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ABSTRACT 

This study deals with the problem of multicollinearity in the linear regression model. Restricted 

and unrestricted parameter estimates are chosen among biased estimators to be studied and 

compared as two corresponding groups, with the aim of identifying which group gives better 

parameter estimates in the case of multicollinearity. Estimators' performance is compared 

according to matrix mean square error and scalar mean square error. Proceeding from this, it 

has been shown that, in the sense of Scalar Mean Square Error (SMSE), the Restricted Ridge 

regression (RRR) estimator outperforms all constrained and unconstrained estimators, while 

the Ridge regression is superior to the unconstrained set of estimators. A real-life application 

and Monte-Carlo simulation study are conducted to compare the performance of restricted and 

unrestricted estimators. As a result, it was decided that the most effective estimators are the 

restricted biased estimators when it comes to the state of multicollinearity.  

Keywords: Multicollinearity, Mean square error, Biased estimators, Monte-Carlo simulation, 

linear restrictions. 
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MONTE-CARLO SİMÜLASYON ÇALIŞMASI İLE SINIRLI VE 

SINIRSIZ TAHMİN EDİCİLERİN KARŞILAŞTIRILMASI 

 

ÖZ 

Bu çalışma, doğrusal regresyon modelinde çoklu doğrusallık sorununu ele almaktadır. Çoklu 

doğrusal bağlantı durumunda hangi grubun daha iyi parametre tahminleri verdiğini belirlemek 

amacıyla, incelenecek ve karşılaştırılacak yanlı tahmin ediciler arasından kısıtlı ve kısıtlı 

olmayan parametre tahminleri iki grup olarak seçilmiştir. Tahmin edicilerin performansı matris 

ortalama kare hatası ve skaler ortalama kare hatasına göre karşılaştırılmıştır. Buradan hareketle, 

Skaler Ortalama Kare Hata (SMSE) anlamında, Kısıtlı Ridge regresyonu (RRR) tahmin 

edicisinin tüm kısıtlı ve kısıtlı olmayan tahmin edicilerden daha iyi performans gösterdiği, 

Ridge regresyonunun ise kısıtlı olmayan tahmin ediciler kümesinden daha üstün olduğu 

gösterilmiştir. Kısıtlı ve kısıtlı olmayan tahmin edicilerin performansını karşılaştırmak için 

gerçek hayattan bir uygulama ve Monte-Carlo simülasyon çalışması yapılmıştır. Sonuç olarak, 

çoklu doğrusal bağlantı durumu söz konusu olduğunda en etkin tahmin edicilerin kısıtlı yanlı 

tahmin ediciler olduğuna karar verilmiştir. 

Anahtar Kelimeler: Çoklu doğrusallık, Ortalama karesel hata, Yanlı tahminciler, Monte-Carlo 

simülasyonu, doğrusal kısıtlamalar 

 

1.  INTRODUCTION 

The linear regression model consisting of more than independent variable is referred to 

as multiple. The standard multiple linear regression model is expressed as 

𝒚 = 𝑿𝜷 + 𝒆, (1) 

where 𝒚 is an 𝑛 × 1 observation vector of dependent variable, 𝑿 is an 𝑛 × 𝑝 full column rank 

observation matrix of 𝑝 independent variables, 𝜷 is a 𝑝 × 1 vector of unknown regression 

coefficients, and 𝒆 is an 𝑛 × 1 vector of independent and identically distributed (0, 𝜎2) random 

errors. Whereas 𝑛 is the observations’ number, 𝑝 is the independent variables’ number 

(Montgomery et al., 2021). 
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The ordinary least squares (OLS) estimate of model (1) is obtained as 

𝜷̂ = (𝑿ʹ𝑿)−1𝑿ʹ𝒚, (2) 

where 𝑿′𝑿 is a 𝑝 × 𝑝 correlation matrix between the independent variables and 𝑿ʹ𝒚 is a 𝑝 × 1 

correlation vector between the independent variables and the dependent variable. 

The OLS estimator 𝜷̂ is an unbiased estimator that has the smallest variance among all 

other linear unbiased estimators. And according to the Gauss-Markov theorem the ordinary 

least squares (OLS) estimator is considered the best linear unbiased estimator (BLUE) for 𝜷 

parameter (Albert, 1973). Therefore, due to its suitable statistical properties it has been used for 

a long time. But, if the model’s assumptions are not met, the parameters estimated by the OLS 

method may not be reliable. Although theoretically some results can be obtained under the 

assumption that the columns of the 𝑿 matrix are linear independent, applications are generally 

encountered in cases where the columns of the design matrix are linearly dependent. In this 

case, the problem of multicollinearity arises, and the matrix 𝑿ʹ𝑿 becomes ill-conditioned. In 

datasets with multicollinearity, the OLS estimates of the parameters are known to be great in 

absolute values(Montgomery et al., 2012). To overcome these problems, many authors have 

introduced different kinds of one and two-parameter estimators: to mention a few, Stein (1956), 

Massy (1965), Hoerl and Kennard (1970), Swindel (1976), Liu (1993), Akdeniz and Kaçiranlar 

(1995), Ozkale and Kaçiranlar (2007), Sakallıoglu and Kaçıranlar (2008), Yang and Chang 

(2010), Dorugade (2014), Roozbeh (2018), Akdeniz and Roozbeh (2019), Lukman et al. (2019), 

Lukman et al. (2020), and, very recently, Kibria and Lukman (2020), among others. 

The purpose of this study is to examine several different classes of biased estimators 

when the input matrix of the design is ill-conditioned. These estimators are the ridge regression 

estimator (1970), the contraction estimator (1973), the Liu estimator (1993), the two-parameter 

estimator (2007), and their restricted cases subject to the exact constraint Rβ=r. Then with the 

aim of conducting a distinct comparison from comparisons found profusely in the literature, the 

concerned estimators have been compared after separating them into two key groups one under 

the classic linear regression model the other under the restricted linear regression model. The 

comparison was applied once theoretically by using the criterion of the matrix mean square 

error (MMSE), and once practically by conducting a simulation study and a real-life application 

based on the discussed theories. While numerous studies and articles in the literature have 

examined biased estimators, no research has specifically compared the Linear regression model 

with the restricted regression model. This study is the first to provide a comparative analysis of 
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certain unrestricted biased estimators and their corresponding restricted biased estimators in the 

presence of multicollinearity. Deserves to be mentioned that Månsson and Kibria (2021) 

compared between the restricted and unrestricted Liu estimators in the presence of 

multicollinearity but for the Poisson regression model. 

This article is organized as follows. In Sec. 2, some restricted and unrestricted biased 

estimators were presented and discussed. Some theories that summarize the comparisons 

between the restricted and the unrestricted estimators under the MMSE criterion were shown 

in Sec. 3. A numerical example based on theoretical comparisons provided in the previous 

chapter were undertaken to evaluate the performance of estimators in respect of both the scalar 

mean square error (SMSE) and MMSE criteria is given in Sec. 4. To compare the performance 

of the estimators, a Monte-Carlo simulation study has been conducted in Sec. 5. All obtained 

results have been summarized in the conclusion in Sec. 6. The acronyms used in this study are 

listed in Table 1. 

 

Table 1. A list of acronyms and definitions used throughout the paper 

CN : ConditionNumber 

LE : LiuEstimator 

MRL : Modified RestrictedLiu 

MRR : Modified RidgeRegression 

MMSE : MatrixMeanSquareError  

SMSE : ScalarMean SquareError  
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Table 1 (Continued). A list of acronyms and definitions used throughout the paper 

nnd : NonnegativeDefined  

OLS : OrdinaryLeastSquares  

RL : RestrictedLiu  

RLM : RestrictedLinear Model  

RLS : RestrictedLeastSquares  

RR : RidgeRegression  

RRR : RestrictedRidgeRegression  

RTP : Restricted Two-Parameter  

SRTP : StochasticRestrictedTwo-Parameter 

TP : Two-Parameter  

VIF : VarianceInflationFactor 

RC : RestrictedContraction 

𝑺 : TheCorrelationMatrix (𝑿′𝑿) 

EMSE : EstimatedMean Square Error  

𝐸(𝜷̃) : TheExpected Value of 𝜷̃ Estimator 

𝑉𝑎𝑟(𝜷̃) : TheVariance-CovarianceMatrix of 𝜷̃ Estimator 

𝐵𝑖𝑎𝑠(𝜷̃) : TheBias of 𝜷̃ Estimator 

β : TheRegressionCoefficientsVector 

𝜷̃ : AnyEstimator of 𝜷 Parameter 

𝜷̂ : The OLS Estimator of 𝜷 Parameter 
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Table 1 (Continued). A list of acronyms and definitions used throughout the paper 

𝜶 : TheRegressionCoefficients in theCanonical Form 

𝜶̃ : AnyEstimator of 𝜶 Parameter 

𝜶̂ : The OLS Estimator in theCanonical Form 

Q : An OrthogonalMatrix 

𝒌 : RidgeBiasParameter 

𝒅 : LiuBiasParameter 

𝝀𝒊 : TheEigenvalues of 𝑿′𝑿 Matrix 

𝜦 : A DiagonalMatrixConsisting of theEigenvalues of 𝑿′𝑿 Matrix  

𝜷̂(𝑘) : RidgeRegressionEstimator  

𝜷̂(𝑘, 𝑏) : ModifiedRidgeRegressionEstimator  

𝜷̂(𝑑) : ContractionEstimator  

𝜷̂𝑑 : LiuEstimator  

𝜷̂(𝑘, 𝑑) : TwoParameterEstimator  

𝜷̂𝒓 : RestrictedLeastSquareEstimator 

𝜷̂𝒓(𝑘) : RestrictedRidgeRegressionEstimator 

𝜷̂𝑹(𝑑) : RestrictedContractionEstimator  

𝜷̂𝒓(𝑑) : RestrictedLiuEstimator 

𝜷̂𝒓(𝑘, 𝑑) : RestrictedTwo-ParameterEstimator 

 

Following a brief introduction and some preliminary discussions, we will now give the 

description of the linear regression model, linear estimators, and some standard criteria for 

evaluating the goodness of estimators. 
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2.  SOME BIASED LINEAR ESTIMATORS 

In statistics, an estimator’s bias is the discrepancy between the estimated parameter’s 

real value and its expected value. If an estimator is either underestimate or overestimate a 

population parameter, then it is considered to be biased. So, in this chapter, some biased 

estimators that are widely used in statistics and econometrics will be included and divided into 

two main groups. In addition, the statistical properties of these estimators will be presented. 

One of the best-known approaches to circumvent plenty of the obstacles associated with 

the OLS estimates is the ridge regression (RR) estimator that was originally introduced by Hoerl 

and Kennard (1970) through the acceptance of some bias to reduce variance as follows: 

𝜷̂𝑘  = (𝑿′𝑿 + 𝑘𝑰)−1𝑿′𝒚 , 𝑘 ≥ 0. (3) 

The expected value of 𝜷̂𝑘 is 

𝐸(𝜷̂𝑘) = 𝐸[(𝑿′𝑿 + 𝑘𝑰)−1𝑿′𝒚] = 𝜷 −  𝑘 𝑺𝑘
−1𝜷, (4) 

the part (− 𝑘 𝑺𝑘
−1𝜷) of this equality expresses bias. So, 

𝐵𝑖𝑎𝑠(𝜷̂𝑘) = 𝐸(𝜷̂𝑘) − 𝜷 = − 𝑘 𝑺𝑘
−1𝜷, (5) 

while the variance-covariance matrix is as follows: 

𝑉𝑎𝑟(𝜷̂𝒌) = 𝑉𝑎𝑟[(𝑿′𝑿 + 𝑘𝑰)−1𝑿′𝒚] = 𝜎2𝑺𝑘
−𝟏𝑿′𝑿𝑺𝑘

−𝟏. (6) 

By using (5) and (6) the MMSE matrix of ridge regression estimator is 

𝑀𝑀𝑆𝐸(𝜷̂𝑘) = 𝑉𝑎𝑟(𝜷̂𝑘) + 𝐵𝑖𝑎𝑠(𝜷̂𝒌)𝐵𝑖𝑎𝑠(𝜷̂𝑘)
′
 

=  𝑺𝑘
−1(𝜎2𝑿′𝑿 + 𝑘2𝜷𝜷′)𝑺𝑘

−1. (7) 

Now, let 𝜆1, 𝜆2,…, 𝜆𝑝 to be the eigenvalues of the 𝑿’𝑿 matrix, then the SMSE equation of the 

RR estimator is 

𝑆𝑀𝑆𝐸(𝜷̂𝑘) = 𝑡𝑟[𝑀𝑀𝑆𝐸(𝜷̂𝑘)] =  ∑
𝜎2𝜆𝑗 + 𝑘2𝛽𝑗

2

(𝜆𝑗 + 𝑘)
2

𝑝

𝑗=1
. (8) 

In spite of ridge estimator efficiency in practice, 𝑘 is a complex function. The bias 

parameter 𝑘 has numerous selection methods and its preference depends on the analyzer. Since 
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there is no consensus on the manner of choosing 𝑘, new estimation methods have been 

investigated in the case of linear model morbidity. One of those methods is the Liu estimator, 

by combining the ridge and the contraction estimators’ advantages Kejian (1993) introduced a 

new estimator. This estimator was later named Liu estimator by Akdeniz and Kaçiranlar (1995) 

and M. H. J. Gruber (1998). The estimator of Liu was obtained by using the OLS estimate on 

the model caused by augmenting 𝑑𝜷̂ = 𝜷 + 𝜺′ to (1). The advantage of 𝜷̂𝑑 over 𝜷̂𝑘 is because 

𝑑 is a linear function, so the selection of 𝑑 is easier than the selection of 𝑘. 𝜷̂𝑑also can be written 

as a linear transformation of the OLS estimator in the following form: 

𝜷̂𝑑 =  (𝑿′𝑿 + 𝑰)−1(𝑿′𝑿 + 𝑑𝑰) 𝜷̂. (9) 

From this, we can see that when 𝑑 = 1, 𝜷̂𝑑 = 𝜷̂ and ‖𝜷̂𝑑‖ < ‖𝜷̂‖. Also, the expected value of 

𝜷̂𝑑 

𝐸(𝜷̂𝑑) =  (𝑿′𝑿 + 𝑰)−1(𝑿′𝑿 + 𝑑𝑰)𝜷 , ((10) 

demonstrates that 𝜷̂𝑑 is a biased estimator. Furthermore, with supposing that 𝑨𝑑 = (𝑿′𝑿 +

𝑰)−1(𝑿′𝑿 + 𝑑𝑰), the bias and the variance-covariance matrix of the Liu estimator are 

respectively. 

𝐵𝑖𝑎𝑠(𝜷̂𝑑) = (𝑨𝑑 − 1)𝜷,          (11) 

𝑉𝑎𝑟(𝜷̂𝑑) =  𝜎2𝑨𝑑(𝑿′𝑿)−1𝑨𝑑
′ .  (12) 

By using the equations (11) and (12), Liu estimator's MMSE matrix is as follows: 

𝑀𝑀𝑆𝐸(𝜷̂𝑑) =  𝜎2𝑨𝑑(𝑿′𝑿)−1𝑨𝑑
′ + (𝑨𝑑 − 1)𝜷𝜷′(𝑨𝑑 − 1). (13) 

As well as the SMSE value is 

𝑆𝑀𝑆𝐸(𝜷̂𝑑) = 𝜎2 ∑
(𝜆𝑖 + 𝑑)2

𝜆𝑖(𝜆𝑖 + 1)

𝑝

𝑖=1
+ (𝑑 − 1)2 ∑

𝛼𝑖
2

(𝜆𝑖 + 1)2

𝑝

𝑖=1
 , (14) 

where 𝛼𝑖 is the 𝑖-th element of α = Tʹβ vector used to write the model (1) in the canonical form, 

given the orthogonal matrix 𝑻 of the orthonormal eigenvectors of the 𝑿′𝑿 matrix. The equation 

of the bias parameter that makes the 𝑆𝑀𝑆𝐸(𝜷̂𝑑) minimum is given by Liu (1993) as follows: 
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𝑑𝑜𝑝𝑡 = ∑
𝛼𝑖

2 − 𝜎2

(𝜆𝑖 + 1)2

𝑝

𝑖=1
∑

𝜎2 + 𝜆𝑖𝛼𝑖
2

𝜆𝑖(𝜆𝑖 + 1)2

𝑝

𝑖=1
⁄ = 1 −

𝜎2 (∑
1

𝜆𝑖(𝜆𝑖+1)

𝑝
𝑖=1 )

∑
𝜎2+𝜆𝑖𝛼𝑖

2

𝜆𝑖(𝜆𝑖+1)2

𝑝
𝑖=1

. 

(15) 

However, 𝑑𝑜𝑝𝑡 is not very handy in practice since it depends on the unknown parameters 𝜎2 

and 𝛼𝑖
2.  If the unbiased estimators  𝛼̂𝑖

2 − 𝜎̂2 𝜆𝑖⁄  and 𝜎̂2 are used instead, then the following 

𝑑̂𝑜𝑝𝑡 will be obtained as follows: 

𝑑̂𝑜𝑝𝑡 = 1 −  𝜎̂2 (∑
1

𝜆𝑖(𝜆𝑖 + 1)

𝑝

𝑖=1
∑

𝛼̂𝑖
2

(𝜆𝑖 + 1)2

𝑝

𝑖=1
⁄ ). (16) 

Liu (1993) named (16) the minimum MMSE estimate and gave a generalized form of it. In 

addition, different selection methods of 𝑑 were conducted. 

With the aim of reaching new estimators that are more balanced and less biased, 

statisticians have started a new trend towards finding new estimation methods with more than 

one parameter to find new estimators encountering multicollinearity whose length is closer to 

β than 𝜷̂. For instance, Özkale and Kaciranlar (2007) introduced the following two-parameter 

estimator by grafting the contraction estimator into the modified ridge regression (MRR) 

estimator: 

𝜷̂(𝑘, 𝑑) =  (𝑿′𝑿 + 𝑘𝑰)−1(𝑿′𝒚 + 𝑘𝑑𝜷̂),     𝑘 > 0 , 0 < 𝑑 < 1. (17) 

Another two parameter estimator was obtained by Yang and Chang (2010) 

𝜷̂∗(𝑘, 𝑑) =  (𝑿′𝑿 + 𝑰)−1(𝑿′𝑿 + 𝑑𝑰)(𝑿′𝑿 + 𝑘𝑰)−1𝑿′𝒚 ,     𝑘 > 0 , 0 < 𝑑 < 1. (18) 

Many other two type parameter estimators were suggested separately in the literature, 

see (Sakallıoğlu and Kaçıranlar, 2008;Dorugade, 2014 and Idowu et al, 2023). Both two-

parameter (TP) estimators in (17) and (18) can be obtained as a solution of the minimization 

problems, or similar to that of the Liu estimator it can be obtained by augmenting the linear 

stochastic constraints 𝑘𝑑𝜷̂ = 𝑘𝜷 + 𝜺 and (𝑑 − 𝑘)𝜷̂(𝑘) = 𝜷 + 𝜺′to (1) model one for (17) and 

the other for (18) respectively, and then using the least squares estimator. Here 𝜺: 𝑝 × 1is a 

random vector with a mean of zero, variance-covariance matrix of 𝜎2𝑰 and both random errors 

𝒆 and 𝜺 are uncorrelated i.e., 𝐸(𝒆𝜺′) = 0. 
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From this section on, the name two parameter estimator will refer to the two-parameter 

estimator 𝜷̂(𝑘, 𝑑) of Özkale and Kaciranlar in (17) that will be discussed throughout the study. 

The TP estimator unifies the advantages of ridge and contraction estimators, also considers a 

general estimator that contains the ordinary least squares, the ridge regression, the Liu, and the 

contraction estimators as special cases. This feature can be shown by choosing different values 

for 𝑘 and 𝑑 in 𝜷̂(𝑘, 𝑑), as in the following equations: 

 lim
𝑑→1

𝜷̂(𝑘, 𝑑) =  (𝑿′𝑿)−1𝑿′𝒚which is the OLS estimator. 

 𝑙𝑖𝑚
𝑘→0

𝜷̂(𝑘, 𝑑) =  (𝑿′𝑿)−1𝑿′𝒚 which is the OLS estimator. 

 𝑙𝑖𝑚
𝑑→0

𝜷̂(𝑘, 𝑑) =  (𝑿′𝑿 + 𝑘𝑰)−1𝑿′𝒚 is the RR estimator. 

 𝜷̂(1, 𝑑) = (𝑿′𝑿 + 𝑰)−1( 𝑿′𝒚 + 𝑑𝜷̂) is the Liu estimator. 

 𝜷̂(𝑘, 𝑑) = (𝑿′𝑿 + 𝑘𝑰)−1(𝑿′𝒚 + 𝑘𝑑𝜷̂) 

= [𝑰 + 𝑘(𝑿′𝑿)−1]−1(𝑿′𝑿)−1(𝑿′𝒚 + 𝑘𝑑𝜷̂) 

=  [𝑰 + 𝑘(𝑿′𝑿)−1]−1(𝜷̂ + 𝑘𝑑(𝑿′𝑿)−1𝜷̂) 

= [𝑰 + 𝑘(𝑿′𝑿)−1]−1(𝜷̂ − 𝑑𝜷̂) + 𝑑𝜷̂. 

After putting the 𝜷̂(𝑘, 𝑑) on the previous form it can be said that 𝑙𝑖𝑚
𝑘→∞

𝜷̂(𝑘, 𝑑) = 𝑑𝜷̂ is the 

contraction estimator 

𝜷̂(𝑘, 𝑑) = (𝑿′𝑿 + 𝑘𝑰)−1(𝑿′𝒚 + 𝑘𝑑𝜷̂) 

= (𝑿′𝑿 + 𝑘𝑰)−1(𝑿′𝒚 + 𝑘𝑑𝑰)𝜷̂. 

We see that the parameters of shrinkage related to each 𝜷̂ differ. Therefore, the contraction 

estimator's drawback was overcome. 

For the representation, 𝜷̂(𝑘, 𝑑) = 𝑺𝑘
−1𝑺𝑘𝑑

−1𝜷̂, where 𝑺𝑘 =  𝑺 + 𝑘𝑰, 𝑺𝑘𝑑 =  𝑺 + 𝑘𝑑𝑰 and 

𝑺 = 𝑿′𝑿 the biased and dispersion matrix respectively are as follows: 

 

𝐵𝑎𝑖𝑠 (𝜷̂(𝑘, 𝑑)) =  (𝑺𝑘
−1𝑺𝑘𝑑 − 𝑰)𝜷 = 𝑘(𝑑 − 1)𝑺𝑘

−1𝜷. (19) 

𝑉𝑎𝑟 (𝜷̂(𝑘, 𝑑)) =   𝜎2𝑺𝑘
−1𝑺𝑘𝑑𝑺−1𝑺𝑘𝑑𝑺𝑘

−1. (20) 

By using (19) and (20) equations the MMSE for the TP estimator is obtained 
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𝑀𝑀𝑆𝐸 (𝜷̂(𝑘, 𝑑)) = 𝜎2𝑺𝑘
−1𝑺𝑘𝑑𝑺−1𝑺𝑘𝑑𝑺𝑘

−1 + 𝑘2(𝑑 − 1)2𝑺𝑘
−1𝜷𝜷′𝑺𝑘

−1. (21) 

Özkale and Kaciranlar (2007) presented the necessary and sufficient conditions for the 

two-parameter estimator to be superior to the OLS estimator according to the MMSE criterion. 

They also introduced a selection method for 𝑘 and 𝑑 bias parameters. Besides M. H. J. Gruber 

(2010) noticed that the two-parameter estimator 𝛽̂(𝑘, 𝑑)is a special case of the Bayes, the 

minimax, generalized ridge regression estimators, and the mixed estimators. 

In some cases, the classical linear regression model given in (1) is estimated subject to 

certain prior limitations on the model’s unknown parameter vector β in the hope to provide 

better estimators than the OLS estimator. These prior limitations may be stated in the form of 

the linear equality restrictions 

𝑹𝜷 =  𝒓, (22) 

where 𝑹 is an𝑚 × 𝑝 matrix of known prior information, its 𝑟𝑎𝑛𝑘(𝑹) = 𝑚 < 𝑝, 𝒓 is an 𝑚 × 1 

vector, and the linear constraints “𝑚” involved in (1) model are independent of each other. In 

this research, the restricted linear model (RLM) denotes incorporation between (1) and (22). 

The restricted least square (RLS) estimator is obtained 

𝜷̂𝑟 = 𝜷̂ + (𝑿′𝑿)−1𝑹′[𝑹(𝑿′𝑿)−1𝑹′]−1(𝒓 − 𝑹𝜷̂). (23) 

This approach generates an unbiased estimator when the constraints are correct, and contributes 

to a smaller variance in sampling than the OLS estimator. If the constraints are incorrect, then 

the sampling variance remains reduced, but the estimator is a biased one. The drawback of using 

exact restrictions is that the estimator will have more risk than the OLS estimator because of 

this potential bias (Güler and Kaçıranlar, 2009). 

The expected value of the RLS  

𝐸(𝜷̂𝒓) = 𝜷 + (𝑿′𝑿)−1𝑹′[𝑹(𝑿′𝑿)−1𝑹′]−1(𝒓 − 𝑹𝜷), (24) 

this demonstrates that if the constraint is true then 𝜷𝑟is unbiased, otherwise it is biased. Also, 

the variance-covariance matrix is 

𝑉𝑎𝑟 (𝜷̂𝑟) = 𝜎2(𝑿′𝑿)−1 − 𝜎2(𝑿′𝑿)−1𝑹′[𝑹(𝑿′𝑿)−1𝑹′]−1𝑹(𝑿′𝑿)−1. (25) 

The MMSE of the restricted least squares estimator is  
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𝑀𝑀𝑆𝐸(𝜷̂𝑟) = 𝜎2𝑴0𝑿′𝑿𝑴0 = 𝜎2𝑺−1 − 𝜎2𝑺−1𝑹′[𝑹𝑺−𝟏𝑹′]−1𝑹𝑺−1, (26) 

where 𝑴0 = 𝑺−1  − 𝑺−1𝑹′[𝑹𝑺−𝟏𝑹′]−1𝑹𝑺−𝟏, 𝑺 = 𝑿′𝑿. 

When it comes to the restricted biased estimators, Zhong and Yang (2007) showed that 

the restricted ridge regression estimator can be obtained by minimizing the sum of squared 

residuals with a spherical restriction and a linear restriction (22). The restricted ridge regression 

(RRR) estimator may be introduced as follows: 

𝜷̂𝑟(𝑘) = 𝜷̂(𝑘) + 𝑺𝑘
−1𝑹′[𝑹𝑺𝑘

−1𝑹′]−1(𝒓 − 𝑹𝜷̂(𝑘)), 𝑘 ≥ 0,             

(27) 

where 𝜷̂(𝑘) is the RR estimator of 𝜷. We refer to (27) as the RRR estimator. If linear restrictions 

𝑹𝜷 = 𝒓 are assumed to hold, then it is more appropriate to shrink towards 𝜷0 the shortest vector 

which satisfies the restrictions, rather than towards the zero vector. Groß (2003) proved that 

𝜷̂𝑟(0) = 𝜷̂𝑟 and lim
𝑘→∞

𝜷̂𝑟(𝑘) = 𝜷0. The expected value of 𝜷̂𝑟(𝑘) is 

𝐸(𝜷̂𝑟(𝑘)) = 𝜷 − 𝑘𝑴𝑘𝜷.              

(28) 

Also, the bias of 𝜷̂𝑟(𝑘) 

𝐵𝑖𝑎𝑠(𝜷̂𝑟(𝑘)) = 𝐸(𝜷̂𝑟(𝑘)) − 𝜷 = −𝑘𝑴𝑘𝜷,             

(29) 

where 𝑴𝑘is a non-zero symmetric matrix, equals to 𝑺𝑘
−1  − 𝑺𝑘

−1𝑹′[𝑹𝑺𝑘
−1𝑹′]−1𝑹𝑺𝑘

−1, and the 

variance-covariance matrix is 

𝑉𝑎𝑟(𝜷̂𝑟(𝑘)) = 𝐸[(𝜷̂𝑟(𝑘) − 𝐸(𝜷̂𝑟(𝑘)))(𝜷̂𝑟(𝑘) − 𝐸(𝜷̂𝑟(𝑘)))ʹ] = 𝜎2𝑴𝑘𝑿′𝑿𝑴𝑘. (30) 

For the proofs of (28), (29) and (30) see (Zhong and Yang, 2007). By making use of the two 

previous equations the MMSE of 𝜷̂𝑟(𝑘) is obtained as 

𝑀𝑀𝑆𝐸 (𝜷̂𝑟(𝑘)) = 𝜎2𝑴𝑘𝑿′𝑿𝑴𝑘 + 𝑘2𝑴𝑘𝜷𝜷′𝑴𝑘 , (31) 

where 𝑴𝑘 = 𝑺𝑘
−1  − 𝑺𝑘

−1𝑹′[𝑹𝑺𝑘
−1𝑹′]−1𝑹𝑺𝑘

−1. The mean square error of 𝜷̂𝑟(𝑘) is 
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𝑆𝑀𝑆𝐸 (𝜷̂𝑟(𝑘)) = 𝜎2 ∑
𝜆𝑖(𝜆𝑖 + 𝑘 − 𝑟𝑖𝑖

∗)2

(𝜆𝑖 + 𝑘)4

𝑝

𝑖=1

+ 𝑘2 [∑
𝛼𝑖(𝜆𝑖 + 𝑘 − 𝑟𝑖𝑖

∗)

(𝜆𝑖 + 𝑘)2

𝑝

𝑖=1

]

2

. (32) 

Although this estimator has fewer MMSE compared to the restricted least 

squares (RLS) estimator, it is very complex in practical implementation and a compacter 

estimator is supposed to be obtained. Therefore, there had remained a need to find a better 

estimator to overcome the multicollinearity of the restricted linear model (RLM). When the 

RRR estimator combines the two estimators MR proposed by Swindel (1976) and the RLS 

estimator; the second restricted liu(RL) estimator combines the modified Liu estimator with the 

RLS estimator 

𝜷̂𝑟(𝑑) = 𝜷̂𝑑 + (𝑿′𝑿 + 𝑰)−1𝑹′[𝑹(𝑿′𝑿 + 𝑰)−1𝑹′]−1(𝒓 − 𝑹𝜷̂𝑑), (33) 

where 𝜷̂𝑑 is the Liu estimator. In order to avoid overlapping of names of the two restricted Liu 

estimators, Özkale and Kaciranlar suggested calling 𝜷̂𝒓(𝑑) as modified restricted Liu (MRL) 

estimator, see (Özkale and Kaciranlar, 2007). If the bias of 𝜷̂𝑟(𝑑) is given as follows: 

𝐵𝑖𝑎𝑠(𝜷̂𝑟(𝑑)) = (𝑑 − 1)𝑴1𝜷, (34) 

where 𝑴1 = 𝑺1
−1  − 𝑺1

−1𝑹′[𝑹𝑺1
−1𝑹′]−1𝑹𝑺1

−1 and  𝑺1 = 𝑿′𝑿 + 𝑰. The variance-covariance 

matrix is 

𝑉𝑎𝑟(𝜷̂𝑟(𝑑)) = 𝜎2𝑴1𝑺𝑑𝑺−1𝑺𝑑𝑴1. (35) 

Then the matrix mean square error of the modified restricted Liu is obtained as 

𝑀𝑀𝑆𝐸(𝜷̂𝑟(𝑑)) = 𝜎2𝑴1𝑺𝑑𝑺−1𝑺𝑑𝑴1 + (𝑑 − 1)2𝑴1𝜷𝜷′𝑴1. (36) 

Under the same logic they had used obtaining the two-parameter (TP) estimator before 

Özkale and Kaçiranlar (2007) derived the restricted two-parameter (RTP) estimator in order to 

find an improved estimator that minimizes the squared distance of 𝜷̂ toward the regression 

parameter. The new estimator was derived as a solution to minimization problems with the 

addition of additional restrictions on the parameter, thus the resulting estimator is as follows: 

𝜷̂𝑟(𝑘, 𝑑) = 𝜷̂(𝑘, 𝑑) + 𝑺𝑘
−1𝑹′[𝑹𝑺𝑘

−1𝑹′]−1 (𝒓 − 𝑹𝜷̂(𝑘 , 𝑑)) , 𝑘 > 0, 0 < 𝑑 < 1. (37) 
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As the TP estimator considers a general case of the OLS, the RR, the Liu, and the 

contraction estimator, the restricted version of it, that is the RTP estimator considers a general 

case of the RLS, the RRR introduced by GroB (2003), the MRL mentioned by Özkale and 

Kaciranlar (2007), and the restricted contraction (RC) estimator. The following equations 

illustrate some relationships expressed as 

 lim
𝑘→0

𝜷̂𝑟(𝑘, 𝑑) = 𝜷̂ + (𝑿′𝑿)−1𝑹′[𝑹(𝑿′𝑿)−𝟏𝑹′]−1(𝒓 − 𝑹𝜷̂) is the RLS estimator. 

 lim
𝑑→0

𝜷̂𝑟(𝑘, 𝑑) = 𝜷̂(𝑘) + 𝑺𝑘
−1𝑹′[𝑹𝑺𝑘

−1𝑹′]−1(𝒓 − 𝑹𝜷̂(𝑘)) is the RRR estimator. 

 lim
𝑘→∞

𝜷̂𝑟(𝑘, 𝑑) = 𝜷̂𝑅(𝑑) = 𝑑𝜷̂ + 𝑹′[𝑹𝑹′]−1(𝒓 − 𝑹𝑑𝜷̂) is the RC estimator. 

 For 𝑘 = 1,  

 𝜷̂𝑟(1, 𝑑) = 𝜷̂𝑟(𝑑) = 𝜷̂𝑑 + (𝑿′𝑿 + 𝑰)−1𝑹′[𝑹(𝑿′𝑿 + 𝑰)−1𝑹′]−1(𝒓 − 𝑹𝜷̂𝒅) is the 

MRL estimator. 

By putting the RTP estimator given in (37) on another form 

𝜷̂𝑟(𝑘, 𝑑) = 𝑴(𝑘)𝑺𝑘𝑑𝜷̂ + 𝑺𝑘
−1𝑹′[𝑹𝑺𝑘

−1𝑹′]−1𝒓, (38) 

where 𝑴𝑘 = 𝑺𝑘
−1  − 𝑺𝑘

−1𝑹′[𝑹𝑺𝑘
−1𝑹′]−1𝑹𝑺𝑘

−1, then the variance of 𝛽̂𝑟(𝑘, 𝑑) is 

𝑉𝑎𝑟 (𝜷̂𝑟(𝑘, 𝑑)) = 𝜎2𝑴𝑘𝑺𝑘𝑑𝑺−1𝑺𝑘𝑑𝑴𝑘. (39) 

And the bias is 

𝐵𝑖𝑎𝑠 (𝜷̂𝑟(𝑘, 𝑑)) = 𝑴𝑘[𝑺𝑘𝑑 − 𝑺𝑘]𝜷 = 𝑘(𝑑 − 1)𝑴𝑘𝜷. (40) 

Then the MMSE of  𝜷̂𝑟(𝑘, 𝑑), when the condition 𝑹𝜷 = 𝒓 is presumed to hold true, is 

𝑀𝑀𝑆𝐸 (𝜷̂𝑟(𝑘, 𝑑)) = 𝜎2𝑴𝑘𝑺𝑘𝑑𝑺−1𝑺𝑘𝑑𝑴𝑘 + 𝑘2(𝑑 − 1)2𝑴𝑘𝜷𝜷′𝑴𝑘. (41) 

 

Following our discussion of the preliminary steps, we now present a deep explanation 

of the problem of multicollinearity includes its definition, reasons of occurrence, effects on the 

linear model, and some ways to deal with and overcome it were presented. 
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3.  COMPARISONS ACCORDING TO MMSE CRITERION 

There are many criteria to compare two estimators of an unknown parameter. Some of 

these criteria have been mentioned previously in chapter two. In this research, the author 

believes that the most appropriate criterion for use is the MMSE, which is a commonly accepted 

criterion for gauging an estimator’s performance of 𝜷 because it contains all relevant estimator 

quality information; also it includes the comparison in terms of bias and in terms of dispersion 

matrix. The MMSE of an estimator 𝜷̃ is defined as 

𝑀𝑀𝑆𝐸(𝜷̃) = 𝐸[(𝜷̃ − 𝜷)(𝜷̃ − 𝜷)′] 

= 𝑉𝑎𝑟(𝜷̃) + [𝐵𝑖𝑎𝑠(𝜷̃)][𝐵𝑖𝑎𝑠(𝜷̃)]
′
. (42) 

Let 𝜷̃1and 𝜷̃2be two estimators of 𝜷 parameter, in the sense of MMSE criterion the 

estimator 𝜷̃2 is said to be superior to 𝜷̃1 if and only if 𝑀𝑀𝑆𝐸(𝜷̃1) − 𝑀𝑀𝑆𝐸(𝜷̃2) ≥ 0. Since 

the SMSE is the trace of MMSE 

𝑆𝑀𝑆𝐸(𝜷̃) = 𝑡𝑟[𝑀𝑀𝑆𝐸(𝜷̃)] = 𝑡𝑟 (𝑉𝑎𝑟(𝜷̃)) + [𝐵𝑖𝑎𝑠(𝜷̃)]′[𝐵𝑖𝑎𝑠(𝜷̃)]. (43) 

Then if the estimator 𝜷̃2 dominates the estimator 𝜷̃1 in the sense of the MMSE criterion, 𝜷̃2 

dominates 𝜷̃1in the sense of the SMSE, i.e. 𝑆𝑀𝑆𝐸(𝜷̃1) ≥ 𝑆𝑀𝑆𝐸(𝜷̃2). The reverse conclusion 

does not necessarily hold true. Hence, the MMSE is regarded as a stronger criterion than the 

SMSE, see (Rao and Toutenburg, 1995).Using the SMSE as a search basic criterion implies 

that we disregard MMSE's off-diagonal components. Therefore, it may be more rational to 

compare two estimators in the sense of the MMSE criterion. 

3.1.  Comparison of 𝜷̂𝒓(𝒌, 𝒅) to 𝜷̂(𝒌, 𝒅) by the MMSE Criterion 

The expected loss or the MMSE of the two-parameter estimator and the restricted two 

parameter estimator are given respectively by (21) and (41). The difference between the two 

estimator’s MMSEs is 

Δ = 𝑀𝑀𝑆𝐸 (𝜷̂(𝑘, 𝑑)) − 𝑀𝑀𝑆𝐸 (𝜷̂𝑟(𝑘, 𝑑)) = 𝑩 − 𝑴𝑘𝑺𝑘𝑩𝑺𝑘𝑴𝑘 , (44) 

where 𝑩 =  𝑀𝑀𝑆𝐸(𝜷̂(𝑘, 𝑑)).  
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Özkale and Kaciranlar (2007) derived the necessary and sufficient condition for Δ to be 

nnd matrix by applying a theorem from (Graybill, 1976; Graybill, 1983) and gave the following 

theorem: 

Theorem 1.The 𝜷̂𝑟(𝑘, 𝑑) estimator of β is superior to the 𝜷̂(𝑘, 𝑑) estimator by the criterion of 

MMSE if and only if 𝜆𝑚𝑎𝑥(𝑩−1𝑴𝑘𝑺𝑘𝑩𝑺𝑘𝑴𝑘) ≤ 1, where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue of  

𝑩−1𝑴𝑘𝑺𝑘𝑩𝑺𝑘𝑴𝑘. 

The MMSE criterion comparison between 𝜷̂(𝑘, 𝑑) and 𝜷̂𝒓(𝑘, 𝑑) includes the MMSE 

comparisons between the OLS and the RLS as 𝑘 approaches zero, the ridge regression and the 

restricted ridge regression as 𝑑 approaches zero, the Liu and the MRL when 𝑘 = 1. Hence, we 

have the following theorems on the comparability of these estimators using the MMSE 

criterion: 

Theorem 2. A necessary and sufficient condition for the RLS estimator of β to be superior to 

the OLS estimator by the MMSE criterion is 𝜆𝑚𝑎𝑥(1 − 𝑹′[𝑹𝑺−𝟏𝑹′]−1𝑹𝑺−𝟏) ≤ 1. 

Theorem 3. The restricted ridge estimator of β dominates the ridge regression estimator by the 

criterion of MMSE if and only if 𝜆𝑚𝑎𝑥(𝑨−1𝑴𝑘𝑺𝑘𝑨𝑺𝑘𝑴𝑘) ≤ 1, where 𝐴 = 𝜎2𝑺𝑘
−1𝑺𝑺𝑘

−1 +

 𝑘2𝑺𝑘
−1𝜷𝜷′𝑺𝑘

−1. 

Theorem 4. The necessary and sufficient condition for the MRL estimator of β to dominate the 

Liu estimator by the MMSE criterion is given by 𝜆𝑚𝑎𝑥(𝑪−1𝑴1𝑺𝟏𝑪𝑺𝟏𝑴𝟏) ≤ 1, where 𝑪 =

𝜎2𝑺1
−1𝑺𝑑𝑺−1𝑺𝑑𝑺1

−1 + (𝑑 − 1)2𝑺1
−1𝜷𝜷′𝑺1

−1. 

 

Theorem 2 was introduced by Toro-Vizcarrondo and Wallace (1968) when it is assumed 

that the restrictions in (22) are not true, while Theorems 3 and 4 were introduced for the first 

time by Özkale and Kaciranlar (2007). Notice that the results of the comparison depend on the 

unknown parameters 𝜷 and 𝜎2, besides the 𝑑 and 𝑘 choices. We cannot exclude, because of 

such unknown parameters that the conditions obtained in the theorems will hold. Therefore, for 

certain values of 𝜷, 𝜎2, 𝑑, and 𝑘 the restricted estimators will perform better than the other 

estimators. Consequently, using a suitable estimate of 𝑑 and 𝑘 or utilizing prior information 

about these parameters, and replacing 𝜷 and 𝜎2 with their unbiased estimators’ leads to feasible 

results. 
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3.2.  Selection of the Parameters 𝒌 and 𝒅 

Trying to find appropriate bias parameters is an integral part of any study of biased 

estimators in the linear model. One of the most common methods used to estimate bias 

parameters is to propose the estimators of the biasing parameters that yield minimum MMSE. 

Nevertheless, due to the inability to diagonalizable𝑴𝑘 and 𝑺𝑘 by the same orthogonal matrix, 

no particular rule for selecting 𝑘 and 𝑑 may be suggested in the sense of 𝜷̂𝒓(𝑘, 𝑑) that is 

guaranteed to generate minimum MMSE, see (Özkale, 2014).  

It is well known that orthogonal transformation can transform a linear regression model 

into a canonical form. Let 𝒁 = 𝑿𝑸,𝜶 = 𝑸′𝜷 and Q is 𝑝 × 𝑝 orthogonal matrix such that 𝒁′𝒁 =

𝑸′𝑿′𝑿𝑸 = 𝑸′𝑺𝑸 = 𝜦 = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑝), where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥  𝜆𝑝 ≥ 0 are the order 

eigenvalues of 𝑿′𝑿, then the canonical form of model (1) can be obtained as 

𝒚 = 𝒁𝜶 + 𝒆, (45) 

since 𝜶̂(𝑘, 𝑑) = 𝑸′𝜷̂(𝑘, 𝑑) and 𝑀𝑀𝑆𝐸(𝜶̂(𝑘, 𝑑)) = 𝑸′𝑀𝑀𝑆𝐸 (𝜷̂(𝑘, 𝑑)) 𝑸, based on (21) the 

MMSE of 𝜶̂(𝑘, 𝑑) can be written as 

𝑀𝑀𝑆𝐸(𝜶̂(𝑘, 𝑑))

= 𝜎2(𝚲 + 𝑘𝑰)−1(𝚲 + 𝑘𝑑𝑰)𝚲−1(𝚲 + 𝑘𝑑𝑰)(𝚲 + 𝑘𝑰)−1

+  𝑘2(𝑑 − 1)2(𝚲 + 𝑘𝑰)−1𝜶𝜶′(𝚲 + 𝑘𝑰)−1. (46) 

Optimal values for𝑑 and 𝑘can be derived by minimizing the quadratic function of 𝑑, which 

can be written as 

𝑓(𝑘, 𝑑) = 𝑡𝑟[𝑀𝑀𝑆𝐸(𝜶̂(𝑘, 𝑑))] = ∑
𝜎2(𝜆𝑖 + 𝑘𝑑)2 + 𝑘2(d − 1)2𝛼𝑖

2𝜆𝑖

𝜆𝑖(𝜆𝑖 + 𝑘)2

𝑝

𝑖=1

 . 
(47) 

The 𝑑-value that minimizes the function 𝑓(𝑘, 𝑑) can be found by differentiating 𝑓(𝑘, 𝑑) with 

respect to 𝑑 when 𝑘 is fixed. 

𝜕𝑓(𝑘, 𝑑)

𝜕𝑑
= ∑

2𝜎2𝑘(𝜆𝑖 + 𝑘𝑑) + 2𝑘2(𝑑 − 1)𝛼𝑖
2𝜆𝑖

𝜆𝑖(𝜆𝑖 + 𝑘)2

𝑝

𝑖=1

 . 
(48) 

By equating it to zero, and after replacing the unknown parameters 𝜎2 and 𝛼𝑖
2 with their 

unbiased estimators, we get the optimal estimator of 𝑑 for the fixed value 𝑘 
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𝑑̂𝑜𝑝𝑡 =
∑

(𝑘𝛼̂𝑖
2−𝜎̂2)

(𝜆𝑖+𝑘)2

𝑝
𝑖

∑
𝑘(𝜎̂2+𝛼̂𝑖

2𝜆𝑖)

𝜆𝑖(𝜆𝑖+𝑘)2

𝑝
𝑖

. 

(49) 

As was mentioned before, the TP estimator leads to the Liu estimator when 𝑘 = 1. 

Therefore, when 𝑘 = 1the value of  𝑑̂𝑜𝑝𝑡 in (49) decreases to be equal to 

𝑑̂𝑜𝑝𝑡 =
∑

(𝛼̂𝑖
2−𝜎̂2)

(𝜆𝑖+1)2

𝑝
𝑖

∑
(𝜎̂2+𝛼̂𝑖

2𝜆𝑖)

𝜆𝑖(𝜆𝑖+1)2

𝑝
𝑖

. 

(50) 

This estimate of 𝑑 was given by Liu (1993). Similarly, the 𝑘 value that minimizes the function 

𝑓(𝑘, 𝑑) for fixed 𝑑-value can be derived by differentiating 𝑓(𝑘, 𝑑) with respect to 𝑑 

𝜕𝑓(𝑘, 𝑑)

𝜕𝑘
= ∑

2𝜎2(𝜆𝑖 + 𝑘𝑑)(d − 1) + 2𝑘(𝑑 − 1)2𝛼𝑖
2𝜆𝑖

(𝜆𝑖 + 𝑘)3

𝑝

𝑖=1

, 
    

(51) 

and then equating the numerator to zero. The orientation toward equating only the numerator 

to zero not all the fraction came from what Hoerl and Kennard (1970) have done during the 

procedures of finding the optimal 𝑘 value as =
𝜎2

𝛼𝑖
2 . This value of 𝑘 was obtained by minimizing 

or partial deriving 𝑡𝑟[𝑀𝑀𝑆𝐸(𝜶̂(𝑘))] in respect to 𝑘, where 𝜶̂(𝑘) is the ridge regression 

estimator in canonical form, then equating the numerator to zero. Similarly,Özkale and 

Kaciranlar (2007) derived the 𝑘-value by equating the numerator of  
𝜕𝑓(𝑘,𝑑)

𝜕𝑘
 to zero which can 

be concluded as 

𝑘 =
𝜎2

𝛼𝑖
2 − 𝑑(

𝜎2

𝜆𝑖
+ 𝛼𝑖

2)
. (52) 

Due to the full dependency of the optimal value of 𝑘 on the unknown parameters 𝜎2 and 

𝛼𝑖
2, when 𝑑 is fixed. They must be estimated from the observed data and be replaced by their 

unbiased estimators as suggested by Hoerl and Kennard (1970) and Kibria (2003), so the 

estimated optimal 𝑘 value is 
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𝑘̂ =
𝜎̂2

𝛼̂𝑖
2 − 𝑑(

𝜎̂2

𝜆𝑖
+ 𝛼̂𝑖

2)
. (53) 

Another estimator of 𝑘 was proposed by Hoerl et al. (1975) by taking the harmonic 

mean of 𝑘 values that had been found by Hoerl and Kennard (1970b),whereas Kibria (2003) 

proposed estimators of 𝑘 by using the arithmetic and geometric means of 𝑘 values found by 

Hoerl and Kennard (1970) too. With the same idea, Özkale and Kaciranlar (2007) proposed 

estimators of 𝑘 which minimize𝑓(𝑘, 𝑑). And they are as follows: 

𝑘̂𝐻𝑀 =
𝑝𝜎̂2

∑ [𝛼̂𝑖
2 − 𝑑(

𝜎̂2

𝜆𝑖
+ 𝛼̂𝑖

2)]𝑝
𝑖=1

 , (54) 

𝑘̂𝐴𝑀 =
1

𝑝
∑

𝜎̂2

𝛼̂𝑖
2 − 𝑑(

𝜎̂2

𝜆𝑖
+ 𝛼̂𝑖

2)

𝑝

𝑖=1
 , (55) 

𝑘̂𝐺𝑀 =
𝜎̂2

(∏ [𝛼̂𝑖
2 − 𝑑(

𝜎̂2

𝜆𝑖
+ 𝛼̂𝑖

2)]𝑝
𝑖=1 )

1/𝑝
 , 

(56) 

which respectively are the harmonic mean, the arithmetic mean and the geometric mean of  𝑘̂ 

values in (53). Lukman et al. (2020) developed a new estimator for the bias estimator 𝑘, which 

we will refer to as the Lukman bias estimator from now on 

𝑘̂𝐿𝑀 =
𝑝𝜎̂2

(1 + 𝑑)[(𝛽̂ − 𝐽)(𝛽̂ − 𝐽)
′

− 𝜎̂2𝑡𝑟(𝛬−1)] 
 , (57) 

where 𝐽 =
∑ 𝛽̂𝑖

𝑝
𝑖=1

𝑝
. When 𝑘 is negative, they suggested using: 

𝑘̂𝑟𝑒𝑝 =
𝑝𝜎̂2

∑ 𝛼𝚤
2𝒑

𝒊=𝟏

 . (58) 

As was shown before when 𝑑 approaches zero, 𝛽̂(𝑘, 𝑑) approaches the RR estimator. 

Thus, when 𝑑 approaches zero, the 𝑘 estimators in (54), (55), and (56) decrease to 𝑘 estimators 

given by Hoerl et al. (1975) and Kibria (2003). Other values of 𝑘 may be found in Muniz and  

Kibria, (2009); Aslam (2014) and Kibria and Banik (2016). 
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Because 𝑘 must always be positive, the following theorem shows the situation of the 

positivity of the estimators in Eqs. (54) - (56). Where if 𝑘 values in (52) are restricted to be 

positive, the positivity of the estimators may be achieved. 

Theorem 5. If 

𝑑̂ < 𝑚𝑖𝑛 {
𝛼̂𝑖

2

𝜎̂2

𝜆𝑖
+ 𝛼̂𝑖

2
} , (55) 

for all 𝑖, then the 𝑘̂𝐻𝑀, 𝑘̂𝐴𝑀 and 𝑘̂𝐺𝑀 are always positive. Check the proof in (Özkale and  

Kaciranlar, 2007). 

It is apparent that 𝑑̂𝑜𝑝𝑡 in (49) is dependent on the value of 𝑘 and the estimators of 𝑘 are 

dependent on the value of 𝑑. One of the used procedures to avoid looping in choosing and 

estimating 𝑘 and 𝑑 parameters is the iterative method. 

(1) Calculate 𝑑̂ from (59). 

(2) By using calculated 𝑑̂, estimate 𝑘̂𝐻𝑀, 𝑘̂𝐴𝑀, 𝑘̂𝐺𝑀or 𝑘̂𝐿𝑀. 

(3) Find 𝑑̂𝑜𝑝𝑡 in (49) by using obtained 𝑘̂𝐻𝑀, 𝑘̂𝐴𝑀, 𝑘̂𝐺𝑀or 𝑘̂𝐿𝑀. 

(4) If 𝑑̂𝑜𝑝𝑡 is negative replace 𝑑̂𝑜𝑝𝑡 = 𝑑̂. It should be noted that 𝑑̂𝑜𝑝𝑡 is always less than 

one, although it may be less than zero. In addition, 𝑑̂ is always less than one and 

greater than zero. 

(5) If any value of 𝑘̂𝐻𝑀, 𝑘̂𝐴𝑀, 𝑘̂𝐺𝑀or 𝑘̂𝐿𝑀is negative replace it with 𝑘̂𝑟𝑒𝑝 from (58). 

Following a discussion of predictors' theoretical characteristics, we nowundertake to 

evaluatea numerical example ofthe performance of estimators in respect of both the scalar mean 

square error (SMSE) and the matrix mean square error (MMSE) criteria. 

 

4.  A REAL-LIFE EXAMPLE 

To illustrate the theories shown in the previous chapter, we consider the data set on the 

Total National Research and Development Expenditures’(TNRDE) data as a Percent of Gross 

National Product (GNP) for some countries in the time period between 1972 and 1986, were 

originally given by (Gruber, 1998) and also cited by (Akdeniz and Erol, 2003), (Zhong and 

Yang, 2007), (Yang and Cui, 2011), (Najarian et al., 2013) and (Şiray, 2014) to compare some 

biased estimators. The regression on this data set represents the relationship between the 
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dependent variable 𝒚 which stands for the percentage spent by the United States and another 

four independent variables 𝑿1, 𝑿2, 𝑿3 and 𝑿4. The variable 𝑿1 represents the percent spent 

by France, 𝑿2 represents the percent spent by West Germany, 𝑿3 represents the percent spent 

by Japan, and 𝑿4 represents the percent spent by the former Soviet Union. The data set consists 

of 10 observations shown in Table 2. 

Table 2. Total national research and development expenditures as a present of GNP by 

country: 1972-1986 

Year 𝒚 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 

1972 2.3 1.9 2.2 1.9 3.7 

1975 2.2 1.8 2.2 2.0 3.8 

1979 2.2 1.8 2.4 2.1 3.6 

1980 2.3 1.8 2.4 2.2 3.8 

1981 2.4 2.0 2.5 2.3 3.8 

1982 2.5 2.1 2.6 2.4 3.7 

1983 2.6 2.1 2.6 2.6 3.8 

1984 2.6 2.2 2.6 2.6 4.0 

1985 2.7 2.3 2.8 2.8 3.7 

1986 2.7 2.3 2.7 2.8 3.8 

 

If we fit a linear model without intercept (homogeneous model) to the data, then the 

𝐶𝑁 = 8776.382 which means that the 𝑿 matrix is ill-conditioned and the regressors suffer a 

serious level of multicollinearity. Under this model the eigenvalues of 𝑿′𝑿 are 

𝜆1 = 302.9626, 𝜆2 = 0.7283 , 𝜆3 = 0.0446 , 𝜆4 =  0.0345. 

The variance inflation factors computed from the correlation matrix of the independent 

variables are 

𝑉𝐼𝐹1 = 6.910, 𝑉𝐼𝐹2 = 21.581, 𝑉𝐼𝐹3 = 29.756 , 𝑉𝐼𝐹4 =  1.795, 

and these factors indicate that the estimates of 𝜷2 and 𝜷3 would be affected by the very near-

singularity in 𝑿 matrix. In this case, the near-singularity is known to be due the near-redundancy 

between 𝑿2 and 𝑿3. When we fit a linear model with intercept (inhomogeneous model) by 

adding an 𝑛 × 1 vector all of its elements equal one to the design matrix, the size of design 

matrix becomes 10 × 5. Here we still have 𝑛 = 10 observations, but there are now 𝑝 = 5 

unknown regression coefficients. Under this case the eigenvalues of 𝑿′𝑿 are 
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𝜆1 = 312.932, 𝜆2 =  0.7536, 𝜆3 = 0.0453, 𝜆4 = 0.0372 , 𝜆5 =  0.0019. 

And the condition number is 168129.285 this indicates the existence of a severe degree of 

multicollinearity among the regressors. In this section the analysis and results are given only 

for the homogeneous model. By setting the initial value of 𝑑 equals to 0.3, the selected 𝑘 and 

𝑑 values are as follows in Table 3. 

Table 3. The selected k and d values for total national research and development expenditures 

data 

𝒅 optimum 𝒌 values  

0.1940 0.0202 
 

Harmonic mean 

0.6378 0.0988 
 

Arithmetic mean 

0.4742 0.0406 
 

Geometric mean 

 

For the linear restriction 𝑹𝜷 = 𝒓, we use the 𝑹 vector suggested by (Yang and Cui, 2011) and 

extract the value of 𝒓 

𝑹 = [ 1    − 2   − 2   − 2  ], 𝒓 = [−2.775]. 

 

The values of all our biased estimators are obtained and their respective SMSE values 

are computed then summarized in Table 4. 
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Table 4. The coefficient estimates and the SMSE values of OLS, RR, Liu, TP, RLS, RRR, 

MRL, and RTP estimators for TNRDE data 

SMSE 𝜷𝟒 𝜷𝟑 𝜷𝟐 𝜷𝟏 (𝒌 , 𝒅)  

0.0808 0.1526 0.1436 0.0896 0.6455 (0, 0) OLS 

0.0360 0.1685 0.1965 0.1293 0.5053 (0.0202, 0) RR 

0.0079 0.1918 0.2464 0.1832 0.3370 (0.0988, 0) 

0.0207 0.1773 0.2208 0.1525 0.4319 (0.0406, 0) 

9.0235 0.2335 0.2161 0.1871 0.2877 (0,0.1940) Liu 

9.0424 0.1890 0.1762 0.1334 0.4846 (0,0.6378) 

9.0321 0.2054 0.1909 0.1532 0.4120 (0,0.4742) 

0.0432 0.1654 0.1862 0.1216 0.5325 (0.0202, 0.1940) TP 

0.0450 0.1668 0.1808 0.1235 0.5337 (0.0988, 0.6378) 

0.0440 0.1656 0.1842 0.1227 0.5332 (0.0406, 0.4742) 

0.0451 0.2511 0.5741 0.3699 -0.3848 (0,0) RLS 

0.0195 0.2459 0.5525 0.3973 -0.3836 (0.0202, 0) RRR 

0.0047 0.2475 0.5240 0.4235 -0.3851 (0.0988, 0) 

0.0113 0.2449 0.5411 0.4098 -0.3836 (0.0406, 0) 

0.0028 0.2772 0.4806 0.4321 -0.3953 (0,0.1940) MRL 

0.0196 0.2442 0.5106 0.4433 -0.3790 (0,0.6378) 

0.0115 0.2564 0.4995 0.4392 -0.3850 (0,0.4742) 

0.0236 0.2452 0.5530 0.3977 -0.3833 (0.0202, 0.1940) RTP 

0.0252 0.2373 0.5323 0.4277 -0.3805 (0.0988, 0.6378) 

0.0243 0.2414 0.5436 0.4115 -0.3821 (0.0406, 0.4742) 

 

Corresponding to the results obtained in the preceding example, from Table 4 we can 

observe that the restricted estimators are performing better than the unrestricted estimators in 

the sense of smaller SMSE. Puzzlingly, the Liu estimator provides estimates with SMSE values 

that are remarkably far away from the other unrestricted estimators. The RR estimator is 

superior to the unrestricted estimator set, and the RRR estimator is superior to all the restricted 

and unrestricted estimators in the sense of SMSE criterion. Also, it was noted that the RR and 

RRR estimators of 𝑘̂𝐴𝑀 perform better comparing to the RR and RRR estimators of 𝑘̂𝐻𝑀 and 

𝑘̂𝐺𝑀 as well as outperform all other biased estimators. 
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Table 5. The superiority according to MMSE 

Programme’s results               Condition of superiority Superiority of by MMSE criterion 

1 𝜆𝑚𝑎𝑥(1 − 𝑹′[𝑹𝑺−𝟏𝑹′]−𝟏𝑹𝑺−𝟏) ≤ 1. RLS to OLS by MMSE criterion 

1.0009 

𝜆𝑚𝑎𝑥(𝑨−𝟏𝑴𝑘𝑺𝑘𝑨𝑺𝑘𝑴𝑘) ≤ 1 RRR to RR by MMSE criterion 1.0047 

1.0020 

1.0036 

𝜆𝑚𝑎𝑥(𝑪−1𝑴𝟏𝑺𝟏𝑪𝑺𝟏𝑴𝟏) ≤ 1 MRL to LE by MMSE criterion 1.0314 

1.0169 

1.0002 

𝜆𝑚𝑎𝑥(𝑩−𝟏𝑴𝒌𝑺𝒌𝑩𝑺𝒌𝑴𝒌) ≤ 1 RTP to TP by MMSE criterion 1.0021 

1.0002 

 

As seen in Table 5,when the estimators are compared according to MMSE criterion, the 

RLS estimator is superior to the OLS estimator, the RRR estimators is superior to the RR 

estimators, the MRL estimators is superior to the Liu estimators, and the RTP estimators is 

superior to the TP estimators, since the data fulfills the necessary and sufficient conditions 

mentioned in the Theorems (1), (2), (3) and (4). 

After discussing the theoretical aspects of the estimators using a real-world example, we 

proceed to a simulation study to empirically compare their performance under various 

multicollinearity situations. 

 

5.  MONTE-CARLO SIMULATION STUDY 

For the sake of drawing an extensive and generalizable conclusion of relative 

characteristics of our pre-discussed estimators further than the results of the investigation that 

had been on the real data, a simulation study has been conducted. 

 

5.1.  Simulation Essence 

In this section, we perform a Monte-Carlo simulation study by using MATLAB 

program. By following McDonald and Galarneau (1975) as many other researchers like Kejian 

(1993) the generation of independent variables was based on subsequent equation 
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 𝑋𝑖𝑗 = (1 − 𝛾2)1/2𝑍𝑖𝑗 + 𝛾𝑍𝑖𝑝, 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑝, (60) 

where 𝑍𝑖𝑗 are independent standard normal pseudo-random numbers and 𝛾 is defined in such a 

way that the correlation between any two explanatory variables is provided by 𝛾2. The 

independent variables were standardized resulting in 𝑿′𝑿 being in correlation form. The 

observations on the dependent variables were generated by 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝑒𝑖, 𝑖 = 1,2, … , 𝑛, (61) 

where 𝑒𝑖 are independent normal (0, 𝜎2) pseudo-random numbers. Also, 𝒚 is standardized such 

that 𝑿′𝒚 represents the vector of the dependent variable's correlations with each explanatory 

variable. In this study a comprehensive simulation is intended; therefore, three different sample 

sizes 𝑛 = 25, 50, 100 for two different independent variables numbers 𝑝 = 4, 7 are adopted, 

and following different authors such as DG Gibbons (1981) Four distinctvalues of correlations 

(γ) are considered, corresponding to γ = 0.8, 0.9, 0.95, 0.99to demonstrate a weak, strong and 

severe level of multicollinearity among the regressors.  Also, for the error standard deviation 

two different values 𝜎 = 1 , 5 are investigated, and the intercept 𝛽0 is presumed to be identically 

zero. n, p and σ was selected at varying values to examine its impact on the estimation. These 

values were chosen to be either equal to or closely aligned with those utilized in simulations 

reported in the literature. 

According to Newhouse and Oman (1971) if the mean square error is a function of 𝜷, 𝜎2 

and 𝑘 and if the independent variables are fixed, then the MMSE is minimized when 𝜷 is the 

normalized eigenvector corresponding to the largest eigenvalue of 𝑿′𝑿 matrix subject to 

constraint that 𝜷′𝜷 = 1. Consequently, we selected the eigenvector that makes 𝜷′𝜷 = 1 as a 

parameter vector. Now coming to the exact linear restrictions, when 𝑝 = 4 the 𝑹𝜷 = 𝒓 was 

specified supposing 𝒓 = [0] then 𝑹 = [1 −1 1 0], and when 𝑝 = 7 the linear restriction 

was specified supposing that 𝑹 = [1 0 1 −1 1 1 0] as a result 𝒓 = [1.0640]. 

Notice that to ensure 𝑟𝑎𝑛𝑘(𝑹) = 𝑚 < 𝑝 we designed R matrix to be 1 × 𝑝. 

In simulation study, for each 𝜎, 𝛾, 𝑝 and 𝑛 the experiment is performed 3000 times. 

The estimated mean square error (EMSE) is computed as 

 𝐸𝑀𝑆𝐸(𝜶̂) =
1

𝑅𝑁
∑ (𝜶̂𝑖 − 𝜶)𝑅𝑁

𝑖=1 ′(𝜶̂𝒊 − 𝜶), (62) 

where 𝜶 is the parameter vector in the canonical form, 𝜶̂𝒊 is one of 𝛼 estimators in the 𝑖th 

replication, and 𝑅𝑁 is the replications number of the experiment which in our study end up to 

3000.  
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5.2.  SimulationResults 

The values of the parameter coefficients and the eigen values of 𝑿′𝑿 for the different 

values of 𝑝 and 𝑛 resulting from the simulation are obtained. 

Tables 6-11 describe the simulation findings of 3000 replications. On the tables, the 

condition number (CN) of each 𝑛 and 𝑝 altered experiment is also given. Deserves to be 

mentioned that the 𝑘’s used in the simulation are the harmonic (𝑘̂𝐻𝑀), the arithmetic (𝑘̂𝐴𝑀) 

means of  𝑘̂ and the Lukman bias estimator (𝑘̂𝐿𝑀), respectively. 
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Table 6. Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟐𝟓, 𝒑 = 𝟒 

 𝜸 = 𝟎. 𝟖𝟎 𝑪𝑵 = 𝟐𝟐. 𝟖𝟔𝟗 

 EMSE of the unrestricted biased estimators EMSE of the restricted biased estimators 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 2.793 0.019 0.598 0.293 0.375 0.254 0.576 0.330 0.402 0.298 

511.083 0.377 0.598 0.291 0.490 0.301 0.576 0.338 0.487 0.333 

34.831 0.191 0.598 0.177 0.456 0.257 0.576 0.237 0.461 0.294 

5 0.705 0.285 373.965 338.165 293.513 348.819 270.899 244.860 213.885 251.926 

249.299 0.801 373.965 128.566 360.486 348.161 270.899 94.396 261.938 262.714 

4.063 0.330 373.965 335.978 296.369 348.759 270.899 243.165 215.954 251.774 

 𝜸 = 𝟎. 𝟗𝟎 𝑪𝑵 =54.017 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 2.235 0.048 1.171 0.462 0.597 0.485 0.996 0.440 0.554 0.458 

534.776 0.320 1.171 0.279 0.819 0.512 0.996 0.308 0.721 0.494 

15.147 0.204 1.171 0.239 0.763 0.470 0.996 0.267 0.678 0.447 

5 0.388 0.299 731.801 658.704 484.220 682.113 538.550 483.644 359.029 500.031 

338.892 0.830 731.801 185.110 698.035 680.775 538.550 134.155 517.653 524.578 

3.780 0.344 731.801 654.337 492.289 681.983 538.550 480.206 364.974 499.712 

 𝜸 = 𝟎. 𝟗𝟓 𝑪𝑵 =118.234 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 
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Table 6 (Continued). Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟐𝟓, 𝒑 = 𝟒 

1 1.663 0.078 2.321 0.780 0.883 0.949 1.860 0.662 0.757 0.797 

 3.717e+3 0.296 2.321 0.324 1.324 0.936 1.860 0.323 1.099 0.830 

7.715 0.250 2.321 0.379 1.229 0.908 1.860 0.361 1.021 0.777 

5 0.206 0.308 1.451e+3 1.302e+3 759.952 1.352e+3 1.081e+3 967.253 575.340 1.003e+3 

1.021e+3 0.856 1.451e+3 251.251 1.370e+3 1.349e+3 1.081e+3 179.788 1.039e+3 1.058e+3 

1.582 0.352 1.451e+3 1.294e+3 780.193 1.351e+3 1.081e+3 960.315 590.385 1.002e+3 

 𝜸 = 𝟎. 𝟗𝟗 𝑪𝑵 =  𝟔𝟒𝟐. 𝟐𝟎𝟐 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 0.640 0.129 11.531 3.261 1.959 4.661 8.876 2.445 1.633 3.579 

34.767 0.319 11.531 0.705 4.385 4.396 8.876 0.533 3.604 3.629 

3.622 0.331 11.531 1.563 3.673 4.436 8.876 1.238 2.961 3.519 

5 0.045 0.320 7.207e+3 6.454e+3 2.2822e+3 6.711e+3 5.469e+3 4.872e+3 1.855e+3 5.068e+3 

600.704 0.890 7.207e+3 349.139 6.712e+3 6.696e+3 5.469e+3 228.653 5.359e+3 5.405e+3 

1.470 0.362 7.207e+3 6.410e+3 2.369e+3 6.710e+3 5.469e+3 4.837e+3 1.926e+3 5.065e+3 
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Table 7. Estimated 𝒌 and𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟓𝟎, 𝒑 = 𝟒 

 𝜸 = 𝟎. 𝟖𝟎 𝑪𝑵 = 𝟏𝟖. 𝟐𝟐𝟐 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 3.391 0.005 0.234 0.154 0.175 0.108 0.260 0.191 0.211 0.156 

1.420e+3 0.468 0.234 0.277 0.216 0.141 0.260 0.313 0.245 0.182 

248.282 0.193 0.234 0.116 0.201 0.113 0.260 0.163 0.232 0.160 

5 1.688 0.263 146.379 132.884 131.807 136.289 113.348 102.422 102.079 105.894 

757.506 0.776 146.379 57.127 143.658 136.141 113.348 41.939 111.272 106.084 

4.992 0.301 146.379 132.004 132.415 136.272 113.348 101.756 102.520 105.880 

 𝜸 = 𝟎. 𝟗𝟎 𝑪𝑵 = 𝟒𝟒. 𝟎𝟖𝟏 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 2.971 0.023 0.457 0.240 0.308 0.202 0.443 0.260 0.320 0.238 

1.44e+3 0.359 0.457 0.229 0.388 0.227 0.443 0.267 0.385 0.258 

29.133 0.176 0.457 0.144 0.360 0.198 0.443 0.186 0.362 0.235 

5 0.947 0.295 285.580 257.636 235.923 265.795 223.284 200.214 184.526 208.516 

1.07e+3 0.809 285.580 83.568 278.122 265.481 223.284 59.806 217.596 209.152 

2.492 0.332 285.580 255.912 237.800 265.753 223.284 198.904 185.890 208.488 

 𝜸 = 𝟎. 𝟗𝟓 𝑪𝑵 = 𝟗𝟕. 𝟒𝟕𝟔 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 
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Table 7 (Continued). Estimated 𝒌 and𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟓𝟎, 𝒑 = 𝟒 

1 2.440 0.050 0.911 0.385 0.517 0.392 0.804 0.369 0.481 0.393 

660.995 0.302 0.911 0.215 0.674 0.398 0.804 0.245 0.610 0.401 

160.254 0.186 0.911 0.206 0.630 0.374 0.804 0.236 0.572 0.383 

5 0.506 0.309 569.090 511.692 406.871 529.574 446.939 399.147 321.003 417.243 

852.577 0.838 569.090 120.004 548.970 528.806 446.939 83.164 431.763 418.920 

4.337 0.347 569.090 508.260 412.491 529.482 446.939 396.537 325.054 417.186 

 𝜸 = 𝟎. 𝟗𝟗 𝑪𝑵 = 𝟓𝟑𝟐. 𝟕𝟗𝟐 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 1.152 0.108 4.592 1.411 1.285 1.905 3.707 1.132 1.093 1.600 

193.966 0.292 4.592 0.429 2.158 1.797 3.707 0.367 1.800 1.546 

6.382 0.292 4.592 0.685 1.964 1.805 3.707 0.622 1.605 1.555 

5 0.110 0.321 2.870e+3 2.574e+3 1.206e+3 2.670e+3 2.260e+3 2.011e+3 1.004e+3 2.109e+3 

3.921e+3 0.885 2.870e+3 196.285 2.708e+3 2.666e+3 2.260e+3 125.942 2.146e+3 2.123e+3 

1.621 0.359 2.870e+3 2.556e+3 1.246e+3 2.669e+3 2.260e+3 1.998e+3 1.033e+3 2.108e+3 

 

Table 8. Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟏𝟎𝟎, 𝒑 = 𝟒 

 𝜸 = 𝟎. 𝟖𝟎 𝑪𝑵 = 𝟒𝟏. 𝟐𝟎𝟑 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 
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Table 8 (Continued). Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟏𝟎𝟎, 𝒑 = 𝟒 

1 3.423 0.006 0.206 0.134 0.157 0.097 0.268 0.202 0.226 0.172 

1.43e+3 0.430 0.206 0.199 0.190 0.114 0.268 0.253 0.252 0.173 

70.316 0.200 0.206 0.088 0.178 0.096 0.268 0.161 0.243 0.166 

5 2.117 0.327 128.571 115.592 117.419 119.910 94.347 84.570 86.266 87.569 

1.04e+3 0.794 128.571 42.266 126.721 119.701 94.377 30.901 93.118 91.482 

7.546 0.364 128.571 114.769 117.878 119.881 94.347 83.922 86.602 87.504 

 𝜸 = 𝟎. 𝟗𝟎 𝑪𝑵 = 𝟗𝟓. 𝟗𝟐𝟗 

𝝈 𝒌 𝒅       OLS RR LE TP RLS RRR MRL RTP 

1 3.001 0.029 0.423 0.218 0.291 0.192 0.430 0.257 0.322 0.238 

491.882 0.341 0.423 0.163 0.359 0.198 0.430 0.215 0.375 0.239 

31.587 0.184 0.423 0.118 0.337 0.182 0.430 0.176 0.357 0.229 

5 1.107 0.343 264.429 236.678 222.487 246.565 196.469 175.072 165.650 182.368 

3.70e+3 0.825 264.429 64.720 258.783 246.040 196.469 46.594 192.962 191.132 

3.375 0.380 264.429 235.037 224.042 246.503 196.469 173.777 166.800 182.246 

 𝜸 = 𝟎. 𝟗𝟓 𝑪𝑵 = 𝟐𝟎𝟓. 𝟐𝟑𝟗 

𝝈 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 2.476 0.062 0.855 0.353 0.498 0.376 0.756 0.349 0.472 0.373 

560.278 0.304 0.855 0.171 0.636 0.363 0.756 0.212 0.580 0.373 
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Table 8 (Continued). Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟏𝟎𝟎, 𝒑 = 𝟒 

 46.987 0.197 0.855 0.180 0.598 0.353 0.756 0.216 0.550 0.359 

5 0.577 0.351 534.328 477.241 393.739 498.150 400.932 356.203 297.104 372.319 

5.48e+3 0.851 534.328 90.640 518.368 496.873 400.932 63.567 392.257 390.818 

2.311 0.388 534.328 473.986 398.530 498.023 400.932 353.635 300.638 372.092 

 𝜸 = 𝟎. 𝟗𝟗 𝑪𝑵 = 𝟏𝟎𝟕𝟐. 𝟕𝟑 

σ 𝒌 𝒅      OLS RR LE TP RLS RRR MRL RTP 

1 1.205 0.124 4.276 1.274 1.297 1.798 3.366 1.127 1.078 1.455 

157.228 0.296 4.276 0.401 2.050 1.672 3.366 0.372 1.684 1.431 

4.943 0.293 4.276 0.593 1.893 1.682 3.366 0.522 1.536 1.404 

5 0.128 0.357 2.672e+3 2.383e+3 1.229e+3 2.491e+3 2.032e+3 1.801e+3 984.607 1.889e+3 

1.254e+4 0.889 2.672e+3 126.367 2.536e+3 2.484e+3 2.032e+3 81.385 1.989e+3 1.992e+3 

1.840 0.394 2.672e+3 2.367e+3 1.263e+3 2.490e+3 2.032e+3 1.788e+3 1.010e+3 1.888e+3 

 

Table 9. Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟐𝟓, 𝒑 = 𝟕 

 𝜸 = 𝟎. 𝟖𝟎 𝑪𝑵 =    𝟒𝟖. 𝟒𝟎𝟐 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 
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Table 9 (Continued). Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟐𝟓, 𝒑 = 𝟕 

1 3.897 0.073 1.040 0.392 0.705 0.440 0.737 0.312 0.527 0.334 

635.578 0.435 1.040 0.319 0.859 0.467 0.737 0.279 0.626 0.377 

35.491 0.222 1.040 0.209 0.796 0.412 0.737 0.178 0.585 0.314 

5 0.474 0.376 650.111 576.111 525.541 607.231 460.729 413.780 379.841 430.028 

357.531 0.870 650.111 150.168 632.075 603.625 460.729 121.305 449.895 453.801 

0.732 0.403 650.111 572.566 529.967 607.124 460.729 411.209 382.942 429.779 

 𝜸 = 𝟎. 𝟗𝟎 𝑪𝑵 = 𝟏𝟐𝟕. 𝟐𝟏𝟎 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 2.920 0.119 1.963 0.605 1.116 1.028 1.388 0.478 0.845 0.617 

1.023e+3 0.401 1.963 0.254 1.417 0.972 1.388 0.222 1.044 0.623 

17.216 0.267 1.963 0.279 1.303 0.750 1.388 0.228 0.969 0.563 

5 0.266 0.402 1.227e+3 1.077e+3 884.755 1.146e+3 867.562 770.563 646.895 808.315 

174.219 0.881 1.227e+3 212.230 1.180e+3 1.139e+3 867.562 171.363 845.920 866.450 

0.504 0.427 1.227e+3 1.070e+3 896.137 1.146e+3 867.562 765.404 654.890 807.696 

 𝜸 = 𝟎. 𝟗𝟓 𝑪𝑵 =294.289 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 2.002 0.153 3.816 1.026 1.727 1.595 2.699 0.806 1.332 1.185 

408.994 0.386 3.816 0.227 2.337 1.401 2.699 0.200 1.754 1.133 

10.928 0.314 3.816 0.427 2.128 1.431 2.699 0.338 1.610 1.068 
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Table 9 (Continued). Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟐𝟓, 𝒑 = 𝟕 

5 0.141 0.416 2.385e+3 2.081e+3 1.493e+3 2.229e+3 1.686e+3 1.488e+3 1.117e+3 1.569e+3 

536.684 0.892 2.385e+3 297.815 2.268e+3 2.212e+3 1.686e+3 241.884 1.657e+3 1.709e+3 

0.471 0.441 2.385e+3 2.067e+3 1.520e+3 2.228e+3 1.686e+3 1.477e+3 1.137e+3 1.568e+3 

 𝜸 = 𝟎. 𝟗𝟗 𝑪𝑵 =1662.300 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 0.613 0.190 18.647 4.358 4.615 7.722 13.198 3.401 3.742 5.718 

52.212 0.385 18.647 0.427 7.810 6.580 13.198 0.373 6.174 5.364 

6.046 0.376 18.647 1.671 6.865 6.893 13.198 1.277 5.453 5.138 

5 0.030 0.429 1.165e+4 1.011e+4 5.450e+3 1.089e+4 8.249e+3 7.233e+3 4.420e+3 7.666e+3 

391.269 0.913 1.165e+4 531.585 1.087e+4 1.080e+4 8.249e+3 0.445e+3 8.459e+3 8.614e+3 

0.429 0.453 1.165e+4 1.005e+4 5.615e+3 1.089e+4 8.249e+3 7.181e+3 4.511e+3 7.658e+3 

 

Table 10. Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟓𝟎, 𝒑 = 𝟕 

 𝜸 = 𝟎. 𝟖𝟎 𝑪𝑵 =117.413 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 4.097 0.081 0.888 0.358 0.635 0.394 0.783 0.310 0.559 0.346 

790.860 0.408 0.888 0.221 0.747 0.377 0.783 0.189 0.658 0.342 

41.622 0.211 0.888 0.185 0.702 0.355 0.783 0.161 0.618 0.316 
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Table 10 (Continued). Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟓𝟎, 𝒑 = 𝟕 

5 0.537 0.381 554.793 492.055 463.605 518.334 488.500 432.061 408.541 455.440 

878.785 0.872 554.793 119.744 542.017 514.952 488.500 102.961 477.652 461.550 

0.651 0.401 554.793 489.118 466.951 518.225 488.500 429.385 411.476 455.265 

 𝜸 = 𝟎. 𝟗𝟎 𝑪𝑵 = 𝟐𝟗𝟒. 𝟐𝟐𝟎 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 2.937 0.120 1.893 0.615 1.122 0.819 1.668 0.530 0.984 0.720 

487.588 0.383 1.893 0.190 1.385 0.718 1.668 0.162 1.220 0.653 

15.251 0.255 1.893 0.274 1.290 0.727 1.668 0.237 1.134 0.649 

5 0.260 0.398 1.183e+3 1.043e+3 869.456 1.106e+3 1.042e+3 915.676 768.721 971.182 

594.012 0.888 1.183e+3 184.612 1.142e+3 1.098e+3 1.042e+3 156.894 1.010e+3 986.973 

0.315 0.417 1.183e+3 1.037e+3 880.062 1.106e+3 1.042e+3 909.915 778.004 970.745 

 𝜸 = 𝟎. 𝟗𝟓 𝑪𝑵 = 652.400 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 1.929 0.144 3.907 1.109 1.809 1.659 3.441 0.952 1.589 1.460 

236.112 0.374 3.907 0.206 2.407 1.411 3.441 0.171 2.124 1.286 

10.185 0.312 3.907 0.444 2.225 1.468 3.441 0.385 1.957 1.314 

5 0.128 0.405 2.442e+3 2.148e+3 1.529e+3 2.284e+3 2.150e+3 1.884e+3 1.363e+3 2.004e+3 

1.351e+3 0.901 2.442e+3 262.643 2.330e+3 2.264e+3 2.150e+3 0.222e+3 2.072e+3 2.042e+3 

0.160 0.425 2.442e+3 2.135e+3 1.556e+3 2.283e+3 2.150e+3 1.872e+3 1.387e+3 2.003e+3 
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Table 10 (Continued). Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟓𝟎, 𝒑 = 𝟕 

 𝜸 = 𝟎. 𝟗𝟗 𝑪𝑵 =3523.237 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 0.547 0.172 19.995 4.981 4.701 8.329 17.597 4.264 4.252 7.335 

85.680 0.382 19.995 0.567 8.167 7.038 17.597 0.457 7.367 6.433 

11.122 0.382 19.995 1.893 7.302 7.417 17.597 1.655 6.536 6.661 

5 0.025 0.411 1.250e+4 1.097e+4 5.970e+3 1.169e+4 1.100e+4 9.620e+3 5.438e+3 1.025e+4 

2.625e+4 0.923 1.250e+4 388.799 1.169e+4 1.159e+4 1.100e+4 319.652 1.054e+4 1.050e+4 

0.067 0.431 1.250e+4 1.091e+4 6.042e+3 1.169e+4 1.100e+4 9.559e+3 5.507e+3 1.025e+4 

 

Table 11. Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟏𝟎𝟎, 𝒑 = 𝟕 

 𝜸 = 𝟎. 𝟖𝟎 𝑪𝑵 =79.782 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 5.490 0.039 0.317 0.174 0.263 0.155 0.245 0.147 0.210 0.127 

4614.253 0.483 0.317 0.241 0.296 0.167 0.245 0.203 0.232 0.144 

102.477 0.200 0.317 0.111 0.282 0.144 0.245 0.098 0.222 0.120 

5 1.553 0.377 198.163 175.597 184.073 185.082 150.989 135.542 141.164 140.212 

2167.309 0.853 198.163 51.744 195.962 183.987 150.989 43.690 149.572 149.713 

1.966 0.401 198.163 174.457 184.648 185.034 150.989 134.613 141.598 140.072 
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Table 11 (Continued). Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟏𝟎𝟎, 𝒑 = 𝟕 

 𝜸 = 𝟎. 𝟗𝟎 𝑪𝑵 = 𝟐𝟎𝟓. 𝟓𝟖𝟗 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 4.577 0.081 0.653 0.278 0.494 0.309 0.498 0.233 0.394 0.246 

1702.663 0.404 0.653 0.171 0.565 0.282 0.498 0.147 0.442 0.244 

27.895 0.197 0.653 0.150 0.534 0.276 0.498 0.130 0.421 0.225 

5 0.787 0.405 408.011 358.634 356.263 381.420 309.070 275.237 273.318 286.680 

702.633 0.869 408.011 82.828 400.538 378.630 309.070 70.223 305.145 311.437 

1.038 0.426 408.011 356.316 358.202 381.298 309.070 273.319 274.803 286.347 

 𝜸 = 𝟎. 𝟗𝟓 𝑪𝑵 = 𝟒𝟔𝟑. 𝟕𝟎𝟑 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 3.520 0.117 1.327 0.455 0.868 0.602 1.010 0.380 0.699 0.476 

976.972 0.373 1.327 0.139 1.028 0.512 1.010 0.120 0.815 0.443 

18.627 0.227 1.327 0.221 0.964 0.533 1.010 0.187 0.769 0.429 

5 0.396 0.416 829.409 726.137 657.913 775.736 628.939 557.535 510.236 583.092 

791.103 0.884 829.409 126.481 806.416 769.208 628.939 107.405 621.393 640.870 

0.567 0.437 829.409 721.469 663.919 775.468 628.939 553.625 514.961 582.375 

 𝜸 = 𝟎. 𝟗𝟗 𝑪𝑵 = 𝟐𝟓𝟒𝟑. 𝟓𝟓𝟔 

σ 𝒌 𝒅 OLS RR LE TP RLS RRR MRL RTP 

1 1.360 0.163 6.725 1.746 2.571 2.886 5.140 1.444 2.134 2.278 
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Table 11 (Continued). Estimated 𝒌 and 𝒅 and EMSE for the restricted and unrestricted biased estimators when 𝒏 = 𝟏𝟎𝟎, 𝒑 = 𝟕 

 185.821 0.370 6.725 0.238 3.594 2.408 5.140 0.200 2.973 2.102 

9.594 0.342 6.725 0.668 3.314 2.540 5.140 0.553 2.742 2.043 

5 0.079 0.424 4203.171 3668.386 2407.509 3932.684 3209.213 2832.084 1974.738 2974.577 

751.011 0.911 4203.171 246.996 3987.508 3894.249 3209.213 207.005 3267.161 3335.638 

0.272 0.444 4203.171 3644.953 2454.065 3931.223 3209.213 2812.175 2013.169 2970.834 
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The results in Tables 6-11 summarize the average of the mean square errors values resulting 

from the simulation for each estimator, and show the averaged values for simulated harmonic, 

arithmetic means, and Lukman’s bias estimator of 𝑘 and their corresponding average of 

simulated d-optimal for each estimate method. We have the following results of Monte-Carlo 

simulation study. 

1. Performance as a Function of the Restrictions: This efficiency in performance in detail 

applies for all the study’s estimators regardless of 𝑛, 𝑝, 𝑘, 𝑑 and for fixed 𝜎 and 𝛾 values. i.e, 

the 𝜷̂𝑟 estimator is superior to the 𝜷̂, the 𝜷̂𝑟(𝑘) estimator is superior to the 𝜷̂𝑘 estimator, the 

𝜷̂𝑟(𝑑) estimator is superior to the 𝜷̂𝑑 estimator, and the 𝜷̂𝑟(𝑘, 𝑑) estimator is superior to the 

𝜷̂(𝑘, 𝑑) estimator.Nonetheless, some exceptions were noticed in Tables 6-9 when 𝛾 =

0.80, 0.90 and 𝜎 = 1, in these specific parts of Tables the unrestricted biased estimators show 

better performance than the restricted estimators by having fewer EMSE values. This might be 

explained by the fact that these cases create null to low degrees of multicollinearity, resulting 

in modest condition numbers. It is worth noting that this does not occur when σ = 5, so we 

conclude thatthe restricted estimators do perform better when the error has a considerable 

standard deviation even in the absence of the multicollinearity. In other words, as 𝜎 gets larger 

not only the EMSE values grows, but also does the degree of superiority of the restricted 

estimators over the unrestricted estimators. 

2. Performance as a Function of 𝜸: For fixed values of σ, 𝑛 and 𝑝, every increase in the 

correlation value represented in 𝛾 resulted in an increase in the amount of averaged mean square 

error for both the restricted and unrestricted biased estimators. Moreover, as 𝛾 increases the 

performance gap between the OLS estimator and the other unrestricted estimators becomes 

wider, as well as the performance gap between the RLS estimator and the other restricted 

estimators. Since by 𝛾 growing the EMSE values of the OLS and the RLS estimators increase 

substantially unlike the other estimators. This may explain the genuine influence of the 

multicollinearity on the OLS and RLS estimation by making them unstable, have large variance, 

and have longer vector than 𝜷’s vector ‖𝜷‖ < ‖𝜷̂‖ and ‖𝜷‖ < ‖𝜷̂𝒓‖. Generally when 

correlation confections increase the restricted estimators perform better, because they impose 

constraints that can help stabilize the estimates. If restrictions align with the true underlying 

relationships, they can lead to more precise estimations in the presence of multicollinearity. 

However, if the restrictions are incorrect or overly strict the restricted estimators will be biased 

and inefficient. 
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3. Performance as a Function of 𝒌 and 𝒅: The EMSE for each level of correlations decreases 

down as 𝑘 grows. Which justifies the RR of 𝑘̂𝐴𝑀with the smallest EMSE value among the RR 

estimators and all other unrestricted biased estimators. Similarly, having the RRR of 𝑘̂𝐴𝑀the 

smallest EMSE value among the other RRR estimators and outperforming all restricted biased 

estimators become more understandable. Regarding 𝑑what happened is the exact opposite, the 

largest estimate of 𝑑corresponds to the largest EMSE values of the Liu and MRL estimators. 

Although, a negative link between 𝑘 and the EMSE is concluded, on the contrary to Lukman et 

al. (2019)a positive link between 𝑑 and EMSE is concluded. 

4. Performance as a Function of 𝝈:A positive direct relationship between the 𝜎 and the EMSE 

have been determined based on the results of the Tables. Regardless of 𝛾 value, dramatic 

changes have been noticed occurring in the EMSE values after a small change in 𝜎. In the 

unrestricted biased estimator group, when 𝜎 = 1, the RR estimators outperform the other 

unrestricted estimators in virtually all instances, Specifically, the RR of 𝑘̂𝐴𝑀. The second 

acceptable performance is shown by the TP estimator. Exceptions are unavoidable; for example, 

in Table 6, when 𝛾 = 0.99, some of Liu's estimations take center stage. However, when 𝜎 =

5the best performance has occurred by 𝑘̂𝐴𝑀 of RR, then by the first and third estimated values 

of 𝑑 at Liu, followed by the other ridge and the other Liu estimations, indicating an overlapped 

level of efficiency between Liu and ridge except for the second estimated 𝑑 due of being larger 

than the other values.  

5. Performance as a Function of 𝒏: The rise in the number of observations leads to a decrease 

in the amount of averaged mean square error for both the restricted and unrestricted biased 

estimators for fixed values of σ, 𝛾, and 𝑝. Regarding the differences between restricted and 

unrestricted estimators, no correlation can be established between the number of observations 

or sample size and the degree of the unrestricted estimators’ superiority over the restricted 

estimators. It means that the unrestricted estimators outperform the restricted biased estimators 

regardless of 𝑛. Generally as the sample size increases: Unrestricted estimators tend to perform 

better because they can utilize the full information in the data; the variance of the estimators 

tends to decrease, and the estimators become more efficient. As the sample size grows, the 

unrestricted estimators tend to converge to the true parameter values and exhibit less bias. 

Restricted estimators might perform worse in larger samples if the restrictions imposed are not 

true (e.g., incorrectly assuming that a coefficient is zero). The bias of the restricted estimator 

may not shrink with larger sample sizes, leading to inefficiency. However, if the restrictions are 
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correct, restricted estimators can still be efficient, but this requires a strong assumption of 

correctness about the restrictions. Based on the Simulation results, the restricted estimators 

perform efficiently and even outperform the unrestricted estimators, which mean that the 

constraints we have chosen are correct. 

6. Performance as a Function of 𝒑: The mean square error of both groups, the restricted and 

unrestricted biased estimators’ values grow as the number of regressors 𝑝 increases for any 

given 𝑛, 𝛾, and 𝜎. Furthermore, the increase in the number of regressors𝑝 leads to a decrease 

in the regression coefficients values (Shaltoot, 2021). 

 

5.   CONCLUSION 

In order to identify and compare the performance of linear estimators when the 

regression model suffers from the multicollinearity problem, this applied study has been 

conducted. And since many biased alternatives to the ordinary least squares have been 

suggested in literature with the aim of obtaining a substantial reduction in variance, many 

comparison studies emerged as a result. With the aim of making a different comparison we have 

decided to to separate some biased estimators into two main groups, the act that transfers the 

comparison to a radically different level of comparing between two linear regression models 

instead of only comparing the performance of a random group of estimators. These two models 

are the restricted linear regression model and the classical linear regression model. So, what 

differentiates this study is the comparison core itself, as well as the simulation study that was 

applied to it. 

The OLS, the RR, the Liu, the TP, the RRR, the MRL and the RTP estimators were 

broadly presented, and their properties as well were discussed. Also, the issue of selecting the 

biasing parameters 𝑘 and 𝑑 have been considered. Based on the MMSE criterion, some theories 

of comparing the restricted and the unrestricted estimators have been represented and discussed. 

Then the theoretical findings have been illustrated in terms of both the SMSE and the MMSE 

criteria, by using a real-life data set followed by a comprehensive simulation study controlled 

by several dimensions: 𝜎, 𝛾, 𝑝, 𝑛, 𝑘 and 𝑑. The commentary was considered separately under 

the previous core areas. From the real applications we may highlight the following results:  

 Rather than the unrestricted estimators, the restricted estimators have been demonstrated 

as a noble alternative to the OLS in estimating when the problem of multicollinearity is 

existent in the linear regression model. 



Nicel Bilimler Dergisi / Cilt: 6, Sayı: 2, Aralık2024 

Journal of Quantitative Sciences / Volume: 6, Issue: 2, December 2024 

269 

 

 In the sense of SMSE, the RRR estimator has been shown outperform all the restricted 

and unrestricted estimators, whereas the RR is superior to the unrestricted estimators 

set.  

 The RR and RRR estimators of 𝑘̂𝐴𝑀 perform better comparing to the RR and RRR 

estimators of 𝑘̂𝐻𝑀 and 𝑘̂𝐺𝑀. 

From the simulation study we may highlight the following results:  

 The restricted biased estimators outperform the unrestricted biased estimators when the 

𝑿′𝑿 is ill-conditioned in the linear regression model. On the other hand, In the absence 

of multicollinearity, the unrestricted estimators outperform the restricted estimators. 

 Almost everywhere, the ridge regression estimator performs best in the unrestricted 

estimators’ group and as the restricted ridge regression does in the restricted estimators’ 

group. 

 An increase in the value of the correlation coefficient results to an increase in the EMSE 

for all the estimators. 

 As the standard deviation of the error grows so does the EMSE for each estimator. 

 As 𝑘 increases, the EMSE for each level of correlations decreases. 

 As 𝑑 increases, the EMSE for each level of correlations increases. 

 An increase in the sample size 𝑛 leads to a decrease in the EMSE for all the estimators. 

 For every given 𝑛, 𝛾and 𝜎, the values of the restricted and unrestricted biased 

estimators grow as the number of regressors 𝑝 increases. 

 Given that the results in both practical examples and the Monte-Carlo simulation showed the 

superiority of the restricted estimators to the unrestricted estimators, the researcher believes that 

restricted estimation as a contemporary science deserves more attention from statisticians. This 

research can be further developed by including more estimators in the comparison or by 

including the stochastic restricted estimators beside or instead of the exact restricted estimators. 
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