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Güner TOPCU1 and Kemal AYDIN2

1,2Department of Mathematics, Selcuk University, Konya, TÜRKİYE

Abstract. In this study, Schur stability, sensitivity and continuity theorems
have been mentioned. In addition, matrix families, interval matrix and extend

of the intervals also have been mentioned. The IL and IC intervals of the

matrix families have been determined so that the linear sums family L and
convex combination family C are Schur stable. Samely, the I∗

L and I∗
C intervals

have been determined and L and C are ω∗−Schur stable. Afterwards, the
methods which based on continuity theorems and the algorithms which based

on the methods have been given. Extended intervals have been obtained with

the help of the methods and the algorithms. All definitions are supported by
examples.

1. Introduction

One of the real problems of the stability analysis is to determine the stability
of the matrix families. In this paper the intervals IL and IC have been presented
to make the matrix families L and C Schur stable. Here the matrix families L and
C consist of linear sum and convex combination, respectively. Also, these intervals
are extended with the help of continuity theorems and the matrix families are
constructed in order to provide Schur stability [13, 16]. There are many studies in
the literature specifically related to linear sum and convex combination [5–8,19,24].
Unlike studies that control the Schur stability of interval matrices, Schur stable
interval matrices are constructed in this study.

In 1892, Lyapunov studied the behavior of solutions of systems and developed
the concept of stability (see, for instance, [1,9,18]). The stability problem is reduced
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to the problem of the existence of a positive definite solution of the matrix equation
known as the Lyapunov equation with this concept for linear systems.

A necessary and sufficient condition for the matrix A to be discrete-asymptotic
stable is that the eigenvalues of the matrix A lay in the unit disk, that is, |λi(A)| < 1
for all i = 1, 2, . . . , N , where λi(i = 1, 2, . . . , N) are the eigenvalues of the ma-
trix A [1, 18]. On the other hand, this is also known as spectral criterion in
the literature. The spectral criterion can also be represented by the spectrum.
σ(A) = {λ | λ = λi(A)} to be spectrum, the matrix A is said to be Schur stable if
it satisfies the condition σ(A) ⊂ Cs = {z | |z| < 1} [27]. Let’s also give the family
of Schur stable matrices as follows;

SN = {A ∈ MN (C) | |λi(A)| < 1 (i = 1, 2, ..., N)} .
If the locations of these eigenvalues are known approximately, stability anal-

ysis of the system can be done with help of many well-known methods. Sta-
bility analysis of many control systems is concerned with the region where the
eigenvalues of the matrices are located. Gerschgorin and Rouche theorems, which
are used in determining the region, can be given as an example to this situa-
tion [18,20]. However, it is not easy to determine the eigenvalue in practice. Small
changes in the inputs of the matrices lead to the big changes in the eigenvalues,
i.e. the eigenvalue problem is an ill-posed problem for the non-symmetric matri-
ces [9, 28]. We can give the example of Ostrowski to explain this situation better.
Aω = (aij) ∈ MN (R) ; ai,i = 0.5, ai,i+1 = 10, aN,1 = ω, i = 1, 2, ..., N−1. It is seen
that ∥A10−100 −A0∥ = 10−100 and λi (A10−100) = 1.5 so |λi (A10−100)− λi (A0)| ≤ 1
[1]. As can be seen here, while the matrix A0 is Schur stable, the matrix A10−100

is not Schur stable because of λi (A10−100) = 1.5. Therefore, it is more convenient
to use the parameters calculated with the help of the solution of a linear algebraic
equation which characterizes the stability for the determination of stability.

Thus, the stability problem is reduced to the problem of the existence of a
positive definite solution of the matrix equation given as the Lyapunov equation
[1,2,18]. According to Lyapunov’s theorem, the Lyapunov matrix equation, which
determines the Schur stability of the systems, is given as follow

A∗HA−H + I = 0. (1)

If this system of equations has a positive definite solution

H =

∞∑
k=0

(A∗)
k
Ak, H = H∗ > 0 (2)

then the matrix A is said to be Schur stable [1, 9, 18, 23, 27]. The existence of
H = H∗ > 0 equivalent to having the eigenvalues of the matrix A inside the unit
circle.

The parameter ω(A) = ∥H∥ ≥ 1, which determines the quality of the stability,
is known as the Schur stability parameter of the matrix A [1, 9, 11]. Furthermore,
ω∗ is the practical Schur stability parameter of the matrix A, where 1 < ω∗ ∈ R
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and the users choose the value ω∗ in view of their problem. If ω(A) ≤ ω∗ then
the matrix A is ω∗-Schur stable. Otherwise, the matrix A is ω∗-Schur unstable
matrix [1, 3, 26]. Let’s examine the following matrices in order to see the notion of
quality of stability more easily.

Let’s take Ak ∈ SN as follow

Ak =

(
−0.1 10k−1 − 1
0 0.1

)
, k ∈ N.

It is clear that, although σ (Ak) = {−0.1, 0.1} for k ∈ N, it can be seen from the
Table 1 that the values of ω (Ak) also increase as the values of k increase.

Table 1. The quality of Schur stability of the matrix Ak

k 1 2 3 4 5
ω(Ak) 1.0101 82.0282 9803 998102 9.999e+007

Also the quality of the Schur stability increases as it approaches 1. Especially,
in case of A = 0, when we substitute it in (2), H = I and ω(A) = 1 are obtained.
This state is also known as the perfect state.

In [25], Hurwitz stability intervals for the matrix families were studied. The
matrix families were introduced. The intervals were determined to make these
families Hurwitz stable. A method and an algorithm were given to extend these
intervals.

This study is an analogy of [25]. Here, Schur and ω∗−Schur stability of linear
sum and convex combination families are discussed. In Section 2, L and C matrix
families are introduced, IL and IC intervals are determined to make these families
Schur stable. The illustrative examples related to the subject are given. In Section
3, I∗

L and I∗
C intervals are determined to make these families ω∗−Schur stable.

Thereafter, the illustrative examples related to the subject are given. In Section 4,
a new approach is given for the Schur stability of the matrix families. According to
the approach, the methods which based on continuity theorems are given. These
theorems shows the sensitivity of Schur stability and ω∗−Schur stability. The
algorithms which based on the methods are given. The extended intervals Ie

L,
Ie
C , I∗e

L and I∗e
C are obtained with the help of methods and algorithms. End of the

paper, examples are given. The numerical results in the article are obtained using
the computer dialogue system MVC [10].

2. Schur Stability of the Matrix Families

Let’s give the theorems which determining the intervals IL and IC for the matrix
families

L = L (A1, A2) = {A (r) = A1 + rA2 | A1, A2 ∈ MN (C)} (3)
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and

C = C (A1, A2) = {A (r) = (1− r)A1 + rA2 | A1, A2 ∈ MN (C)} (4)

to be Schur stable for A1 ∈ SN and A2 ∈ MN (C). Before giving the theorems
for these matrix families, let’s give the continuity theorem which determines the
sensitivity of the stability. We use this theorem for Schur stability. Let’s remember
the family of Schur stable matrices as follows;

SN = {A ∈ MN (C) | ω(A) < ∞} .

Theorem 1. Let A ∈ SN . If ∥B∥ <
√
∥A∥2 + 1

ω(A) −∥A∥ then the matrix A+B ∈
SN and

ω(A+B) ⩽ ω(A)
1−(2∥A∥+∥B∥)∥B∥ω(A) ,

|ω(A+B)− ω(A)| ⩽ (2∥A∥+∥B∥)∥B∥ω2(A)
1−(2∥A∥+∥B∥)∥B∥ω(A)

holds [4, 14].

Theorem 2. If A1 ∈ SN , A2 ∈ MN (C) and r ∈ IL = [r, r] then L (A1, A2) ⊂ SN ,

where −l = u = −∥A1∥
∥A2∥ + 1

∥A2∥

√
∥A1∥2 + 1

ω(A1)
, l < r < r < u.

Proof. Let us consider the given linear sum as follow

A (r) = A1 + rA2.

If A2 = 0 then A(r) = A1. We know that A1 ∈ SN so A(r) ∈ SN , too. Let’s take
A2 ̸= 0. If we substitute A(r) in the Lyapunov equation, we get the equation as
follow

(A1 + rA2)
∗
H (A1 + rA2)−H + I = 0

A∗
1HA1 −H = −

(
I + rA∗

1HA2 + rA∗
2HA1 + r2A∗

2HA2

)
.

At that rate,

C = I + rA∗
1HA2 + rA∗

2HA1 + r2A∗
2HA2 > 0

C = C∗ > 0 is available. The obtained result is written as follows

∥C∥ ≤ 1 + 2 |r| ∥A1∥ ∥H∥ ∥A2∥+ r2 ∥A2∥2 ∥H∥
then, if the inequality is substituted in the equation which is the solution of the
Lyapunov equation

H =

∞∑
k=0

(A∗
1)

k
CAk

1

∥H∥ ≤ ∥C∥ω (A1)

∥H∥ ≤
(
1 + 2 |r| ∥A1∥ ∥H∥ ∥A2∥+ r2 ∥A2∥2 ∥H∥

)
ω (A1)

∥H∥ ≤ ω (A1)

1− 2 |r| ∥A1∥ ∥A2∥ω (A1)− r2 ∥A2∥2 ω (A1)
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is obtained. While A1 ∈ SN , the following condition must be verified for A(r) to
be Schur stable

1− 2 |r| ∥A1∥ ∥A2∥ω (A1)− r2 ∥A2∥2 ω (A1) ≥ 0.

Then if the inequality is arranged with according to r, the Schur stability intervals
[r, r] of the matrix A(r) are obtained, where

r > l =
∥A1∥ω(A1)−

√
∥A1∥2 (ω(A1))

2
+ ω(A1)

∥A2∥ω(A1)

and

r < u =
−∥A1∥ω(A1) +

√
∥A1∥2 (ω(A1))

2
+ ω(A1)

∥A2∥ω(A1)
.

□

Theorem 3. If A1 ∈ SN , A2 ∈ MN (C) and r ∈ IC = [r, r] then C (A1, A2) ⊂ SN ,

where −l = u = − ∥A1∥
∥A2−A1∥ + 1

∥A2−A1∥

√
∥A1∥2 + 1

ω(A1)
, l < r < r < u.

Proof. If we write A2−A1 instead of A2 in Theorem 2, proof is clear from Theorem
2. □

Here, the equation expressed as a convex combination is shown with A(r) =
(1− r)A1 + rA2 and the values r are examined in such a way that the convex sums
of two matrices are Schur stable without the condition r ∈ (0, 1).

Let’s examine the values r of the matrix families L (A1, A2) and C (A1, A2), which
provide the Schur stability, by using the Schur stability of A1. During this review,
the articles of Duman and Aydın were taken into consideration [14,15].

It is possible to write the convex combination as a special case of the linear
sum. In other words, we can express the convex combination given as A(r) =
(1− r)A1+rA2 as a linear sum as A(r) = A1+r (A2 −A1). In order to the matrix
A(r) to be Schur stable, let’s determine the intervals IL and IC using the Schur
stability of the matrix A1.

Example 1. For α ∈ (−1, 1), A1 =

(
α 0
0 0

)
and A2 =

(
1 0
0 0

)
. Let’s exam-

ine the interval IL which leaves the matrix families L (A1, A2) Schur stable.
According to the Theorem 2, from ∥A1∥ = |α|, ∥A2∥ = 1, ω (A1) = 1

1−α2 , we
obtained as follows,

l = |α| − 1 , u = − |α|+ 1.

ω (A (r)) = 1
1−(α+r)2

is known, then
α < 0 , limr→|α|−1

(
1

1−(α+r)2

)
= ∞

α > 0 , limr→−|α|+1

(
1

1−(α+r)2

)
= ∞
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is obtained.

Example 2. Let’s examine the following matrices

A1 =

(
0.5 0
0 0.5

)
, A2 =

(
1 0
0 0

)
.

For these matrices we obtained ∥A1∥ = 0.5, ∥A2 −A1∥ = 0.5, ω (A1) = 1.33333.
So we know that A1 is Schur stable.

Table 2. The effectiveness of the interval IC

r -0.9999 -0.99 -0.9 . . . 0.9 0.99 0.9999
ω (A(r)) 10000.3 100.251 10.2564 . . . 10.2564 100.251 10000.3

According to the Theorem 3, we obtained l = −1, u = 1. As can be seen in the
Table 2, the condition numbers change according to the values r selected from the
intervals IC. Also the quality of the stability decrease as the value r approaches −1
or 1.

Remark 1. In particular, if taken A1 = A2 = 0, we get the matrix family L (0, 0) =
{0} ⊂ SN . Lets take A2 ̸= 0, the matrix family L (0, A2), r ∈ IL specified here,
which is obtained in the form of −l = u = 1

∥A2∥ for ∥A1∥ = 0 and ω (A1) = 1. If

we call this interval obtained for the r value “perfect interval”, we can say that the
result obtained here is the “perfect state”.

3. ω∗−Schur Stability of the Matrix Families

Let ω∗ be the practical Schur stability parameter, where 1 < ω∗ ∈ R and the
users choose the value ω∗ in view of their problem. If ω(A) ≤ ω∗ then the matrix
A is ω∗-Schur stable matrix. Otherwise, the matrix A is ω∗-Schur unstable matrix
[1, 3, 26].

Although there are theorems known as continuity theorems in the literature that
determine the sensitivity of the problem, these theorems show under which condi-
tions the given problems maintain the same property [1,9,11,14,15,17]. Let’s give
the continuity theorem which determines the sensitivity of the ω∗−Schur stability.

Theorem 4. Let A be a ω∗−Schur stable matrix (ω(A) ≤ ω∗). If the matrix B

satisfies ∥B∥ ≤
√

∥A∥2 + ω∗−ω(A)
ω∗ω(A) − ∥A∥, then A+B is ω∗−Schur stable [14].

Let’s define the family of ω∗−Schur stable matrices as follows;

S∗
N = {A ∈ SN | ω(A) ≤ ω∗} .

Now, considering Theorem 4, let’s give the following two theorems.

Theorem 5. If A1 ∈ S∗
N , A2 ∈ MN (C) and r ∈ I∗

L = [r, r] then L (A1, A2) ⊂ S∗
N ,

where −l∗ = u∗ = −∥A1∥
∥A2∥ + 1

∥A2∥

√
∥A1∥2 − 1

ω∗ + 1
ω(A1)

, l∗ ≤ r < r ≤ u∗.
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Proof. If A2 = 0 then A(r) = A1. We know that A1 ∈ S∗
N so A(r) ∈ S∗

N too.
Lets take A2 ̸= 0. For r ∈ I∗

L we can write l∗ ≤ r ≤ u∗. Then we get following
inequality,

r2 ∥A2∥2 ω (A1)ω
∗ + 2 |r| ∥A1∥ ∥A2∥ω (A1)ω

∗ − ω∗ + ω (A1) ≤ 0.

If we arrange above inequality

ω (A1)

1− r2 ∥A2∥2 ω (A1)− 2 |r| ∥A1∥ ∥A2∥ω (A1)
≤ ω∗

holds. Since ω (A1 + rA2) ≤ ω(A1)

1−r2∥A2∥2ω(A1)−2|r|∥A1∥∥A2∥ω(A1)
is valid from the

Theorem 2, the inequality ω (A1 + rA2) ≤ ω∗ is found. □

Theorem 6. If A1 ∈ S∗
N , A2 ∈ MN (C) and r ∈ I∗

C = [r, r] then C (A1, A2) ⊂ S∗
N ,

where −l∗ = u∗ = − ∥A1∥
∥A2−A1∥ + 1

∥A2−A1∥

√
∥A1∥2 − 1

ω∗ + 1
ω(A1)

, l∗ ≤ r < r ≤ u∗.

Proof. It is obvious from the previous proof. □

Now let’s give the following illustrative example on this subject.

Example 3. For α ∈
(
−
√

1− 1
ω∗ ,

√
1− 1

ω∗

)
⊂ (−1, 1), A1 =

(
α 0
0 0

)
∈

S∗
N and A2 =

(
1 0
0 0

)
. Let’s examine the interval I∗

L which leaves the matrix

family L (A1, A2) is ω∗−Schur stable.
According to the Theorem 5, we obtained,

l∗ = |α| −
√
1− 1

ω∗ , u∗ = − |α|+
√
1− 1

ω∗

from ∥A1∥ = |α|, ∥A2∥ = 1, ω (A1) =
1

1−α2 . ω (A (r)) = 1
1−(α+r)2

is known, then
α < 0 , lim

r→|α|−
√

1− 1
ω∗

(
1

1−(α+r)2

)
= ω∗

α > 0 , lim
r→−|α|+

√
1− 1

ω∗

(
1

1−(α+r)2

)
= ω∗

is obtained.

Example 4.

A1 =

(
0.5 0
0 0.5

)
, A2 =

(
1 0
0 0

)
.

For these matrices we obtained ω (A1) = 1.33333, ∥A1∥ = 0.5, ∥A2 −A1∥ = 0.5. So
we know that A1 ∈ S∗

N . If we choose ω∗ = 10 then we get −l = u = 0.897367. Let’s
examine the interval r ∈ I∗

C which leaves the matrix family C (A1, A2) is 10−Schur
stable. According to the Theorem 6, as can be seen in the Table 3, sharp intervals
are obtained for the specified ω∗ = 10 parameter. It is seen that ω∗ < ω(A(r)) for
the r value selected outside these intervals.
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Table 3. Sharpness of the interval I∗
C of 10−Schur stability

r -0.897368 l -0.897366 . . . 0.897366 u 0.897368
ω (A(r)) 10.0003 10 9.99937 . . . 9.99937 10 10.0003

Remark 2. From the above example, when values of Schur stability parameter
ω (A (r)) are checked for the r values, it can be seen clearly that Theorem 2, Theorem
3, Theorem 5 and Theorem 6 gave sharp bounds.

4. Obtaining the Extended Intervals

The intervals IL, IC , I∗
L and I∗

C are given in the Section 3. Although these
intervals are found, actually it has been realized that big intervals which preserve
Schur stability or ω∗− Schur stability of the matrix families L and C can be found.
For this reason, the intervals are extended with certain rule in this section. Here,
the extended intervals for the matrix families which preserve the Schur stability
or ω∗− Schur stability are given. In addition, the extended intervals also allow us
to introduce the Schur stable interval matrices or and ω∗− Schur stable interval
matrices. To extend the intervals IL and IC , the methods which based on continuity
theorems are given and the algorithms which based on the methods are given.
Similarly, to extend the intervals I∗

L and I∗
C , the methods and the algorithms are

given. So it can be obtained bigger intervals which preserve the Schur stability or
ω∗− Schur stability of the matrix families L and C. In this process, the stepsize
is determined from the continuity theorems which are Theorem 2, Theorem 3,
Theorem 5 and Theorem 6. The extended intervals Ie

L, Ie
C , I∗e

L and I∗e
C are obtained

at the end of processing. Let’s give the methods and the algorithms as below.

4.1. A method and an algorithm to find the extended interval Ie
L.

4.1.1. A method. Keeping the Schur stability of the matrix family L (A1, B), a
method is given to extend the intervals with the Schur stable matrix A1 and the
matrix B. IL = [r, r] has been chosen with Theorem 2. For r ∈ IL, the matrices
A (r) = Ar = A1 + rB are Schur stable.

i) Defining the stepsize
The stepsize parameter r is used to extend the interval IL. So, generalizing form

the Theorem 2, it is chosen as rk ⪅ −∥Ak∥
∥B∥ + 1

∥B∥

√
∥Ak∥2 + 1

ω(Ak)
.

ii) Determining the initial value
From the Theorem 2, the first value of the parameter r1 is taken as r1 ⪅ u.
iii) Calculating the upper bound ue

To extend the upper bound of the intervals IL, the following steps are done,

Ak = Ak−1 + rk−1B , r1 ⪅ u , k ≥ 2, (5)
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rk ⪅ −∥Ak∥
∥B∥

+
1

∥B∥

√
∥Ak∥2 +

1

ω(Ak)
, (6)

uk = uk−1 + rk , u1 = r1. (7)

The new matrix Ak in the equality (5) is obtained as Schur stable. rk in equality
(6) is calculated with Theorem 2. uk in the equality (7) is the upper bound of the
extended interval obtained in step k. At the end of this process, the upper bound
ue of the extended interval Ie

L is obtained.
iv) Calculating the lower bound le

Similar to the above application, to extend the lower bound of the intervals IL,
the matrix Ak is taken as Ak = Ak−1 − rk−1B in the equality (5) and the equality
(7) is replaced by the recurrence relation lk = lk−1 − rk , l1 = −r1. lk is the lower
bound of the extended interval obtained in step k. The result obtained with the
new equations, the lower bound le of the extended interval Ie

L is obtained.

Remark 3. If the method is applied consecutively to get the upper bound, the
stepsize rk is become smaller and the parameter ω continues to grow by increasing.
A similar situation is also observed for the lower bound. Because of these reasons,
the working with very small numbers is non-practical.

4.1.2. An algorithm. As given in the Remark 3, to stop the calculation, the stopping
criterion is given as follow.

Stopping parameter r∗

After a certain step, the new stepsize becomes too small. Calculations with such
values are not practical due to some reasons (i.e. floating point arithmetic)(see.
[12, 16]). r∗ is called the practical parameter for the stepsize which chosen by user
small enough [21, 22]. With this criterion, less processing is needed and the given
method run smoothly.

Let’s give the algorithm to extend the upper bound of the intervals IL.
Algorithm 1.1 (for the upper bound ue)

(1) Input; A ∈ SN , B, r∗, γ ⪅ 1.
(2) Calculate ω(A), ∥A∥ , ∥B∥

β = − ∥A∥
∥B∥ + 1

∥B∥

√
∥A∥2 + 1

ω(A) , r1 = γ.β.

(3) Take k = 1, A1 := A, u1 := r1.
(4) If r1 < r∗ then write “The interval cannot be extended based on the avail-

able data.” and go 7. step.
(5) Calculate;

Ak+1 = Ak + rkB , ∥Ak+1∥ , ω(Ak+1),

βk+1 = −∥Ak+1∥
∥B∥ + 1

∥B∥

√
∥Ak+1∥2 + 1

ω(Ak+1)
,

rk+1 = γ.βk+1.
(6) If rk+1 ≥ r∗ then calculate uk+1 = uk + rk+1, take k := k + 1 and go 5.

step.



A NEW APPROACH FOR SCHUR STABLE MATRIX FAMILIES 547

(7) Write as M := k and the upper bound of interval ue = uM .

To extend the lower bound of the intervals IL, steps (5)-(7) in Algorithm 1.1 are
taken as follow.

Algorithm 1.2 (for the lower bound le)

(5́) Calculate;
Ak+1 = Ak − rkB , ∥Ak+1∥ , ω(Ak+1),
rk+1 = γ.βk+1.

(6́) If rk+1 ≥ r∗ then calculate lk+1 = lk − rk+1 (l1 := −r1), take k := k + 1
and go 5́. step.

(7́) Write as M := k and the lower bound of interval le = lM .

Finally, the found values ue and le are combined and these values constitute of
the Schur stability interval Ie

L = [le, ue] of the matrix family L (A1, B). Here, the
interval Ie

L preserves the Schur stability of the given matrix family.

Theorem 7 (Generalization of the Theorem 2). If A1 ∈ SN , B ∈ MN (C) and
r ∈ Ie

L = [le, ue] then L (A1, B) ⊂ SN , where ue and le are defined as in Algorithm
1.1 and Algorithm 1.2, respectively.

Proof. It is clear from the Theorem 2, Algorithm 1.1 and Algorithm 1.2. □

4.2. A method and an algorithm to find the extended interval I∗e
L .

4.2.1. A method. Keeping the ω∗−Schur stability of the matrix family L (A1, B),
a method is given to extend the intervals with the ω∗−Schur stable matrix A1

and the matrix B. I∗
L = [r, r] has been chosen with Theorem 5. For r ∈ I∗

L,
the matrices A (r) = Ar = A1 + rB are ω∗−Schur stable. The stepsize chosen as

rk = −∥Ak∥
∥B∥ + 1

∥B∥

√
∥Ak∥2 − 1

ω∗ + 1
ω(Ak)

, the initial value taken as u∗. To extend

the upper bound of the intervals I∗
L, the following steps are done,

Ak = Ak−1 + rk−1B , r1 = u∗ , k ≥ 2 (8)

rk = −∥Ak∥
∥B∥

+
1

∥B∥

√
∥Ak∥2 −

1

ω∗ +
1

ω(Ak)
, (9)

uk = uk−1 + rk , u1 = r1. (10)

On the other hand, to extend the lower bound of the intervals I∗
L, the matrix Ak

is taken as Ak = Ak−1− rk−1B in the equality (8) and the equality (10) is replaced
by the recurrence relation lk = lk−1− rk , l1 = −r1. At the end of this process, the
upper bound u∗e and lower bound l∗e of the extended interval I∗e

L .

Remark 4. Let’s take A1 and B.

A1 =

(
0.1 0
0 0.2

)
, B =

(
0 1
0 0

)
.

From the Theorem 5, it is known that u = 0.748683 for ω∗ = 10. If the method is
applied consecutively to get the upper bound, the stepsize is become smaller and the
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parameter ω approaches to 10 as in Table 4. A similar situation is also observed for
the lower bound. Because of these reasons, the working with very small numbers is
non-practical. For this reason, as in Remark 3 for the Algorithm 1.1 and Algorithm
1.2, the stopping parameter r∗ is needed for the algorithm to stop.

Table 4. The values r and ω(Ak) corresponding to the number
of steps k

k 1 50 100 200 300 380

r 0.748683 0.00817741 0.00310605 0.00079299 0.000245453 9.98825e-005

ω(Ak) 1.66462 7.23792 8.61111 9.57978 9.86377 9.94385

4.2.2. An algorithm. As given in the Remark 4, to stop the calculation, the stopping
criterion r∗ is used as follow.

Let’s give the algorithm to extend the upper bound of the intervals I∗
L.

Algorithm 2.1 (for the upper bound u∗e)

(1) Input; A ∈ SN , B, ω∗, r∗.
(2) Calculate ω(A).
(3) If ω(A) > ω∗ then “The matrix A is not ω∗−Schur stable” and finish the

algorithm.

(4) Calculate ∥A∥ , ∥B∥ , u∗ = − ∥A∥
∥B∥ + 1

∥B∥

√
∥A∥2 − 1

ω∗ + 1
ω(A) .

(5) Take k = 1, A1 := A, r1 := u∗, u1 := r1.
(6) Calculate;

Ak+1 = Ak + rkB , ∥Ak+1∥ , ω(Ak+1),

rk+1 = −∥Ak+1∥
∥B∥ + 1

∥B∥

√
∥Ak+1∥2 − 1

ω∗ + 1
ω(Ak+1)

.

(7) If rk+1 ≥ r∗ then calculate uk+1 = uk + rk+1, take k := k + 1 and go 6.
step.

(8) Write as M := k and the upper bound of interval u∗e = uM .

To extend the lower bound of the intervals I∗
L, steps (6)-(8) in Algorithm 2.1 are

taken as follow.

Algorithm 2.2 (for the lower bound l∗e)

(6́) Calculate;
Ak+1 = Ak − rkB , ∥Ak+1∥ , ω(Ak+1),

rk+1 = −∥Ak+1∥
∥B∥ + 1

∥B∥

√
∥Ak+1∥2 − 1

ω∗ + 1
ω(Ak+1)

.

(7́) If rk+1 ≥ r∗ then calculate lk+1 = lk − rk+1 (l1 := −r1), take k := k + 1
and go 6́. step.

(8́) Write as M := k and the lower bound of interval l∗e = lM .

Finally, the found values u∗e and l∗e are combined and these values constitute
of the ω∗−Schur stability interval I∗e

L = [l∗e, u∗e] of the matrix family L (A1, B).
Here, the interval I∗e

L preserves the ω∗−Schur stability of the given matrix family.
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Theorem 8 (Generalization of the Theorem 5). If A1 ∈ S∗
N , B ∈ MN (C) and

r ∈ I∗e
L = [l∗e, u∗e] then L (A1, B) ⊂ S∗

N , where u∗e and l∗e are defined as in
Algorithm 2.1 and Algorithm 2.2, respectively.

Proof. It is clear from the Theorem 5, Algorithm 2.1 and Algorithm 2.2. □

Example 5. Let us consider the matrices A1 and B as follow,

A1
1 =

(
−0.1 0
0 0.1

)
, A2

1 =

(
0.2 1
0 0.1

)
,

B1 = E11 + E22, B2 = E12, B3 = E11 + E12 + E22

Here Eij is a real matrix which the element in position (i, j) equals 1 and all other
elements are 0.

Let’s examine the Table 5 (Table 6). The matrices A1, B and the parameters
r∗ and ω∗ are the input elements, where r∗ and ω∗ selected by the users. l
(l∗) are the lower bounds and u (u∗) are the upper bounds of the interval IL (I∗

L)
which is calculated with the help of Theorem 2 (Theorem 5). le (l∗e) are the lower
bounds and ue (u∗e) are the upper bounds of the interval Ie

L (I∗e
L ) which is the

extended interval obtained by the Algorithm 1.1 (Algorithm 2.1) and Algorithm 1.2
(Algorithm 2.2). M indicates how many steps the algorithms stopped.

Table 5. The computed values for the data A1, B, r∗

A1 B γ r∗ r = γ.u ue M

A1
1 B1

0.9
0.01

0.81
0.891 2

0.001 0.8991 3

0.95
0.01

0.855
0.89775 2

0.001 0.899888 3

A2
1 B1

0.9
0.1

0.185918
0.320172 2

0.01 0.638475 12

0.95
0.1

0.196247
0.334315 2

0.01 0.635644 11

A2
1 B2

0.9
0.1

0.185918
0.429824 3

0.01 2.35532 88

0.95
0.1

0.196247
0.448457 3

0.01 2.42436 90

A2
1 B3

0.9
0.01

0.114904
0.486169 14

0.001 0.667356 77

0.95
0.01

0.121287
0.494272 14

0.001 0.66961 75

(a) The computed values r and ue

A1 B γ r∗ r = −γ.u le M

A1
1 B1

0.9
0.01

-0.81
-0.891 2

0.001 -0.8991 3

0.95
0.01

-0.855
-0.89775 2

0.001 -0.899888 3

A2
1 B1

0.9
0.1

-0.185918
-0.663416 4

0.01 -0.932985 13

0.95
0.1

-0.196247
-0.6847 4

0.01 -0.940808 13

A2
1 B2

0.9
0.1

-0.185918
-2.40175 8

0.01 -4.36254 94

0.95
0.1

-0.196247
-2.45135 8

0.01 -4.42464 95

A2
1 B3

0.9
0.01

-0.114904
-1.08201 9

0.001 -1.09759 14

0.95
0.01

-0.121287
-1.08676 9

0.001 -1.0975 13

(b) The computed values r and le

For example, according to Table 5a (Algorithm 1.1) and Table 5b (Algorithm
1.2), the initial value is obtained as u = −l = 0.206575 for the matrices A2

1, B2.

• For γ = 0.9,
– The extended upper bound is obtained as ue = 0.320172 in 2 steps for

r∗ = 0.1 and ue = 0.638475 in 12 steps for r∗ = 0.01.
– The extended lower bound is obtained as le = −0.663416 in 4 steps for

r∗ = 0.1 and le = −0.932985 in 13 steps for r∗ = 0.01.
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The extended interval Ie
L = [le, ue] = [l13, u12] = [−0.932985, 0.638475] is ob-

tained from the Table 5 for the matrices A2
1, B2 and the parameter r∗ = 0.01 and

γ = 0.9.

• For γ = 0.95,
– The extended upper bound is obtained as ue = 0.334315 in 2 steps for

r∗ = 0.1 and ue = 0.635644 in 11 steps for r∗ = 0.01.
– The extended lower bound is obtained as le = −0.6847 in 4 steps for

r∗ = 0.1 and le = −0.940808 in 13 steps for r∗ = 0.01.

The extended interval Ie
L = [le, ue] = [l13, u11] = [−0.940808, 0.635644] is obtained

from the Table 5 for the matrices A2
1, B2 and the parameter r∗ = 0.01 and γ = 0.95.

Table 6. The computed values for the data A1, B, ω∗, r∗

A1 B ω∗ r∗ u∗ u∗e M

A1
1 B1

10 0.01 0.848683 0.848683 -
100 0.01 0.894987 0.894987 -

A2
1 B1

10
0.1

0.165268
0.281339 1

0.01 0.476099 7

100
0.1

0.202507
0.341518 1

0.01 0.615616 9

A2
1 B2

10
0.05

0.165268
0.627035 6

0.005 1.51639 69

100
0.1

0.202507
0.457834 2

0.01 2.3151 82

A2
1 B3

10
0.01

0.102141
0.344321 8

0.001 0.403404 24

100
0.01

0.125156
0.479542 12

0.001 0.612721 54

(a) The computed values u∗ and u∗e

A1 B ω∗ r∗ l∗ l∗e M

A1
1 B1

10 0.01 -0.848683 -0.848683 -
100 0.01 -0.894987 -0.894987 -

A2
1 B1

10
0.1

-0.165268
-0.604153 3

0.01 -0.769007 8

100
0.1

-0.202507
-0.694796 3

0.01 -0.921211 11

A2
1 B2

10
0.05

-0.165268
-2.60586 11

0.005 -3.51925 75

100
0.1

-0.202507
-2.48489 7

0.01 -4.31782 87

A2
1 B3

10
0.01

-0.102141
-1.03721 8

0.001 -1.04426 10

100
0.01

-0.125156
-1.07752 7

0.001 -1.08955 10

(b) The computed values l∗ and l∗e

On the other hand, according to Table 6a (Algorithm 2.1) and Table 6b (Algo-
rithm 2.2), if the parameter ω∗ is chosen as 10, the initial value is obtained as
u∗ = −l∗ = 0.165268 for the matrices A2

1, B2. If the stopping parameter r∗ is
chosen as r∗ = 0.05 (r∗ = 0.005),

• the extended upper bound is obtained as u∗e = 0.627035 (u∗e = 1.51639) in
6 (69) steps.

• the extended lower bound is obtained as l∗e = −2.60586 (l∗e = −3.51925)
in 11 (75) steps.

The extended interval I∗e
L = [l∗e, u∗e] = [−2.60586, 0.627035] is obtained from

the Table 6 for the matrices A2
1, B2 and the parameters ω∗ = 10, r∗ = 0.05.

According to the Table 5 and the Table 6, let’s give the following;

• The interval Ie
L is bigger than the interval I∗e

L with same condition.
• The number of steps increases while the stopping parameter decreases.
• If the matrices A1 and B are taken diagonal, the extended intervals are
obtained by the theorems.

• If the parameter ω∗ is chosen bigger, the extended interval I∗e
L is obtained

bigger in the same conditions.
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4.3. Methods and algorithms to find the extended interval Ie
C and I∗e

C .
The methods and the algorithms can be given to extend the intervals IC and I∗

C as
similar to the methods and algorithms to extend the intervals IL and I∗

L in Section
4. So, in this paper, the methods and the algorithms to find the intervals Ie

C and
I∗e
C won’t be given to avoid repeat.

5. Conclusion

In this study, the matrix families L and C based on linear sum and convex
combination were constructed, respectively. This construction is a new approach
that preserves the Schur stability of the matrix families. The intervals IL and IC
that make these matrix families Schur stable were determined in the Theorem 2 and
Theorem 3 and supported by the illustrative examples. Here it is seen that the sharp
results are obtained from the Theorem 2 and Theorem 3, especially in the Example
1 and Example 2, for the matrix families L and C. Similarly, the intervals I∗

L and
I∗
C that provide ω∗−Schur stability of the matrix families L and C are determined

in the Theorem 5 and Theorem 6 and supported with the numerical examples. It
is seen that the Theorem 5 and Theorem 6 give sharp results in the Example 3 and
Example 4. At the end, the methods and the algorithms are given to extended the
intervals IL, IC , I∗

L and I∗
C . Here, the methods are based on continuity theorems

and the algorithms based on the methods. With the help of these theorems, the
obtained intervals are extended and the results are presented with the numerical
example.

On the other hand, unlike other studies in the literature, this study shows the
importance of continuity theorems which guarantee Schur stability. With the help
of these theorems, the matrix families are extended in such a way that their Schur
stability is preserved. Also, in many studies, the matrices A1 and B were taken as
Schur stable but in this study there is no need for the matrix B to be Schur stable
or ω∗-Schur stable.
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