 2: Compute the fuzzy decision set 𝛹%*. 
Step 3: Find 𝑟, for which 𝜇G#$(𝑢Q) = 𝑚𝑎𝑥 +𝜇G#$(𝑢): 𝑢 ∈ 𝑈,. 
 
Remark 4. If 𝑟 has more than one value then any one of them may be chose. 
 
Now, let’s consider the uncertainty problem given below to analyze the algorithm. 
 
Example 2. Suppose a school wants to choose the students that best suit its parameters. For this, the school has 
posted an announcement. According to the announcement, a three-stage exam will be held for candidate students. 
Participation conditions for these exams are stated as follows: 
 

(A) All student candidates who apply for all three-stage exams held by the school will be able to participate. 
(B) The first exam is less decisive than the second exam and is less decisive in the second exam than the third 

exam. 
 

(C) Increasing decisive in an exam means that the score to be obtained from this exam is higher. 
 

Assume that the set of candidate students applying for admission to the school under these conditions is 𝑈 =
{𝑢!, 𝑢", 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢R, 𝑢S, 𝑢!8} and the set of parameters the school requires from students is 𝑃 =
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{𝑝! = 𝑠𝑒𝑙𝑓 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑡, 𝑝" = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙, }. Moreover, the difficulty levels of the exams to be made by the 
school administration to evaluate candidate students are determined as follows: 
 

For each parameter, the difficulty level of the first exam is “0.28, 0.38”, the second exam’s difficulty level is 
“0.45, 0.57” and finally, the third exam’s difficulty level is “0.68, 0.75”, respectively. The difficulty levels of the 
exams expressed here construct FSs of parameter sets 𝑃, 𝑃, 𝑃 and are 𝑋 = {0.28/𝑝!, 0.38/𝑝"}, 𝑋 =
{0.45/𝑝!, 0.57/𝑝"}, 𝑋 = {0.68/𝑝!, 0.75/𝑝"} respectively. 
 
Remark 5. It should be noted that; changing the difficulty levels for each parameter in the exams can directly 
affect the success of candidate students in the exams. In order to obtain more detailed information about this stated 
situation, studies [23-25] can be examined. 
 
Step 1: During the evaluation of candidate students, the data obtained from the school administration are assumed 
as follows:  
 

𝜓%(𝑝!8.!7) = {𝑢!, 𝑢", 𝑢3, 𝑢4, 𝑢5, 𝑢7, 𝑢S, 𝑢!8},										𝜓%(𝑝"8.!S) = {𝑢!, 𝑢4, 𝑢5, 𝑢6, 𝑢R, 𝑢!8}, 
𝜓%(𝑝!) = {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢7, 𝑢!8},										𝜓%(𝑝") = {𝑢4, 𝑢5, 𝑢6, 𝑢R}, 

𝜓%(𝑝!8."3) = {𝑢7, 𝑢!8},										𝜓%(𝑝"8.!R) = {𝑢R}, 
 
These data can be expressed as a whole with the help of a VFPSS 𝛹%, 
 
 

𝛹% = ^
(0.28/𝑝!, {𝑢!, 𝑢", 𝑢3, 𝑢4, 𝑢5, 𝑢7, 𝑢S, 𝑢!8}), (0.38/𝑝", {𝑢!, 𝑢4, 𝑢5, 𝑢6, 𝑢R, 𝑢!8})

(0.45/𝑝!, {𝑢!, 𝑢", 𝑢3, 𝑢5, 𝑢7, 𝑢!8}), (0.57/𝑝", {𝑢4, 𝑢5, 𝑢6, 𝑢R})
(0.68/𝑝!, {𝑢7, 𝑢!8}), (0.75/𝑝", {𝑢R})

_. 

 
 
Step 2: The fuzzy decision set of 𝛹% can be found as, (for 𝑤 = 3,𝑤 = 2,𝑤 = 1) 
 

𝛹%* = H 0.074/𝑢!, 0.053/𝑢", 0.053/𝑢3, 0.084/𝑢4, 0.121/𝑢50.068/𝑢6, 0.166/𝑢7, 0.193/𝑢R, 0.015/𝑢S, 0.1875/𝑢!8
~. 

 
For example; considering the 𝑢", 
 
 

𝜇G#$(𝑢") =
1
3 @
(0.28 ∗ 1) + (0.38 ∗ 0)

3 ∗ 2 +
(0.45 ∗ 1) + (0.57 ∗ 0)

2 ∗ 2 +
(0.68 ∗ 0) + (0.75 ∗ 0)

1 ∗ 2 B = 0.053 

Here, attention should be paid to the values selected in accordance with the condition w < 𝑤 < w. 
 
Step 3: We conclude from the values of 𝑢 that 𝜇G#$(𝑢R) = 𝑚𝑎𝑥 +𝜇G#$(𝑢): 𝑢 ∈ 𝑈, = 0.193 and hence 𝑟 = 8. Thus 
𝑢R is the optimal choice candidate and so 𝑢R is the most suitable student candidate for the desired parameters. 
 
A comparison: Only one algorithm has been proposed for VFPSS theory, since it is very new. If we apply the 
algorithm suggested by Dalkılıç and Demirtaş [4] for the example given above, the results obtained are as follows: 
 

Table 1. Comparison of algorithms for VFPSSs. 
 

Algorithm u! u" u3 u4 u5 u6 u7 uR uS u!8 
[4] 1.11 0.73 0.73 1.23 1.68 0.95 1.41 1.7 0.28 1.79 
Suggested 0.074 0.053 0.053 0.084 0.121 0.068 0.166 0.193 0.015 0.1875 
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According to the scores obtained in Table 1, the ranking among the candidate students is as follows: 
 
For the algorithm [4], u!8 > uR > u5 > u7 > u4 > u! > u6 > u" = u3 > uS. 
For the suggested algorithm, uR > u!8 > u7 > uS > u5 > u4 > u! > u6 > u" = u3. 
 

When the results are examined, it is striking that there is a serious difference. First of all, it should be noted 
that an error such as the best student u!8 is avoided. There are two important reasons for the difference between 
the algorithms given for the VFPSS, 
 

i. Their algorithm is very complex, but the algorithm proposed in this study is so simple. Moreover, their 
algorithm has more variables and constraints than the algorithm proposed in this study. 

 
ii. In the algorithm proposed by Dalkılıç and Demirtaş [4], the scores obtained from each approximate 

function were evaluated equally. Therefore, students who passed the more difficult exams were also 
subjected to an equal score. However, the algorithm proposed in this study eliminated this problem. 

 
For these reasons, it is recommended to use the algorithm given in this study in expressing any uncertainty 

and in obtaining of the decision-making process in a more ideal way. 
 
5. Conclusion 
 

In conclusion, this study has significantly advanced the field of set theory, particularly within the context of 
VFP-soft sets, a novel mathematical tool tailored to address uncertainties in data analysis. The research’s 
importance lies in its dual objective of enhancing existing theory while offering practical solutions to complex 
data analysis challenges. Firstly, the study simplifies the representation of intricate data, making analysis more 
accessible. By exploring fundamental set operations within the framework of VFP-soft sets, the research 
contributes to strengthening the theoretical foundation of this mathematical model. A crucial aspect of this research 
is the examination of parameter importance weights in VFP-soft sets, encompassing three different types of fuzzy 
parameterized soft sets. This investigation sheds light on nuanced approaches to parameter weighting, a 
fundamental aspect of the theory, thereby enhancing its applicability. Furthermore, the development of a novel 
decision-making algorithm based on VFP-soft sets represents a significant practical outcome of this research. This 
algorithm, derived from theoretical enhancements and insights, holds promise for addressing real-world 
uncertainty problems effectively. However, it’s important to acknowledge certain limitations and challenges 
associated with the proposed methodology. While VFP-soft sets offer a versatile approach, their implementation 
may require specialized expertise, and computational complexity could pose challenges for large-scale datasets. 
Additionally, the effectiveness of the proposed algorithm may vary depending on the specific characteristics of 
the data and the context of the decision problem. In light of these considerations, future research should focus on 
refining the methodology to overcome these limitations and explore its applicability across diverse domains. By 
addressing these challenges and leveraging the advantages of VFP-soft sets, further advancements in data analysis 
and decision-making can be achieved. 
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