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Abstract: This study delves into fundamental set properties within the framework of virtual fuzzy parameterized (VFP-)soft
set theory. It provides a comprehensive examination of these properties, offering essential insights and considerations. The
study also simplifies the definition of VFP-soft sets to streamline data analysis, making it more accessible and less complex.
Furthermore, the paper explores the integration of two distinct approaches for parameter weighting in VFP-soft sets. Notably,
the research introduces a novel decision-making algorithm grounded in VFP-soft sets and conducts a comparative analysis to
evaluate its effectiveness. This work contributes to the field by enhancing the understanding of VFP-soft sets and their
applications, while also providing a practical decision-making tool for real-world scenarios.
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VFP-Esnek Kiimelerle Yenilik¢i Karar Verme: Karsilastirmah Bir Analiz

Oz: Bu ¢alisma sanal bulanik parametreli (VFP-)yumusak kiime teorisi gergevesinde temel kiime 6zelliklerini incelemektedir.
Bu 6zelliklerin kapsamli bir incelemesini saglayarak temel i¢goriileri ve degerlendirmeleri sunar. Calisma ayn1 zamanda veri
analizini kolaylastirmak i¢in VFP-soft kiimelerinin tanimini basitlestirerek onu daha erisilebilir ve daha az karmasik hale
getiriyor. Ayrica makale, VFP-soft kiimelerinde parametre agirliklandirmaya yonelik iki farkli yaklagimin entegrasyonunu
arastirtyor. Ozellikle arastirma, VFP-soft kiimelerine dayanan yeni bir karar verme algoritmasi sunmakta ve bunun etkinligini
degerlendirmek i¢in karsilastirmali bir analiz ger¢eklestirmektedir. Bu calisma, VFP-soft kiimelerinin ve uygulamalarinin
anlagilmasini gelistirerek alana katkida bulunurken, ayn1 zamanda gergek diinya senaryolar: i¢in pratik bir karar verme araci
da sagliyor.

Anahtar kelimeler: Bulanik kiime, esnek kiime, VFP-esnek kiime, algoritma, karar verme.
1. Introduction

Uncertainty is an important feature that must be addressed during data analysis to increase the robustness of
the results. However, parsing the uncertainty of the data is generally not that easy. Therefore, many mathematical
approaches based on the analysis of specific data may be insufficient to capture this component. Many theories
have been introduced to deal with the uncertainty in the data. One of these theories is the fuzzy set (FS) theory,
introduced to the literature by Zadeh [1] in 1965. In the following years, another important mathematical model
of the effort to cope with uncertainty, the rough set (RS) theory [2] was proposed. However, FS and RS theories
are difficult to apply objectively to uncertainty problems. Molodtsov [3], who thinks that the reason for this
difficulty is due to the lack of a parameterization tool, proposed the soft set (SS) theory in 1999. Then, Maji et al.
[4] defined the basic operations of SSs in order to make a detailed theoretical study on SSs. In addition, in the
following years, Maji et al. [5] defined the concept of fuzzy soft sets (FSS) and gave an application based on FSS
theory for a decision-making problem in [6]. In addition, Cagman and Enginoglu [7] have worked on soft decision-
making problems and Cagman et al. proposed an application of SS theory for a decision-making problem in [8].
On the other hand, Chen et al. [9] discussed the parameterization reduction and applications of SS. Moreover, an
adjustable approach for FSS based on decision-making has been given by Feng et al. [10]. Later, Cagman et al.
presented a new perspective on FSSs in their studies [11]. The combination of SS and FSS theories enabled the
development of different algorithms for solving uncertainty problems [12-21].

In the following years, Cagman [22] defined the concept of fuzzy parameterized (FP-)soft set (FPSS) in order
to achieve near ideal results for uncertainty problems encountered in almost every field. However, FPSSs were
insufficient to express this situation when the uncertainty consisted of more than one stage. In order to overcome
this deficiency, virtual fuzzy parameterized (VFP)-soft sets (VFPSSs) were proposed by Dalkili¢ and Demirtas
[23] in 2021. This set theory [23] consists of lower and upper approximate functions in expressing more than one
stage, so three FP-soft sets can be evaluated. This novel set theory incorporated lower and upper approximate
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functions, facilitating evaluation across multiple stages of uncertainty, effectively surpassing the limitations of
FPSSs. Motivated by the need for a comprehensive approach to uncertainty management, this study revisits VFP-
soft sets, aiming to streamline their representation and enhance their utility in decision-making contexts. The
primary motivations and contributions of this paper are outlined as follows:

e Simplification of Complex Structures: We propose a streamlined representation of VFP-soft sets to
tackle complex data, enhancing accessibility and usability.

e Exploration of Incomplete Operations: We examine incomplete basic set operations on VFP-soft sets,
contributing to the ongoing development of the theory and expanding its applicability.

e Development of a New Decision-Making Algorithm: We present a novel decision-making algorithm
leveraging fuzzy decision sets. Notably, this algorithm integrates the importance weights of parameters,
accommodating two distinct approaches within VFP-soft sets. The most important feature of this
algorithm is that it also considers the importance weights of the parameters for VFP-soft sets that focus
on two different approaches.

Through this study, we aim to provide a comprehensive overview of VFP-soft sets, elucidating their potential
in addressing uncertainty challenges. A short representation is expressed for this analyzed set theory and some
new properties and remarks were included. Additionally, we introduce a new algorithm tailored to optimize
decision-making processes within this framework, offering a comparative analysis with existing methodologies
[23]. By addressing these key points, we endeavor to enhance the understanding and applicability of VFP-soft sets,
ultimately contributing to more effective uncertainty management across diverse domains.

2. Preliminaries

In this section, some definitions and results are reminded. Detailed explanations related to VFPSSs can be
found in [23].

Throughout this paper, let U = {u,, u,, ... } be a universe set, P = {p;, p,, ... } be a set of parameters and X be
a FS over P. In this case, the lower virtual parameter set and the upper virtual parameter set are expressed as P =

{p:—l, p:—z, } and P = {pf_l, p;l_z, }, respectively. Also, let 2V denote the power set of U and @ # A € P.

Definition 1. [1] A FS X over U is a set defined by uy: U — [0,1]. uy is called the membership function of X, and
the value py (u) is called the grade of membership of u € U. Thus, as given in Equation (1), a FS X over U can be
represented as follows:

X ={(ux(/uw):u € U, ux(w) € [0,1]}. (1
Definition 2. [3] A pair (F, P) is called a SS over U, where F is a mapping given by F: P — 2Y. In other words, a
SS over U is a parameterized family of subsets of U for p € P, F(p) may be considered as the set of p-approximate

elements of (F, P).

Definition 3. [22] A FPSS @, on U is defined by the set of ordered pairs, given in Equation (2)

Dy = {(“"(”) cox(p)> :p € P,ux(p) € [0‘1]}: ®

)
p

where the function @y: P — 2V is called approximate function such that @y (p) = @ if uy (p) = 0, and the function
Uy: U = [0,1] is called membership function of FPSS &y.

State that the set of all FPSSs over U will be denoted by FPS(U).

Definition 4. [22] Let @, € FPS(U). Then a fuzzy decision set of @y, denoted by ®¢, is defined by Equation (3).
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g = {ud)gz((u)/u:u € U} (3)

which is a FS over U, its membership function u o4 is defined by y, e U — [0,1], given in Equation (4)

1
l’lqysi( (u) = mZpesupp(X) Ux (p))(qox(p) (u) (4)

where supp(X) is the support set of X, ¢y (p) is the crisp subset determined by the parameter p and

1' X
Yo @ =g g oxE ©

as given in Equation (5).

Definition 5. [23] Let X, X, X be a FS over P, P, P, respectively. Thus, in Equations (6), (7), (8) and (9), a VFPSS
Yy over U is defined as follows:

Py =Y UY Uy (6)
such that

Y = {(“"(ﬁ#,&(pﬂ)):pﬂ €P,pEPu(p) €[01,0<a< ux(p)}. ©)
Yy = {("XT@.wx(p)> :p €P,ux(p) € [0.1]}. (®)
Y = {(’”‘(f,#,@(pa)}p EP,p"EP,ux(p) €01,0<T<1-— ux(p)}. ©)

where the functions Yy: P - 2Y, iy P - 2U, Py: P — 2U are called lower approximate function, approximate

function, upper approximate function, respectively, and the functions uy: P — [0,1] is called membership function
ofthe set X. Here Yy (p) = @ if ux(p) = 0. Moreover, &(pﬂ) = Qifuy(p) —a = 0and @(pa) =Qifuy(p) +
a =0.

Obviously, each ordinary SSs can be written as VFPSSs.
From now on, VFPS(U) denotes the family of all VFPSSs over U with P as the set of parameters.

Example 1. Let U = {uy, u,, U3, Uy, Us, Ug, U, } be an universe set, P = {p;, P, P3, P4} be the set of parameters and
X = {0.45/p,,0.6/p,} be a FS over P. If X = {0.32/p,,0.24/p,}, X = {0.8/p,, 0.92/p,}, and

ﬂ(pg.m) = {Uy, Uy, Us, Ug, Uy}, &(pg'%) = {uy, Uy, u3, us, U},
lpi(pz) = {uy, us, ug, us}, &(m) = {uy, u3, Us, Ug},
¢x(p3'35) = {us, ug, us}, Yy (pg'gz) = {uz, us, ug},

then the VFPSS ¥y is written by
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(032/192‘ {uZﬁ Uy, Us, Ug, u7})' (024/174' {ull Uy, U3, Us, uﬁ})
Yy = (0.45/py, {uz, us, us, u7}), (0.6/p4, {uz, us, us, ug})
(08/172‘ {uS' Ue, u7})' (092/174' {ug; Us, uﬁ})
where

Y_X = {(0.32/py, {uy, Uy, Us, Us, U7}), (0.24/p4, {Ug, Up, Uz, Us, Ug D)},

Yy = {(0.45/py, {uy, us, us, Uu7}), (0.6/p4, {Uy, us, us, ugH}

and .
Yy = {(0.8/p,, {us, ug, us}), (0.92/py, {us, us, ug})}.

Definition 6. [23] Let ¥, € VFPS(U).

i. If Py (p%) = Yy (p) = Px(p%) = @ for all p& € P, p € P, p® € P, then VFPSS ¥y is called an X-
empty VFPSS, denoted by ¥y, . If X = @, then Wy is called an empty VFPSS, denoted by ¥.

ii. If X, X, X is a crisp subset of P, P, P, respectively, and &(pﬂ) =Yy(p) = E(pa) = U for all

pE € P, p € P, p® € P, then VFPSS ¥y is called an X-universal VFPSS, denoted by ¥5. If X = P,
then the X-universal VFPSS is called universal VFPSS, denoted by ¥5.

Definition 7. [23] Let Wy, ¥y € VFPS(U). Then, Wy is a VFP-soft subset of Wy, denoted by ¥y £ ¥y, if

i ux(@) — @ < py(p) — B and Py (p%) S Yy (pE) forall p2,pf € P,
i () < puy(p) and Yy (p) € Py(p) forallp € P, s
il 1) + T <y () + B and P (p7) € Py (pP) for all p¥pP € P.

Also, ¥y is a VFP-soft equal to ¥y, denoted by ¥y = ¥y, if

i ux(@) —a=p(p) — B and Py (p%) = Yy (pL) forall p2,p € P,
. ux(p) = py(p) and Yx (p) = Yy (p) forallp € P,
iii.  uy(p) +@=uy(p) + B and ﬂ(pa) =1y (pE) for all p%, pE € P.
Proposition 1. [23] Let ¥y € VFPS(U). s(@(pa)) c s(z,by(p)) Cs (&(pﬂ)) is valid for all p2 € P,p €
P,p* €P.

Definition 8. [23] Let ¥y € VFPS(U). Then, complement ¥y, denoted by ¥y, is a VFPSS defined by the
approximate and membership functions as

i pye(@) —@= 1~ (ux(p) — @) and Pxe(p2) = U /1hx (p%) for all p%, pZ € P,
. pxe(p) =1- px(p) and Yyc(p) = lﬂx(g) forallp € P, o
fii. (@) +a=1- (uy(p) + @) and Pye (p“) = U /iy (p®) for all p&,p® € P.

Definition 9. [23] Let ¥y, ¥, € VFPS(U). Then, union ¥y and ¥y, denoted by ¥y 0 ¥y, is defined by

i xur®) =y = max {ux(0) — @1y (@) — B} and Py PY) = Yx @) Uy (pE) for all p&,pL,p¥ €
Ba
ii. Uxuy (P) = max{py (p), py (p)} and Yy,y (p) = Yx () U Yy (p) forallp € P,
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i oy () +¥ = max{uy(p) + @,y (p) + B} and Yoy (p7) = 1 (p%) U Py (pP ) for all p,pP,p7 €
P.

Definition 10. [23] Let ¥y, ¥, € VFPS(U). Then, intersection ¥y and ¥y, denoted by ¥y i ¥y, is defined by

i xer®) =y = min{uy () = &y (0) — B} and Yray PY) = P @) N 1y (pE) forall p&,pF, p¥ € P,
i Hyay(p) = minfuy (), py (p)} and YPxay (0) = Px (@) Ny (p) forallp € P, o
i ey () +7 = minfug(p) + @y (p) + B} and Yoy (07) = Px(p%) 0y (pP ) for all p% pf,p7 €
P.

3. On VFP-Soft Sets

In this section; in order to avoid complex representations in data analysis, a simpler representation for VFP-
soft sets is proposed. Moreover, some new properties of VFP-soft sets are studied. In addition, a fuzzy decision
set is given for the decision-making algorithm built in the next section.

Definition 11. Let ¥y € VFPS(U). The presentation of

(HX(I;)—Q‘&(IJQ)> U
PELEP  0<a<pux(p)
)
Yy = (uxp(ﬁ .l,bx(p)> U : p_E P_' ux(p) € [0,1] (10)
p*€eEP 0<a<1—uy(p)

x(p)+a 5
(%be(p ))

is said to be a short representation of VFPSS ¥y as given in Equation (10). Here, the internal structure of the set
expressed in (10) denotes the union of the sets (7), (8) and (9). It is the same as the definition of VFP-soft set given
in Definition 5, but this representation is shorter and clearer. In this way, it is aimed to express indefinite data sets
more easily.

Remark 1. ¥, £ ¥, does not imply that every element of ¥y is an element of ¥,,.. For example, let’s consider the
VFPSSs ¥y given below and ¥y of Example 1,

(032/?92' {uZl Uy, Us, U, u7})' (024’/294' {ul; Uz, Uz, Us, uG})
Yy = (0.45/py, {uz, us, ug, u7}), (0.6/p4, {Up, us, us, Ug}) )
(08/}92' {uSl Ug, u7})' (092/294' {u3, Us, uﬁ})

(OS/PZ: {u1; Uz, Uy, Us, U, u7})' (04/274' {u1: Uz, U3, Us, Ug, U.7})
Yy = (0.65/p, {uz, us, ug, u}), (0.7 /p4, {wy, Uz, uz, us, ug})
(09/172’ {uS' Ue, u7}): (095/174: {uz; Us, Us, ué})

Then, for p,

i 0.24 = py(ps) — 0.36 < py(ps) — 0.3 = 0.4 and Py (p2°°) < Py (p5*) for 3>, pi~° € P,

i 0.6 =py(py) < uy(py) = 0.7 and Yy (p) S Py (p) forallpepr, _
iii. 092 = uy(py) + 0.32 < uy(py) + 0.25 = 0.95 and Yy (p23?) S Py (p22°) for pd32,pd%° € P.
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It can be shown similarly for p,. Therefore, Wy £ ¥,,. It is clear that (0.24/p,, {us, Uy, Us, us, ug}) € Py but
(0.24/py, {uy, uy, uz, us, ug}) € Py.

Proposition 2. Let ¥y, ¥, € VFPS(U). Then,

i W EW,EW, Ev,

ii. IHfY,E¢¥,and¥, EV¥,, then¥Wy ¥,
1il. ¥ =¥y and ¥y = ¥,, then ¥y = ¥,
iv. If¥y EY¥, and ¥, E Py, then ¥y = ¥,.

Proof. They can be proved easily by using the approximate and membership functions of the VFPSSs.
Remark 2. Let ¥y € VFPS(U). If ¥y # Wy # W5, then Wy U W5 # W5 and Py 11 ¥5 # W,
Proposition 3. Let ¥y, ¥, € VFPS(U). Then De Morgan’s laws are valid

i (W, 0%, = PSR Y,
i (W W) = WE T we.

Proof. Forallp € P, p € P, p® € P;

il ®) =7 =1 (o) —¥) = 1= max {ux(p) - @y (p) — B} = min{1 -
(1x (@) = @), 1= (1y @) = B)} = min {pxc @) — & pye(p) — B} =
Kxeaye(P) — 14
i pone®) =1 = pxoy (@) = 1 — max{ux(p), uy (p)} = min{l — px(p), 1 — uy(P)} =
min{pye(p), tye(P)} = txeaye (@)
i pgone®) +¥ = 1= (xor®) +7) = 1 — max{ux(p) + @, uy (p) + B} = minil -
(ux (@) + @, 1= (1y () + B)} = min {pye (p) + @ ptye (p) + } =
Exeaye(p) + ?
and
i Paone (D) = U\ e 09 = U (809 U (08)) = (U ) ) 0 (0
ﬂ(pg)) = xe(p%) N ye (P2) = xeare(pY)

ii. lp(xuy)f(p) =U\Yxoy(p) =U\ (¢X(p) u 1/)}'(17)) = (U \wx(p)) n (U \ ll)y(p)) =
Yxe(@) N Pye(p) = Yxenye(p)

i, Boone (P7) = U\ Tror (") = U\ (@(pa) Uy (pE)) = (U\ () n (U \ ¥y (pF)) =
e (%) 0 ye (PP) = Pxerre (07

Likewise, the proof of (ii) can be made similarly.
Proposition 4. Let ¥y € VFPS(U). Then,

i Wy ) =Wy,
1i. '1’5 =Y;s.

Proof. Straightforward.
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Proposition 5. Let ¥y, ¥y, W, € VFPS(U). Then,

Lo O W, AY,) = (W O0W) [ (W, OW,),
i W R (W, OW,) = (W AY,) O Wy [ ¥,).

Proof. Forallp2 € P, p € P, p*€P

i Hxurnz) (@) — 123 = Max {.“x(p) -y, tynz(P) — @} = max {ﬂx(p) —ag,min {Hy(p) -
a2 kz(P) — @}} = min {max {ux(p) —a, iy (P) - @}.max {ux(p) — @y, Uz(p) — @}} =

min {#xuy(p) — %2 bxuz(P) — %} = Uxur)n(xuz) (@) — %123
i tyuwnz () = max{ux(p), kyaz(p)} = max{uy (p), min{py (0), uz (p)}} =
mm{max{ﬂx @), uy ()}, max{ux(p), uz (p)}} = min{uy,y (), Uxuz (@)} = Hxur)n(xuz) (»)
1ii. Pxurnz) @) + A3 = max{/ix (p) + ay, tynz(p) + E} = max{lix (P) + a;, min{uy (p) +
@y 1z (p) + @z} = min{max{uy (p) + @y, py (p) + @3}, max{uy (p) + @y, 4z (p) + @53} =
mm{ﬂxuy(p) + a1 ixuz(P) + @} = Uxur)nuz) (@) + @23

and

L P (0722) = ™) U s (0°22) = s (0 U (8,0%) 0 9,60 = (™) U

Py ) 0 (850D U B0 = e (722) 0 1505 (9°22) = Yoo (222)

ii. Yxuwnz @) = Yx(@) U ihyaz(p) = Yx(p) U (d’y(p) n 1/)2(17)) = (llix(p) Uy (p)) n (¢X(p) U
1/’2(?’)) = Pyuy (@) N Yxuz(P) = Yxur)nuzn @)

i Prownn (07) = Bx(0™) Uz (07) = () U (B (0%) 0 2(07)) = (#x(p™) U
%(pa_z)) n (@(pa_l) U @(pa_g')) = W(PE) N M(pm) = lp(XUY)ﬂ(XUZ) (pa1,2,3)

Likewise, the proof of (ii) can be made in a similar way.
Proposition 6. Let ¥y, ¥y, W, € VFPS(U). Then,
1. Y, 0¥y =¥, and ¥y T Wy = ¥y,
ii. HUX D ')UQ) = IPX and lIIX ﬁ lp@ = ’)Um,
1il. l’UX 0 lpﬁ = lpls and lPX f lpp = lPX’
iv. Y, 0¥, =¥, 0¥, and ¥, A1 ¥, = ¥, T ¥y,
v. Wy OY) Oy, =¥, 0, 0%¥,) and (W, TT¥,) T ¥, =W, 11 (¥, [T ¥,).

Proof. The proofs can be easily obtained from Definition 8 and 9.

Definition 12. Let ¥y € VFPS(U). Then a fuzzy decision set of Wy, denoted by ¥¢, is defined by Equations (11),
(12), (13), (14) and (15)

pi = {#w}%(u)/u:u € U} (11)

which is a FS over U and Hyd is defined by My U — [0,1], (as shown in Equation (12), (13), (14) and (15))

(nx(p)-a) Xy (p2) W 1x(D) X5 ()W) ~ _(”X @)+ Xﬂ(zﬁ)(u) 1
W] PEX T ix] peX K] (12)
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where |§| |X], |)_(| are the cardinality of X, X, X and

L, u€eyx(»®)
Xyx (W) = {0, u & Py(p%) (13)
1, X
K@ = {7 &) (14

B {1, u € Py (p®) (1)

Xg=(,@) (W) = — =
1/1X(P ) 0‘ u e l,bx(p“)
Here, w, w, W represent the total weight of objects with membership degrees 1y (p) — @, the total weight of

objects with membership degrees py(p), the total weight of objects with membership degrees uy(p) + «,
respectively, for all p € P and w,w,w € R*.

Remark 3. As the membership degree of a parameter in Proposition 1 decreases, the number of objects that provide
that parameter increases. For this reason, when we increase the membership degree, it is clear that there should be
a relationship W < w < w between the total weights in order to highlight the objects that still provide that
parameter. So the choice of weights is not random. In this case, if there is a contrary situation between the total
weights, it becomes difficult to highlight the best objects that meet the desired parameters.

4. Numerical Example

In this section, a decision-making algorithm is proposed for the selection of the best choice. Moreover, the
given algorithm has been analyzed comparatively with an algorithm proposed for VFPSS.

Firstly; let’s construct a decision-making method over a fuzzy decision set of ¥y by the following algorithm;
Algorithm. The algorithm for the selection of the best choice is given as:

Step 1: Express the uncertainty encountered with the help of a VFPSS ¥,.
Step 2: Compute the fuzzy decision set ¥Z.

Step 3: Find r, for which Hyd (u,) = max {,uq,g (u):ue U}.

Remark 4. If r has more than one value then any one of them may be chose.
Now, let’s consider the uncertainty problem given below to analyze the algorithm.
Example 2. Suppose a school wants to choose the students that best suit its parameters. For this, the school has
posted an announcement. According to the announcement, a three-stage exam will be held for candidate students.
Participation conditions for these exams are stated as follows:
(A) All student candidates who apply for all three-stage exams held by the school will be able to participate.
(B) The first exam is less decisive than the second exam and is less decisive in the second exam than the third
exam.

(C) Increasing decisive in an exam means that the score to be obtained from this exam is higher.

Assume that the set of candidate students applying for admission to the school under these conditions is U =
{uy, uy, us, Uy, Us, Ug, Uy, Ug, Ug, Uyo} and the set of parameters the school requires from students is P =
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{p, = self — confident,p, = successful,}. Moreover, the difficulty levels of the exams to be made by the
school administration to evaluate candidate students are determined as follows:

For each parameter, the difficulty level of the first exam is “0.28, 0.38”, the second exam’s difficulty level is
“0.45, 0.57” and finally, the third exam’s difficulty level is “0.68, 0.75”, respectively. The difficulty levels of the

exams expressed here construct FSs of parameter sets P, P, P and are X = {0.28/p;,0.38/p,}, X =
{0.45/p,,0.57/p,}, X = {0.68/p,, 0.75/p,} respectively.

Remark 5. It should be noted that; changing the difficulty levels for each parameter in the exams can directly
affect the success of candidate students in the exams. In order to obtain more detailed information about this stated
situation, studies [23-25] can be examined.

Step 1: During the evaluation of candidate students, the data obtained from the school administration are assumed
as follows:

&(pf'”) = {uy, Uy, Uz, Uy, Us, Uy, Ug, Ugo ), ﬂ(pg.w) = {uy, Uy, us, Ug, Ug, Uy},
Yx(p1) zﬁiv Uy, U, Us, Uy, Ugo ), _lpbx (P2) = {us, us, ug, ug},
¢x(pf'23) = {uz, uy0}, 1/’)((?3'18) = {ug},

These data can be expressed as a whole with the help of a VFPSS ¥y,

(0.28/p1, {u, Uz, Uz, Uy, Us, Uz, Us, Ugo}), (0.38/p2, {ty, Uy, Us, Ug, Ug, Uso})
Yy = (0.45/p1, {uy, Uy, us, us, Uy, Ug}), (0.57 /P, {1y, Us, Ug, Ug})
(0.68/p1, {uz,u10}), (0.75/p2, {ug})

Step 2: The fuzzy decision set of ¥y can be found as, (forw = 3,w = 2,w = 1)

- :{ 0.074/u,,0.053 /uy, 0.053 /us, 0.084 /u,, 0.121 /us }
X 710.068/ug, 0.166/u;,0.193 /ug, 0.015 /uy, 0.1875 /u,,

For example; considering the u,,

_1/(0.28+1)+(0.38x0) (0.45*1)+ (0.57+0) (0.68+0)+ (0.75 = 0)
Hygta) =3 3%2 * 2%2 * 12
Here, attention should be paid to the values selected in accordance with the condition w < w < w.

) = 0.053

Step 3: We conclude from the values of u that Hyd (ug) = max {,uq,g (w):ue U} = 0.193 and hence r = 8. Thus

ug is the optimal choice candidate and so ug is the most suitable student candidate for the desired parameters.

A comparison: Only one algorithm has been proposed for VFPSS theory, since it is very new. If we apply the
algorithm suggested by Dalkili¢ and Demirtas [4] for the example given above, the results obtained are as follows:

Table 1. Comparison of algorithms for VFPSSs.

Algorithm Uy u, U, Uy, Uc U, u, Ug Ug U
[4] 1.11 0.73 0.73 1.23 1.68 0.95 1.41 1.7 0.28 1.79
Suggested | 0.074 | 0.053 | 0.053 | 0.084 | 0.121 | 0.068 | 0.166 | 0.193 | 0.015 | 0.1875
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According to the scores obtained in Table 1, the ranking among the candidate students is as follows:

For the algorithm [4], u; > ug > ug > u; > u, > uy > Ug > U, = Uz > Ug.
For the suggested algorithm, ug > u;g > u; > ug > ug > u, > u; > Ug > U, = Us.

When the results are examined, it is striking that there is a serious difference. First of all, it should be noted
that an error such as the best student u, is avoided. There are two important reasons for the difference between
the algorithms given for the VFPSS,

1. Their algorithm is very complex, but the algorithm proposed in this study is so simple. Moreover, their
algorithm has more variables and constraints than the algorithm proposed in this study.

il. In the algorithm proposed by Dalkili¢c and Demirtas [4], the scores obtained from each approximate
function were evaluated equally. Therefore, students who passed the more difficult exams were also
subjected to an equal score. However, the algorithm proposed in this study eliminated this problem.

For these reasons, it is recommended to use the algorithm given in this study in expressing any uncertainty
and in obtaining of the decision-making process in a more ideal way.

5. Conclusion

In conclusion, this study has significantly advanced the field of set theory, particularly within the context of
VFP-soft sets, a novel mathematical tool tailored to address uncertainties in data analysis. The research’s
importance lies in its dual objective of enhancing existing theory while offering practical solutions to complex
data analysis challenges. Firstly, the study simplifies the representation of intricate data, making analysis more
accessible. By exploring fundamental set operations within the framework of VFP-soft sets, the research
contributes to strengthening the theoretical foundation of this mathematical model. A crucial aspect of this research
is the examination of parameter importance weights in VFP-soft sets, encompassing three different types of fuzzy
parameterized soft sets. This investigation sheds light on nuanced approaches to parameter weighting, a
fundamental aspect of the theory, thereby enhancing its applicability. Furthermore, the development of a novel
decision-making algorithm based on VFP-soft sets represents a significant practical outcome of this research. This
algorithm, derived from theoretical enhancements and insights, holds promise for addressing real-world
uncertainty problems effectively. However, it’s important to acknowledge certain limitations and challenges
associated with the proposed methodology. While VFP-soft sets offer a versatile approach, their implementation
may require specialized expertise, and computational complexity could pose challenges for large-scale datasets.
Additionally, the effectiveness of the proposed algorithm may vary depending on the specific characteristics of
the data and the context of the decision problem. In light of these considerations, future research should focus on
refining the methodology to overcome these limitations and explore its applicability across diverse domains. By
addressing these challenges and leveraging the advantages of VFP-soft sets, further advancements in data analysis
and decision-making can be achieved.
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