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ABSTRACT Inverse kinematics is a significant challenge in robotic manipulators, and finding practical solutions
plays a crucial role in achieving precise control. This paper presents a study on solving inverse kinematics
problems using the Feed-Forward Back-Propagation Neural Network (FFBP-NN) and examines its performance
with different hyperparameters. By utilizing the FFBP-NN, our primary objective is to ascertain the joint angles
required to attain precise Cartesian coordinates for the end-effector of the manipulator. To accomplish this,
we first formed three input-output datasets (a fixed-step-size dataset, a random-step-size dataset, and a
sinusoidal-signal-based dataset) of joint positions and their respective Cartesian coordinates using direct
geometrical formulations of a two-degree-of-freedom (2-DoF) manipulator. Thereafter, we train the FFBP-NN
with the generated datasets using the MATLAB Neural Network Toolbox and investigate its potential by altering
the hyperparameters (e.g., number of hidden neurons, number of hidden layers, and training optimizer). Three
different training optimizers are considered, namely the Levenberg-Marquardt (LM) algorithm, the Bayesian
Regularization (BR) algorithm, and the Scaled Conjugate Gradient (SCG) algorithm. The Mean Squared Error
is used as the main performance metric to evaluate the training accuracy of the FFBP-NN. The comparative
outcomes offer valuable insights into the capabilities of various network architectures in addressing inverse
kinematics challenges. Therefore, this study explores the application of the FFBP-NNs in tackling the inverse
kinematics, and facilitating the choice of the most appropriate network design by achieving a portfolio of
various experimental results by considering and varying different hyperparameters of the FFBP-NN.
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INTRODUCTION

Robot kinematics plays a fundamental role in respective robotic
research and applications. The progress in inverse kinematics algo-
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rithms is of utmost importance for advancing this field, as noted
in various studies (Gao et al. 2017; Liu et al. 2017; Rea Minango and
Ferreira 2017). However, conventional approaches for solving in-
verse kinematics problems frequently face issues with convergence
and entail intricate iterative procedures, which can negatively
impact the overall efficiency and quality of these algorithms, as
highlighted in the work of Reiter et al. (2018). Additionally, it has
been noted in the research work of Zhao et al. (2018) and that of
Di Pietro et al. (2012) that conventional approaches for solving
inverse problems lack a unified equation for describing motion.
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Compared to forward kinematics equations, inverse kinematics
equations present more significant challenges. Solving inverse
kinematics difficulties is typically more complex than solving for-
ward kinematics ones Bouzid et al. (2024d,c). The purpose of
forward kinematics is to identify the end-effector’s position based
on joint angles or positions (Bouzid et al. 2023, 2024b). In most
cases, this can be accomplished using simple geometric calcula-
tions. However, inverse kinematics entails determining the joint
angles or positions that match to a desired end-effector position,
which requires solving a set of nonlinear equations. This can be
computationally intensive, with complex relationships and limits
(Bouzid et al. 2024d,c).

Many researchers and organizations have conducted thorough
research into inverse kinematics algorithms within the field of
robotics (Benavente-Peces et al. 2014; Narayan et al. 2022; Becerra
and Kremer 2011; Narayan and Singla 2017a). These algorithms
primarily concentrate on four key aspects: geometric algorithms,
analytical algorithms, geometric-analytic algorithms, and numer-
ical algorithms. An analytical algorithm for solving kinematics’
inverse problems in palletization manipulator robotics was pro-
posed by Xu et al. (2017). While this analytical algorithm offers
certain practicality to some possible extent, it was found to en-
counter the probem of yielding multiple analytical solutions for a
single pose, thereby complicating the determination of a unique
solution. Practical experience has revealed that while applying
the algorithm to robotics offers flexibility, the design process tends
to become overly convoluted. This often leads to the need for
numerous iterations, resulting in inefficiencies (Abbas et al. 2019;
Narayan et al. 2018).

Therefore, to address the problem of computationally expen-
sive analytical and numerical solutions, researchers have started
exploring intelligent solutions in the last few years (Li and Savkin
2018; Mahajan et al. 2017). The authors in (Duka 2014) generated
training data for the Neural Network by randomly choosing joint
angle values and then determining the resulting end-effector po-
sition, following circular trajectories through forward kinematics.
Furthermore, the paper introduces a method to rescale the input
and output data to fall within the [−1, 1] range, thereby improv-
ing the network’s performance. In another research by Dash et al.
(2017), the Levenberg-Marquardt (LM) algorithm was used to train
the designed network over a set number of epochs. This study
focuses on tackling the problem of solving the inverse kinematics
of a 6-DoF system through the application of an artificial neural
network (ANN). In the work by Mahajan et al. (2017), a neural net-
work model was presented, capable of independently governing
the actions of a manipulator, thus obviating the need for external
guidance. The neural network was trained through unsupervised
learning methods, focusing on a 2-DoF system. The primary focus
of the study is to trace a circular path and intercept a moving ball.
In the study by Narayan and Singla (2017a), the researchers used
the adaptive neuro-fuzzy inference system (ANFIS) with a Gaus-
sian membership function to solve the inverse kinematics problem
of a 4-DoF SCARA robot, combining fuzzy inference systems and
neural network approaches from prior work.

Li and Savkin (2018) proposed a solution using competitive neu-
ral networks to address the inverse kinematics problem in robotics,
focusing on the task of a mechanical arm grabbing an object. A
MATLAB-based simulation was carried out, as referenced in (Ku-
mar et al. 2018), to assess the efficacy of an intelligent technique in
rectifying position errors during the execution of a circular trajec-
tory by a 2R robot. By introducing minor variations in link lengths,
geometric discrepancies were examined by generating a simulated

dataset using the kinematic models derived. Subsequently, the
neural network was trained on this dataset to forecast position
error values within the operational area of the robot. In (Lathifah
et al. 2018), authors explored an ANN to solve the problem of an in-
verse kinematics for a 3-link planar serial robotic manipulator. The
trained neural network was tested by considering that the robotic
manipulator performs square and/or triangle motions within the
admissible working-space (Bouzid et al. 2024d). Moreover, the LM
algorithm trained the neural network for the inverse kinematics
problem’s solution. Various network architectures were tested by
Handayani et al. (2018) to find the optimal solution. The proposed
method was evaluated using a simple planar manipulator perform-
ing tasks such as drawing a square and a triangle, and the results
demonstrate the validity of the neural network trained with the
Bayesian Regularization (BR) algorithm for solving the inverse
kinematics problem. Theofanidis et al. (2018) have introduced a
novel neural network-based approach for estimating a kinemati-
cally redundant robotic arm’s forward kinematics and testing it
for different configurations.

The neural network is trained in the work by Dumitriu et al.
(2020), using the LM algorithm to map the manipulator’s joints and
the end-effector’s position based on forward kinematics calcula-
tions. The network is trained for different scenarios, and the Mean
Square Error (MSE) is used to evaluate the accuracy of the results.
The research work in (Gao 2020) demonstrated that the proposed
algorithm of the inverse kinematics, which employs an enhanced
BPNN, outperforms better than traditional/classical algorithms
for inverse solutions when handling with the inverse kinemat-
ics problem in manipulator robots with six degrees of freedom
(Bouzid et al. 2024d). Aravinddhakshan et al. (2021) introduced a
neural network-based approach for a 5-DoF manipulator through
supervised learning, achieving accurate inverse kinematics and
optimizing path planning during pick and place operations. This
highlights the effectiveness of neural networks in manipulator
control. Furthermore, the research of Köker et al. (2004) focused
on a three-joint robotic manipulator and utilized simulation soft-
ware to plan cubic trajectories and define the manipulator’s work
volume. A key strength highlighted in the study is the neural
network’s remarkable online performance. In addition, multiple
neural networks were employed in (Takatani et al. 2019) to learn
the inverse kinematics of redundant robotic manipulators using an
independent approach, and by studying different structures of the
evaluation function (Bouzid et al. 2024d). Furthermore, the training
data employed in this learning methodology consists of different
endpoints, different postures, and different evaluation values of
the robotic manipulators. Meanwhile, Ibarra-Pérez et al. (2022)
emphasizes the challenge of setting structural parameters for neu-
ral networks, advocating for optimization-based methods over
trial-and-error, saving time and improving performance. Lastly,
in the work of Aysal et al. (2023), machine learning techniques are
found to be a viable option for analyzing the kinematics of a 3-DoF
robot arm with an RRR design, mainly using an MLP model to
ensure system stability.

In (Wagaa et al. 2023), various Deep Learning networks were
developed to solve the inverse kinematics of 6-DoF manipulator
robots. ANN, Convolutional Neural Network (CNN), Long-Short
Term Memory (LSTM), and Gated Recurrent Unit (GRU) are the
neural network architectures that have been considered. Further-
more, authors examined the performance of analytical and neural
systems in producing robot trajectories using the RoboDK simula-
tor to display simulation results with real-world implications. In
(Cagigas-Muñiz 2023), various strategies involving ANNs were
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proposed and studied. The results revealed that the proposed orig-
inal bootstrap sampling and hybrid methods could significantly
outperform approaches that just use one ANN. Nevertheless, none
of these advancements completely solved the inverse kinematics
problem in articulated robots. García-Samartín and Barrientos
(2023) addressed the forward kinematics’ problem using ANNs
and Genetic Algorithms (GA). Using the publicly available Inverse
Kinematic (IK) model, both GA and ANN approaches were im-
plemented. Authors showed, compared to another approach, that
the proposed methodologies produced equivalent or higher re-
sults in terms of accuracy and time. Authors in (Bouzid et al. 2023,
2024b) studied the forward kinematics problem of a 2-DoF robotic
manipulator via ANNs. Moreover, they tackled in (Bouzid et al.
2024a) the same problem for a SCARA manipulator robot. Further-
more, the problem of studying and solving the issues of the inverse
kinematics for the manipulator robot was considered in (Bouzid
et al. 2024d,c). Other solving approaches of the inverse kinematics
problem for articulated manipulator robots can be found within
these previous references.

The existing literature on the subject reveals a noticeable gap
in research related to the comparative analysis of neural networks
with different hyperparameters when applied to solving the in-
verse kinematics of robot manipulators. As a response to this
deficiency, our study makes a substantial contribution by introduc-
ing a Feed-Forward Back-Propagation Neural Network (FFBP-NN)
specifically designed to tackle the inverse kinematics problem of a
2-DoF articulated robotic manipulator. Through the process, we in-
vestigated the effectiveness of the FFBP network architecture with
three distinct generated datasets: a random-step-size dataset, a
fixed-step-size dataset, and a sinusoidal-signal-based dataset with
varying frequencies (Bouzid et al. 2024d,c, 2023, 2024b). Moreover,
for each dataset type, the network architecture is tested with dif-
ferent hyperparameters, such as the number of hidden layers, neu-
rons in the hidden layer, and three different training optimization
algorithms, namely the Levenberg-Marquardt (LM) (Ranganathan
2004), the Bayesian regularization (BR) (Kayri 2016), and the Scaled
conjugate gradient (SCG) (Møller 1993). The testing and verifica-
tion phases are achieved in order to evaluate the capacity of the
trained neural network to minimize approximation errors and
appropriately estimate inverse kinematics.

The rest of this paper is structured like so: Section 2 delves
into the mathematical representation of the forward kinematics
of manipulator robots with n degrees of freedom, while Section 3
explores the computational aspects of the inverse kinematics for a
2-DoF manipulator robot. Section 4 introduces a novel approach
using an FFBP-NN to efficiently solve inverse kinematics prob-
lems, detailing the network’s architecture. In this previous Section,
we provide a brief overview of FFBP-NNs to ensure reader un-
derstanding. A flowchart and the hyperparameters used in the
proposed FFBP-NNs are also illustrated in this previous same sec-
tion. Section 5 presents numerical results obtained through the
FFBP-NNs’ application and initiates a discussion on implications,
potential improvements, and broader applications within the field
of robotics. The paper concludes with a conclusion and some pos-
sible future directions for improvements, presented in Section 6.

FORWARD KINEMATICS OF n-DOF MANIPULATOR
ROBOTS

It is worth mentioning first that the terminology DoF stands for
“Degree of Freedom”. In the context of robotics, mechanics, and
other related disciplines, it refers to the number of independent
parameters or variables that define the configuration or motion

of a system. Thus, in the context of a robot arm, the number of
degrees of freedom would represent the number of independent
ways the arm can move or rotate.

A Brief Description on Forward Kinematics of n-DoF Manipulator
Robots

Forward kinematics of n-DoF manipulator robots is a fundamental
concept in robotics that deals with determining the position and
orientation of the robot’s end-effector (usually a tool or gripper) in
the workspace based on the joint angles or variables of the robot’s
individual links. It is akin to tracing the path of a robot’s “hand” as
it moves through its various joint configurations. Methods from ge-
ometry and linear algebra, trigonometric transformation matrices,
and homogeneous coordinate transformations are frequently used
in traditional solutions to the forward kinematics problem. Here is
a brief overview of the conventional solution approaches for the
computation of the forward kinematics of manipulator robots:

1. Geometric Approach: It offers a straightforward understanding
of how a robot’s joints and links affect its end-effector’s po-
sition and orientation, useful for simpler robots like planar
ones but less effective for complex structures with closed-loop
chains or redundancy due to accuracy challenges and lack of
closed-form solutions (Kim et al. 2016).

2. Trigonometric methods: While excelling in simplicity and com-
putational efficiency, trigonometric methods are most suitable
for planar robots because they provide analytical solutions
without iterative techniques (Petrescu et al. 2017). However,
they may not be as effective for complex robots in three-
dimensional spaces or with unconventional joint arrange-
ments, as their assumptions may lead to reduced accuracy. En-
gineers and roboticists should assess their suitability for spe-
cific applications and consider alternative approaches when
dealing with intricate systems or non-standard geometries.

3. Coordinate transformations: Coordinate transformations have
versatile applications in various robotic systems, including
2D and 3D environments with different degrees of freedom
(Wang et al. 2014). They provide a mathematically rigorous
foundation, enhancing complex robots’ capabilities and in-
tegrating seamlessly with other techniques. However, im-
plementing them can be intricate, especially for robots with
many joints and complex link geometries, potentially lead-
ing to longer development times and errors. Proficiency in
coordinate transformations may require a robust mathemat-
ical background, posing a learning curve for some robotic
practitioners.

Extending the concept of coordinate transformation, forward
kinematics is calculated using Denavit-Hartenberg (DH) param-
eters and the homogeneous transformation matrix (Denavit and
Hartenberg 1955). The DH parameters provide a systematic way to
describe the geometric relationship between the robot’s successive
joints and links (Narayan and Singla 2017a). The Homogeneous
Transformation Matrix combines DH parameters to express the
transformation from one coordinate frame (associated with a spe-
cific joint) to another, effectively mapping the position and orien-
tation of each link concerning the previous one. By multiplying
these transformation matrices sequentially from the base link to the
end-effector, the forward kinematics algorithm computes the final
transformation that represents position of the robot’s end-effector
in the base coordinate frame.
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Furthermore, for each joint/frame, the parameters in this pre-
vious homogeneous transformation matrix, noted as i

i−1H, are
defined, according to the DH method, like so (Ganapathy 1984):

• Link length (a): The path of the shared normal defining the
difference between the preceding z-axis (that is of the (i − 1)th
frame) and the actual z-axis (that is of the ith frame).

• Link twist (α): The angle about the shared normal between
the preceding z-axis and the present z-axis.

• Link offset (d): The path from the previous x-axis to the actual
x-axis, along the preceding z-axis.

• Joint angle (θ): The degree of rotational angle about the z-axis
between the preceding x-axis and the actual x-axis.

The homogeneous transformation matrix i
i−1H from the (i −

1)th frame to the next one (ith frame) is represented via the follow-
ing expression (Ganapathy 1984):

i
i−1H =

 i
i−1R

i
i−1T

O 1

 (1)

where i
i−1R and i

i−1T are, respectively, the rotation and translation
matrices from one frame to the next one. Moreover, the symbol O
stands for the zero matrix with appropriate dimension.

Such homogeneous transformation matrix (1) is explicitly ex-
pressed in terms of the DH parameters, θ, d, α and a, as follows:

i
i−1H =


cos(θ) − sin(θ) cos(α) sin(θ) sin(α) a cos(θ)

sin(θ) cos(θ) cos(α) − cos(θ) sin(α) a sin(θ)

0 sin(α) cos(α) d

0 0 0 1


(2)

The Adopted 2-DoF Robotic Manipulator and its Forward Kine-
matics

In our study, we utilize a 2-DoF manipulator robotic model as
shown in Figure 1. In the kinematic description of the robotic
system under consideration, the joints are denoted as joint 1 and
joint 2, representing the rotational angles θ1 and θ2, respectively.
The associated links are labeled as follows: link 0 corresponds to
l0, link 1 to l1, and link 2 to l2. This notation establishes a clear
and concise representation of the joint angles and link lengths,
facilitating the systematic analysis of the robot’s kinematics.

By following the steps and the implementation of the geomet-
rical method and validating with the DH method, the forward
kinematics equations for the 2-DoF manipulator robot can be ob-
tained as follows (Ghaleb and Aly 2018):

X = l0 + l1 cos(θ1) + l2 cos(θ1 + θ2) (3)

Y = l1 sin(θ1) + l2 sin(θ1 + θ2) (4)

For our specific scenario, the lengths of the 2-DoF manipulator
robot are set as follows: l0 = 1 [m], l1 = 2 [m], and l2 = 3 [m].
Note that in these equations (3) and (4), the parameters θ1 and θ2
represent the joint angles of the 2-DoF manipulator robot, serving
as input parameters for computing the Cartesian coordinates X
and Y.

Figure 1 Schematic of a 2-DoF manipulator robot (updated from
(Madhuraghava et al. 2018)).

INVERSE KINEMATICS OF THE 2-DOF MANIPULATOR
ROBOT

In the case of inverse kinematics for the 2-DoF manipulator robot,
the problem is formulated to calculate the joint angles necessary
to position the end-effector at a specific Cartesian coordinate in
the workspace, as shown in Figure 2. Thereafter, an intelligent
neural network-based solution is proposed to address the problem
formulation.

Figure 2 Schema of the Forward/Inverse Kinematics. The left-hand
side of the figure represents the manipulator articulation variable.
The right-hand side represents the location of the robot end-part.

Problem Formulation
The complexity arises from the nonlinear and intricate mathemat-
ical equations governing the connection between joint angles q
and the resulting end-effector position Z, modeling the following
forward kinematics model (Narayan and Singla 2017b):

Z = F (q), q ∈ Rn, Z ∈ Rm (5)

and therefore the following inverse kinematics model, which is
considered to be unknown:

q = φ(Z) (6)

Here are a few problems associated with the inverse kinematics:

1. Nonlinearity: Nonlinear inverse kinematics challenges arise
due to complex joint configurations or irregular manipulator
robot shapes, necessitating computationally intensive solu-
tions through iterative numerical methods or optimization
techniques (Snieder 1998).
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2. High-dimensional Spaces: As the number of joints in a manipula-
tor robot increases, the dimensionality of the inverse kinemat-
ics problem also increases. To tackle this problem, dimension
reduction and advanced optimization methods may be re-
quired (Petrović 2018).

3. Joint limits: Manipulator robots typically have joint limits
that restrict the range of motion for each joint. Ensuring that
the solutions of the inverse kinematics respect these physical
limits is essential to prevent damage to the manipulator robot
(Huo and Baron 2008).

Proposed Method
In this research work and to solve the inverse kinematics of the
2-DoF manipulator robot, the proposed approach is articulated
around the following points:

• Our research project centers on applying intelligent tech-
niques to tackle inverse kinematics challenges, particularly on
ANNs.

• In our investigation, we will explore the use of FFBP-NNs
utilizing various training optimizers and diverse numbers of
hidden layers.

• We aim to evaluate their effectiveness across three different
datasets to enhance our understanding of their capabilities.

FEED-FORWARD BACK-PROPAGATION NEURAL NET-
WORK FOR SOLVING THE INVERSE KINEMATICS PROB-
LEM

A Brief Overview on Feed-Forward Back-Propagation Neural Net-
works
An FFBP-NN stands as a pivotal construct within the expansive
realm of ANNs, designed primarily to excel in supervised machine
learning endeavors such as classification and regression, prediction
of time series, as well as modeling of complex nonlinear dynamical
systems (Cimen et al. 2019; Martinez-garcia et al. 2022; Karaca 2023;
Keleş et al. 2023; Noorani and Mehrdoust 2022). An FFBP-NN
fundamentally comprises a layered architecture where neurons
are intricately linked, guiding information in a carefully designed
unidirectional path. This complex network structure typically in-
cludes an input layer, which receives initial data inputs; a series
of hidden layers, one or more in the count, actively involved in
intermediate data processing and the extraction of vital features;
and, to complete the sequence, an output layer tasked with gener-
ating the network’s predictions. The core of this neural architecture
hinges on two essential components: the allocation of weights to
neural connections, which indicates the connection strength, and
the inclusion of bias terms at each neuron, discreetly introducing
an adjustment to the neuron’s activation function output.

The crux of FFBP-NN operation is the feedforward process,
wherein data systematically traverses the network’s layers. Within
each layer, a neuron undertakes the intricate task of computing a
weighted sum of its inputs, adding the bias term into the equation,
and applying a designated activation function, resulting in an
output that cascades to the next layer. These activation functions,
spanning the spectrum from sigmoid and hyperbolic tangent to
the robust rectified linear unit (ReLU), serve to imbue the network
with a capacity for nonlinearity, thereby empowering it to model
intricate and non-trivial data relationships effectively. We find the
eagerly awaited predictions at the apex of the network, located
within the output layer. An essential aspect of this procedure
entails the utilization of a loss or cost function, which scrupulously

quantifies the gap between these predictions and the pristine target
values present in the training dataset. The optimization process,
a crucial stage in an FFBP-NN, is guided by the venerable back-
propagation algorithm.

This iterative mechanism recalibrates the network’s core param-
eters - the weights and biases - in pursuit of the singular objective:
minimizing the loss function. Underpinning this algorithmic oper-
ation is the gradient descent technique, a stalwart of optimization
methodologies, masterfully guiding parameter adjustments. Cen-
tral to this process is the learning rate, a hyperparameter wielding
influence over the scale of parameter updates, thereby determining
the network’s convergence rate. With the profound complexity
and nuance embedded within FFBP-NNs, hyperparameters serve
as vital navigational coordinates in this intricate journey. These
encompass many facets, encompassing the count of hidden lay-
ers, the number of neurons nested within each layer, the judicious
selection of activation functions, and the meticulous tuning of
the learning rate. Through these careful adjustments, FFBP-NNs
evolve from their nascent state into formidable models, attaining
an esteemed position within the pantheon of machine learning
paradigms. FFBP-NNs play a pivotal role across multifarious do-
mains, underscoring their enduring relevance and adaptability
through their ability to capture, decode, and illuminate intricate
data relationships.

Training With Three Different Datasets

The proposed method employs three distinct datasets: (1) a dataset
with a fixed step size, (2) another with random step sizes, and (3)
a sinusoidal-signal-based dataset featuring varying frequencies.
The selection of these datasets aims to thoroughly evaluate the
FFBP-NN’s performance across various input data types.

It is important to note that we arbitrarily use the parameters,
and multiple possible combinations depend on our choices. We
have discovered these results through numerical experimentation,
but obtaining other values and even more efficient models is possi-
ble. We conducted tests over 1000 epochs, exploring using 1 to 5
hidden layers for a given number of layers (as shown in Figure 3),
and a specific dataset size.

Fixed-step-size Dataset: This initial dataset served as the main
foundation for training ANNs through a FFBP method. This
dataset was meticulously curated to evaluate the ANN’s perfor-
mance across various scenarios (Bouzid et al. 2023, 2024d,b,c). The
dataset creation process involved systematically altering the val-
ues of θ1 and θ2, incrementing them by a fixed step size h equal
to h = 0.02, within the interval from θmin

i = −π to θmax
i = π, for

i = 1, 2.
Thus, for each articulated variable θi, we build the vector of

all values of θi by sweeping the interval [θmin
i : θmax

i ], for all i =
1, 2, for left to right with the fixed step h = 0.02. The following
expressions are used to build such intervals of the two parameters
θ1 and θ2.

θ
Range
1 = [θmin

1 : h : θmax
1 ] (7)

θ
Range
2 = [θmin

2 : h : θmax
2 ] (8)

The size of each vector θ
Range
i , with i = 1, 2, is equal to N =

2π
h + 1 = 315. It is worth to note that the decrease of the value of

the parameter h will lead to the increase of the value of N, and
hence of the size of the dataset in question, which is equal in the
present case (that is with h = 0.02) to N2 = 99225.
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(a)

(b)

(c)

(d)

(e)

Figure 3 Different adopted ANN architectures with a different number of neurons in each hidden layer: (a) ANN model with only one hidden
layer having 10 neurons, it will be noted as 1 Hidden layer (10), (b) ANN model with two hidden layers where the first hidden layer has 10
neurons, whereas the second hidden layer has only 2 neurons, it will be referred to as 2 Hidden layers (10,2), (c) ANN model with three hidden
layers, where the number of neurons in each hidden layer is successively 10, 20 and 2, it will be noted as 3 Hidden layers (10,20,2), (d) ANN
model with four hidden layers and where the number of neurons associated to each layer is respectively 10, 20, 5, and 2, and it will be referred
to as 4 Hidden layers (10,20,5,2), and (e) ANN model with five hidden layers, and it will be indicated as 5 Hidden layers (10,20,10,5,2).

For each possible combination of these joint angles θi in the
interval θ

Range
i , for all i = 1, 2, by sweeping then from left to

right, we employed the forward kinematics equations (3) and (4)
to compute the corresponding Cartesian coordinates (X and Y).
Therefore, the dataset consisted of pairs of input and output data,
where the Cartesian coordinates represent the outputs, whereas
the inputs are the two joint angles (θ1 and θ2).

The main goal is to enable the FFBP-NN to accurately predict
joint angles from various end-effector positions. We achieved this
by using diverse input and output data in the dataset and the
FFBP-NN during training to improve the proposed ANN’s ability
to generalize and make precise predictions of the positions of the
adopted 2-DoF manipulator robot.

Random-step-size Dataset: This dataset was deliberately designed
to inject an element of unpredictability and variability into the

input data, serving as a test of the FFBP-NN’s adaptability and
resilience. The primary objective behind creating this dataset was
to gauge the FFBP-NN’s capacity to handle unforeseen patterns
and assess its robustness when confronted with such unanticipated
scenarios (Bouzid et al. 2023).

To generate the random dataset for the inverse kinematics of the
2-DoF manipulator robot, we harnessed the power of the “rand”
function to produce random values for the joint angles, θ1 and θ2.
Each data point within this dataset was characterized by two joint
angles, θ1 and θ2, randomly chosen from a non-uniform distribu-
tion (Bouzid et al. 2023, 2024b). We applied a scaling and shifting
technique to ensure that these randomly generated joint angles fell
within the desired range of −π to π. Specifically, we multiplied the
random values by 2π and subtracted π, yielding joint angles that
span the entire range from −π to π (Bouzid et al. 2023, 2024d,b).

The following expression elucidates the computation process
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for this random dataset (Bouzid et al. 2023, 2024d,b):

θRange = rand(N, 2)× 2π − π (9)

where N is the desired total number of parameters, which gives
hence the size of the dataset. Note that this expression (9) will
generate the complete dataset for the two variables θ1 and θ2. The
output of this equation is then a vector composed of two columns:
the first column is for θ1, whereas the second column is for θ2.

Then, once the random part/subset of the dataset is generated,
we compute the two Cartesian coordinates X and Y of the manip-
ulator robot using the forward kinematics equations (3) and (4).
As a result, we obtain a matrix with two columns where the first
column is for the X coordinate and the second column is for the
Y coordinate. This matrix is therefore saved in the dataset along
with the first part composed of the two variables θ1 and θ2. Thus,
the resulting matrix is composed of four columns and N rows. For
this random dataset, we fixed N = 1000.

The inherent randomness and variability of this adopted dataset
pose a robust challenge to the FFBP-NN, forcing it to adapt and
learn from unforeseen patterns. Using previously generated joint
angles, we systematically cycled through forward kinematics equa-
tions for each data point. This iterative process created a dataset
with diverse and random combinations of Cartesian coordinates
and joint angles. Each entry in the dataset displayed a unique
combination of joint angles associated with Cartesian coordinates,
enabling a comprehensive and random exploration of the end-
effector positions of the manipulator robot (Bouzid et al. 2023,
2024d,b,c).

Sinusoidal-signal-based Dataset: We harnessed the capabilities of
the FFBP-NN by introducing a third dataset tailored to evaluate its
proficiency in handling sinusoidal signals characterized by varying
frequencies. This dataset was pivotal in assessing the performance
of the FFBP-NN when confronted with diverse frequency patterns.
Our primary goal was to comprehensively examine how effectively
the FFBP-NN could discern and predict the intricate cyclic patterns
inherent in the input data. This exploration was instrumental in
enabling the FFBP-NN to acquire an in-depth understanding of
these complex signals and enhance its ability to generalize across
a broad spectrum of cyclic patterns (Bouzid et al. 2023, 2024d,b,c).

The sinusoidal-signal-based dataset encompassed two sinu-
soidal signals with distinct characteristics, as outlined in Table 1.
Each signal i corresponds to the joint variable θi, for i = 1, 2.

This dataset facilitates the creation of visualizations for tracking
the fluctuations in joint angles θ1 and θ2 concerning an angular pa-

■ Table 1 Parameters used for the sinusoidal-signal-based
dataset for generating the values of the two angular positions
θ1 and θ2 of the 2-DoF manipulator robot.

Parameter Signal 1 of θ1 Signal 2 of θ2

Frequency f [Hz] 1.5 10

Phase ϕ [rad] 0 π/4

Amplitude A [rad] π π

Angle ξ [rad] [−π, π] [−π, π]

Number of samples N 1000 1000

rameter. These visualizations are constructed using the following
equations:

θ1 = A1 × sin( f1 × ξ1 + ϕ1) (10)

θ2 = A2 × sin( f2 × ξ2 + ϕ2) (11)

In these equations (10) and (11), and in order to generate the
two sinusoidal signals, the two parameters ξ1 and ξ2 are varied
within the admissible interval [−π, π]. As a result, another form
of the distribution of the values of the two angles θ1 and θ2 will
be obtained. A such distribution is entirely different to that of the
first and second datasets.

When we generate the parameters and equations for the
sinusoidal-signal-based dataset, a figure emerges as its represen-
tation. This figure encompasses two subplots illustrating the gen-
erated curves of our variables, which are θ1 and θ2 (see Figure 4).
In the initial subplot at the top, the curve is depicted in blue, il-
lustrating the connection between the angle on the x-axis (ξ) and
the corresponding joint angle (θ1) on the y-axis. This subplot pro-
vides insights into how the joint angle θ1 varies with respect to
the angle/variable ξ. In the second subplot at the bottom, the
curve is presented in magenta. Here, the x-axis (ξ) signifies the
angle, while the y-axis represents the joint angle (θ2). This subplot
enables us to examine how the joint angle θ2 responds to changes
in the angle/variable ξ. Collectively, these subplots offer a visual
depiction of the sinusoidal-signal-based dataset, highlighting the
interplay between angles and their corresponding joint angles, as
demonstrated in Figure 4. Additionally, this visual representation
aids in understanding the dataset’s characteristics.
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Figure 4 Presentation of the generated signals of the two sinusoidal
signals of the two variables θ1 and θ2 of the 2-DoF manipulator
robot.

Therefore, once the values of two joint angles θ1 and θ2 are
obtained according to the adopted sinusoidal distributions, we
introduce the forward kinematic model, that is equations (3) and
(4), for the computation of the Cartesian coordinates X and Y of the
2-DoF manipulator robot. These results of X and Y are then putted
together with the generated variables θ1 and θ2 to form hence the
dataset in question. Such dataset has a size equal to N = 1000.
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Adopted Training Optimizers for the FFBP-NNs
In the complex world of training neural networks, there are many
optimization methods to tweak the inner workings of a model
to get better at reducing errors. Within this realm, the tapestry
of algorithms is rich, each weaving its own unique pattern in
the grand design of optimization. Our work focuses on three of
these distinguished algorithms, each bearing its own distinctive
character and prowess.

Levenberg-Marquardt (LM) Optimizer: First, the Levenberg-
Marquardt (LM) algorithm emerges as a stalwart choice (Ran-
ganathan 2004). Emerging from the challenges of nonlinear least
squares problems, this method utilizes a repetitive process of
tweaking parameters. It skillfully estimates the Hessian matrix,
which plays a crucial role in governing the shape of the error sur-
face, and combines it with a stabilizing factor. This approach excels
when dealing with relatively modest-sized networks, achieving
rapid and captivating convergences.

Bayesian Regularization (BR) Optimizer: Delving deeper into the
optimization domain, the Bayesian Regularization (BR) algorithm
emerges as a prudent approach where the role of a Bayes theorem is
crucial, steering the training process towards regularization (Kayri
2016). Endowed with prior knowledge concerning the model’s
parameters, it safeguards against the perilous pitfalls of overfit-
ting. Pioneering a trail where prior probability distributions are
important, the algorithm’s objective is to unearth the posterior
distribution that, with a predestined sense, maximizes the like-
lihood of the available data. This algorithm offers unwavering
performance against noisy or scanty data.

Scaled Conjugate Gradient (SCG) Optimizer: The Scaled Conju-
gate Gradient (SCG) algorithm takes the stage as an efficient ap-
proach where it marries the concepts of conjugate gradients with
adaptive step sizes (Møller 1993). The algorithm dynamically
scales its step size according to the undulating contours of the
error surface. In doing so, it navigates the rugged terrain of opti-
mization with unparalleled grace, achieving swifter convergence.
The algorithm’s reputation precedes it, proving its mettle in the
daunting task of handling large-scale networks. Its legacy lies in
computational efficiency and an unwavering commitment to the
cause of convergence.

Evaluation Metrics
MSE: In the context of our research, the MSE is used as a the main
metric for assessing the accuracy of predictions of the adopted
FFBP-NNs. Such metric is calculated using the following expres-
sion:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

where n is the number of observations, yi represents the actual
values, and ŷi represents the predicted values. This equation quan-
tifies the average squared difference between the actual and pre-
dicted values. The MSE is a valuable tool in evaluating the perfor-
mance of predictive models. Such metric will be essentially used
to compared between the performance of the different adopted
artificial neural networks.

Coefficient of correlation R-value: Moreover, to evaluate the per-
formance of the neural network models, we will use the regression
metric, the coefficient of correlation R, called also as the coefficient
of determination R2. Such metric R is expressed and computed

according to the following relation (del Rosario Martinez-Blanco
et al. 2016):

R =

√
∑n

i=1(ŷi − ȳ)2√
∑n

i=1(yi − ȳ)2
(13)

where ȳ stands for the mean of the actual values.

It is important to note that it is possible to use other metrics to
measure the performance of the FFBP-NN models. Such metrics
can be the Mean Absolute Error (MAE), the Root Mean Square
Error (RMSE), the Mean Absolute Percentage Error (MAPE), the
Relative Root Mean Squared Error (rRMSE), the Normalized Mean
Square Error (NMSE), the Relative Mean Absolute Error (rMAE),
the Mean Biased Error (MBE), the Mean Relative Error (MRE),
just to mention a few (del Rosario Martinez-Blanco et al. 2016;
Darba et al. 2022; Keleş et al. 2023). In this present work, only the
MSE and the R-value are considered as two metrics to evaluate
the performance of the FFBP-NN models in solving the inverse
kinematics of the 2-DoF manipulator robot.

Solving Methodology of the FFBP-NNs Training Process
In pursuit of transparency and reproducibility, we adopted MAT-
LAB as our primary software platform, harnessing a suite of spe-
cialized toolboxes to streamline implementation and experimenta-
tion. The Neural Network Toolbox (NNT) within MATLAB played
a pivotal role in this pursuit, offering crucial functionalities for the
design, training, and simulation of neural networks. The NNT in
MATLAB is a versatile collection of tools tailored for a spectrum of
applications, ranging from pattern recognition to time-series pre-
diction. Noteworthy features include its support for diverse neu-
ral network architectures, encompassing feedforward networks,
radial basis networks, and self-organizing maps. The toolbox em-
powers users to define network structures with ease, specifying
layers, nodes, and activation functions. MATLAB’s NNT further
stands out with its array of training algorithms, including Lev-
enberg Marquardt and Bayesian regularization, allowing us to
fine-tune parameters for optimal results. Moreover, its graphical
tools facilitate the visualization of neural network architectures,
enabling us to analyze performance through plots and confusion
matrices.

In this work, and in order to solve the inverse kinematics of the
2-DoF manipulator robot using ANNs models, we followed some
specific steps. The flowchart of Figure 5 reveals these different and
specific steps followed to train the adopted FFBP-NNs using the
proposed datasets arriving to the final step, which is the displaying
of simulation results by plotting the MSE, the regression curves
and the error histograms.

Hyperparameters for the Training Process
Table 2 reveals the different parameters and hyperparameters used
for the training of the proposed FFBP-NNs and their values. For
each set of (hyper-)parameters, the training process is executed
according to the flowchart presented in Figure 5. The adopted
FFBP-NN models are illustrated in Figure 3, where we used an
architecture composed of 1, or 2, or 3, or 4, or 5 hidden layers. For
each hidden layer, it corresponds the number of neurons.

In this work, two kinds of the activation function have been
considered in the training phase: (1) the hyperbolic tangent sig-
moid transfer function (tansig) used for all hidden layers, and
(2) the linear transfer function (purelin) for the output layer (see
(Keleş et al. 2023) for for further details about these two activation
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Initialize the Artificial Neural Network
(ANN) System

Select the Hyperparameters
for Learning:

Number of Epochs, Hidden Layers,
and Neurons

Load the desired Dataset 
(Fixed step size, Random step size,
Sinusoidal signal-based Datasets)

Choose the Algorithm for Training :
LM, BR, SCG Algorithm

Start

Choose the Activation Function 

Start to Train

Display Results

MSE Regression Error Histograms

Figure 5 Flowchart describing the procedure for training the FFBP-
NN and displaying graphical results.

■ Table 2 Parameters/hyperparameters, and their adopted
values, used for the training process of the proposed FFBP-
NNs.

Parameter Value

Number of inputs 2

Number of outputs 2

Number of hidden layers (NbHLs) 1 or 2 or 3 or 4 or 5

Number of neurons for each layer
(NbNs)

NbHLs NbNs

1 10

2 10, 20

3 10, 20, 5

4 10, 20, 10, 5

5 10, 20, 10, 5, 2

Activation function of the hidden
layers

tansig

Activation function of the output
layer

purelin

Optimizer LM or BR or SCG

Maximum validation failures 50

Minimum gradient 10−6

Training goal 10−6

Maximum number of epochs 1000
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functions). Although it is possible to select the activation function
tansig for the output layer; however, no clear enhancement of the
results has been observed.

Remark 1. It is worth to note that in the present work, we have adopted
five different architectures of the FFBP-NN, as seen in Figure 3. For each
model, we increased the number of the hidden layer, for which the first
model has only one hidden layer, whereas the last and fifth one has five
hidden layers. However, the number of neurons for each hidden layer
is entirely arbitrary. Actually, we tried with other possibilities of the
number of neurons, but we have not observed a clear difference in the
MSE results. Moreover, the type of the activation functions for the hidden
layers and the output layer is fixed for all models. As noted previously,
by selecting a tansig activation function for the output layer, we have not
noted a clear difference in the simulation results.

RESULTS AND DISCUSSIONS

In this section, we will show some simulation results of the training
of the adopted FFBP-NN architectures using the three optimizers:
the Levenberg-Marquardt (LM) optimizer, the Bayesian Regular-
ization (BR) optimizer, and the Scaled Conjugate Gradient (SCG)
optimizer. Moreover, the values of the different hyperparameters,
along with these optimizers, are given in Table 2. As noted previ-
ously, the MSE will be used as the main metric for the evaluation of
the performance of the training process and hence of the FFBP-NN
models illustrated in Figure 3.

Feed-Forward Back-Propagation Neural Network with the
Levenberg-Marquardt (LM) Algorithm
When assessing the training performance of the FFBP-NN using
the LM optimization algorithm across a diverse range of datasets –
fixed, random, and sinusoidal – it becomes evident that their per-
formance exhibits relatively significant variations. The outcomes
of these experiments are visually presented in Figure 6.

In the case of the fixed-step-size dataset, the FFBP-NN model
demonstrated its most favorable validation MSE of 2.3255, achiev-
ing this at the 116th epoch. This specific neural architecture com-
prised one hidden layer with 10 neurons. In contrast, when the
FFBP-NN model was trained using the random-step-size dataset,
its highest validation MSE of 2.2345 was observed at the 75th epoch.
The FFBP-NN architecture featured four hidden layers with (10,
20, 5, 2) neurons in this scenario. Lastly, when the FFBP-NN model
was trained with a sinusoidal-signal-based dataset, it yielded the
best validation MSE of 2.4656 at the 41st epoch. Similarly, this
model employed a neural architecture with four hidden layers
having (10, 20, 5, 2) neurons, as detailed in the accompanying
Table 3.

Comparing these results, it is evident that the FFBP-NN model’s
performance varies significantly depending on the nature of the
dataset used for training. When trained on a dataset with random
step-size values, the model demonstrated its best performance
regarding the lowest validation MSE. This indicates its ability
to generalize and adapt to the irregular patterns within the ran-
dom dataset. However, when exposed to a dataset based on sinu-
soidal signals, the performance of the FFBP-NN model declined, as
shown by a significantly higher validation MSE. This observation
suggests that the model faced difficulties in effectively capturing
the complex and oscillatory nature of the sinusoidal data. In con-
trast, when the model was trained on a dataset with a fixed step
size, it exhibited an even higher validation MSE. This indicates that
the FFBP-NN model excelled at capturing the inherent patterns
within this specific data distribution.

The neural architecture used in these experiments consistently
had two hidden layers with varying neuron configurations, except
for the sinusoidal dataset, which had four hidden layers. This
architectural difference didn’t have a straightforward correlation
with model performance, as seen in the varying MSE values across
the three different datasets. Therefore, the dataset choice signif-
icantly impacts the model performance more than the specific
neural architecture.

When training an FFBP-NN model in MATLAB for regression,
it is common to split the dataset into three subsets: training, val-
idation, and test. The training set is the largest and forms the
foundation for model development, involving weight and bias
adjustments based on prediction errors and a chosen regression
loss function like MSE. The validation set, smaller in size, is used
to evaluate the model’s performance during training, helping to
identify overfitting or underfitting and compute key regression
metrics, including MSE. Finally, the test set, a distinct data subset
untouched during training or parameter adjustments, rigorously
evaluates the model’s performance. It tests the model on unseen
data, calculating regression metrics to assess its ability to make
precise predictions. By dividing data into training, validation, and
test sets, an evaluation framework is created to select the best
model based on validation performance and provide an unbiased,
comprehensive evaluation of the test set for overall efficacy.

The results obtained for regression are graphically represented
in Figure 7. The first dataset, using a fixed step size, had regression
coefficients of R = 0.53114 (training), R = 0.54541 (validation), and
R = 0.52057 (testing), resulting in an overall R = 0.53171. In the
second dataset with random step sizes, we obtained R = 0.57484
(training), R = 0.55223 (validation), and R = 0.55394 (testing),
leading to an overall R of 0.56834. The third dataset, with a si-
nusoidal signal, performed the best values, with R = 0.73744
(training), R = 0.72915 (validation), and R = 0.67531 (testing),
resulting in an overall regression coefficient R = 0.72444. These
results underscore the importance of tailoring the regression ap-
proach to the specific characteristics of each dataset. While the
fixed step size and random step size datasets yielded distinct re-
gression coefficients, the sinusoidal-signal-based dataset displayed
the highest overall R values, highlighting the adaptability and effi-
cacy of the FFBP-NN with the LM algorithm in handling diverse
data types.

The comparative analysis of estimated joint angles from the
system output and the FFBP-NN model is shown in Figure 8. We
observe a remarkable congruence between the system outputs and
the FFBP-NN model outputs in the first set of plots, representing
the lowest MSE scenario with a random dataset. The blue and
cyan lines represent the system and FFBP-NN model’s outputs
that appear nearly superimposed, indicating that the model accu-
rately captures the underlying patterns in the random data. This
suggests the model’s performance is relatively acceptable in a sce-
nario where the data is relatively unstructured and lacks a clear
pattern. However, a different picture emerges in the second set of
plots depicting the highest MSE with a sinusoidal dataset. Here,
the system outputs (in blue) follow a distinct sinusoidal pattern,
while the FFBP-NN model’s outputs (in cyan) exhibit significant
deviations. The model seems to struggle to accurately capture the
cyclical nature of the sinusoidal data, resulting in a noticeable dis-
crepancy between the two lines. This highlights the challenges that
an FFBP-NN model may encounter when dealing with datasets
characterized by complex, periodic, or oscillatory behaviors.
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Figure 6 Lowest MSEs obtained with the LM algorithm and for the three different datasets: (a) Lowest MSE (Fixed Dataset, 1 hidden layer), (b)
Lowest MSE (Random Dataset, 4 hidden layers), and (c) Lowest MSE (Sinusoidal Dataset, 4 hidden layers).

■ Table 3 Results of training with the LM algorithm for the three different proposed datasets.

Number of hidden layers (number
of neurons in each layer)

FIXED dataset RANDOM dataset SINUSOIDAL dataset

1 Hidden layer (10) MSE: 2.3255 Epoch: 116 MSE: 2.2996 Epoch: 49 MSE: 3.6382 Epoch: 84

2 Hidden layers (10,2) MSE: 2.3771 Epoch: 43 MSE: 2.2836 Epoch: 192 MSE: 3.1784 Epoch: 243

3 Hidden layers (10,20,2) MSE: 2.4669 Epoch: 49 MSE:2.2813 Epoch: 78 MSE: 3.1859 Epoch: 29

4 Hidden layers (10,20,5,2) MSE: 2.501 Epoch: 57 MSE: 2.2345 Epoch: 75 MSE: 2.4517 Epoch: 53

5 Hidden layers (10,20,10,5,2) MSE: 2.5121 Epoch: 19 MSE: 2.3068 Epoch: 63 MSE: 2.9133 Epoch: 39
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Figure 7 Regression results obtained by means of the LM algorithm and with the three proposed datasets: (a) Regression (Fixed Dataset, 1
hidden layer), (b) Regression (Random Dataset, 4 hidden layers), and (c) Regression (Sinusoidal Dataset, 4 hidden layers).

Feed-Forward Back-Propagation Neural Network with the
Bayesian Regularization (BR) Algorithm

In the subsequent phase of our research, we examined the perfor-
mance of the FFBP-NN, which had undergone training using the

BR algorithm. This analysis encompassed an exploration of vari-
ous datasets, including those of a fixed, random, and sinusoidal
nature. The outcomes of this investigation illuminated pronounced
variations in the network’s performance, as visually represented in
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Figure 8 Comparative analysis of actual and estimated outputs obtained by means of the LM Algorithm: (a) Lowest MSE (Random Dataset, 4
hidden layers), and (b) Highest MSE (Sinusoidal Dataset, 1 hidden layer).

Figure 9. Notably, when the FFBP-NN underwent training on the
fixed dataset, a remarkable achievement was observed, with the
network achieving its most favorable MSE of 2.3348, a milestone
reached precisely at epoch 37. The architectural configuration of
this particular model featured three hidden layers with neuron
configurations specified as (10, 20, 2). This outcome clearly demon-
strated the BR algorithm’s exceptional effectiveness in curbing
overfitting tendencies and reinforcing the network’s aptitude for
generalization, resulting in notably proficient training outcomes
when dealing with the fixed dataset. In a distinct vein, a different
set of findings emerged when the FFBP-NN was subjected to train-
ing with random data. Specifically, it achieved its lowest recorded
MSE, amounting to 2.1682, a noteworthy accomplishment at epoch
68. The architectural blueprint for this particular model diverged
from the previous one, featuring a configuration of four hidden
layers. This divergence in the network’s architecture hinted at
its adaptability and robustness, particularly in the face of more
erratic and unpredictable data distributions, as with random data.
Furthermore, our exploration extended to the training of the FFBP-
NN on sinusoidal data. This endeavor yielded an MSE of 2.4632,
attained at epoch 79. The architectural design for this specific
scenario encompasses four hidden layers.

Our comprehensive comparison of these results underscores
the multifaceted nature of the BR algorithm’s impact on the FFBP-
NN performance, as shown in Table 4. It facilitates the network’s
generalization and efficacy across various datasets with varying
characteristics. The fixed dataset showcases the algorithm’s profi-
ciency in handling stable and non-random data patterns, whereas
the random dataset demonstrates the network’s adaptability to
more unpredictable and erratic data distributions. Finally, the sinu-
soidal dataset reflects the algorithm’s capability to address cyclical
and periodic patterns, albeit with slightly lower performance than
the fixed and random datasets. This nuanced understanding of
the algorithm’s behavior provides valuable insights for practition-
ers seeking to optimize neural network training across diverse
datasets, emphasizing the significance of tailoring the approach to
the specific data context.

When delving into the analysis of regression results for the BR
algorithm, it becomes apparent that the primary focus lies on iden-
tifying the most optimal MSE value, particularly in the context
of random data. The MSE is a pivotal metric in regression tasks,
which is a crucial indicator of the model’s accuracy in predict-
ing target values. In the case of the BR algorithm, achieving the
best possible MSE for random data sets a profound benchmark
for the algorithm’s performance. The consistent trend toward an
MSE value close to 1 underscores the algorithm’s capacity to mini-
mize prediction errors and enhance the precision of its forecasts,
as shown in Figure 10. Results showed promising performance
in one experiment involving fixed step size data for training a
three-layer FFBP-NN. The regression coefficient (R) during train-
ing reached the value 0.55022, indicating effective learning from
the dataset. Validation yielded an R-value of 0.54578, demon-
strating the network’s generalization ability. Testing produced
an R-value of 0.54834, reinforcing the model’s real-world applica-
bility. The overall R-value was 0.54922, indicating stability and
accuracy in diverse scenarios. The results remained strong in a
separate experiment using datasets with random step sizes and
a four-layer neural network. The training phase achieved the
R-value of 0.56858, showing adaptability to erratic data. Valida-
tion maintained high performance with an R of 0.57789. Testing,
slightly lower at R = 0.55223, still offered reliability for practical
use. The overall R-value was 0.56759, highlighting robustness
even with challenging data. For a third dataset characterized by
sinusoidal patterns, the FFBP-NN excelled. Training achieved an
exceptional R of 0.70922, showing the model’s ability to capture in-
tricate patterns. Validation and testing displayed strong R-values
(0.70532 and 0.70213), confirming suitability for sinusoidal data in
real-world scenarios. The overall R-value of 0.70756 affirmed the
network’s robustness with complex, signal-based datasets.

In our training process, and as shown in Figure 11, we will delve
deeper into the insights gained from our neural network model,
using the BR algorithm. We will examine two distinct scenarios,
each showcasing unique characteristics. In the first set of visual
representations, we explore the domain of the lowest MSE. Here,
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Figure 9 Lowest MSEs obtained using the BR algorithm and for the three generated datasets: (a) Lowest MSE (Fixed Dataset, 3 hidden layers),
(b) Lowest MSE (Random Dataset, 4 hidden layers), and (c) Lowest MSE (Sinusoidal Dataset, 4 hidden layers).

■ Table 4 Results of training obtained with the BR algorithm for the three proposed different datasets.

Number of hidden layers (number
of neurons in each layer)

FIXED dataset RANDOM dataset SINUSOIDAL dataset

1 Hidden layer (10) MSE: 2.460 Epoch: 515 MSE: 2.3009 Epoch: 90 MSE: 3.4353 Epoch: 45

2 Hidden layers (10,2) MSE: 2.4824 Epoch: 33 MSE: 2.1895 Epoch: 308 MSE: 3.1628 Epoch: 152

3 Hidden layers (10,20,2) MSE: 2.3348 Epoch: 101 MSE: 2.2516 Epoch: 52 MSE: 2.7771 Epoch: 106

4 Hidden layers (10,20,5,2) MSE: 2.3915 Epoch: 125 MSE: 2.1682 Epoch: 68 MSE: 2.4632 Epoch: 79

5 Hidden layers (10,20,10,5,2) MSE: 2.4865 Epoch: 88 MSE: 2.3547 Epoch: 33 MSE: 2.8119 Epoch: 41
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Figure 10 Regression results obtained with the BR algorithm and for the three distinct datasets: (a) Regression (Fixed Dataset, 3 hidden
layers), (b) Regression (Random Dataset, 4 hidden layers), and (c) Regression (Sinusoidal Dataset, 4 hidden layers).

our neural network confronts a random dataset. It is immediately
evident that there is a remarkable alignment between the system’s
outputs and the FFBP-NN model’s outputs. The blue and cyan
lines, representing the outputs, are almost identical, highlighting

the model’s proficiency in capturing the underlying complexity
of the random data. This strong correspondence underscores the
model’s exceptional performance, especially when data lacks a
clear structure or recognizable patterns. On the other hand, we
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Figure 11 Comparative analysis of actual and estimated outputs obtained with the BR Algorithm and for two different datasets and for two
different structures of the FFBP-NN model: (a) Lowest MSE (Random Dataset, 4 hidden layers), and (b) Highest MSE (Sinusoidal Dataset, 1
hidden layer).

shift our focus to the second set of visualizations, where we face the
challenges of the highest MSE. In this case, our FFBP-NN model
deals with a sinusoidal dataset. Here, the system’s outputs, illus-
trated by the blue curve, gracefully follow the sinusoidal pattern,
while the FFBP-NN model’s outputs, depicted in cyan, exhibit no-
ticeable deviations. It becomes apparent that the FFBP-NN model
struggles to accurately replicate the cyclic nature inherent in si-
nusoidal data, resulting in significant disparities between the two
curves.

Feed-Forward Back-Propagation Neural Network with the Scaled
Conjugate Gradient (SCG) Algorithm

The SCG algorithm is highly regarded for its remarkable conver-
gence rate and capability to effectively address intricate optimiza-
tion challenges. In our investigation, we conducted a compara-
tive analysis of training the FFBP-NN model using the SCG al-
gorithm across different datasets: fixed, random, and sinusoidal.
The outcomes exhibited notable variations in their performance,
as depicted in Table 5. Specifically, when employing the SCG
algorithm with the fixed data, the FFBP-NN model achieved its
most favorable MSE of 2.4327 at the 130th epoch. The architectural
configuration of this model comprised two hidden layers with
respective neuron arrangements of (10, 2). Conversely, training
the FFBP-NN model using random data yielded the best MSE of
2.2804 at the 463rd epoch, with a simpler model architecture con-
sisting of 3 hidden layers configured as (10, 20, 2). Additionally, we
conducted training on sinusoidal data, resulting in the FFBP-NN
model achieving its lowest MSE of 2.4054 at the 835th epoch. The
model architecture employed in this scenario also featured four
hidden layers, as detailed in Figure 12. Some key observations
emerge when comparing the FFBP-NN model’s performance with
the SCG algorithm across three datasets. The SCG algorithm ex-
celled in optimizing performance on the fixed dataset, achieving
a low MSE of 2.4327 at epoch 130, indicating its suitability for
well-defined data. Conversely, on the random dataset, while still
benefiting from SCG, it reached the lowest MSE of 2.2804 at epoch

463, indicating the challenge of adapting to random data. The SCG
algorithm took longer for sinusoidal data to achieve its best MSE
of 2.4054 at epoch 835, showing adaptability to different data types
with consistent model architecture.

In summary, the SCG algorithm’s efficacy in optimization tasks
is underscored by its convergence rate, yet its performance is con-
tingent on the characteristics of the dataset. It excels in scenarios
with clear data patterns, such as fixed data, while it may require
more time and iterations to converge on datasets with randomness
or complex patterns, like random and sinusoidal data. Therefore,
selecting the appropriate optimization algorithm and model ar-
chitecture should be a deliberate decision based on the specific
characteristics of the dataset and the desired outcomes.

In training FFBP-NN with the SCG algorithm, we conducted re-
gression tasks on three distinct datasets to optimize the MSE. These
experiments involved fixing the step size data and utilizing two
hidden layers. The results of the first dataset revealed regression
coefficients as follows: an R-value of 0.49759 for the training set,
an R-value of 0.5263 for the validation set, an R-value of 0.49396
for the test set, and an overall R-value of 0.50141. In the second
dataset, we focused on minimizing the MSE using random step
size data and expanding to three hidden layers. The correspond-
ing regression statistics were found to be an R-value of 0.55522 for
the training set, an R-value of 0.55847 for the validation set, an R-
value of 0.55722 for the test set, and an overall R-value of 0.55599.
Lastly, when dealing with a dataset based on a sinusoidal signal,
the aim was again to minimize the MSE. The regression results
for this dataset included an R-value of 0.72855 for the training set,
an R-value of 0.7177 for the validation set, an R-value of 0.72493
for the test set, and an overall R-value of 0.72638. These distinct
regression analyses shed light on the varying performance of the
FFBP-NN trained with the SCG algorithm across different datasets,
step sizes, and hidden layer configurations, offering valuable in-
sights for further optimization and model selection, as shown in
Figure 13.

A comparative examination was conducted to assess the actual
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■ Table 5 Results obtained after training different FFBP-NN models with the SCG algorithm and for the three different datasets.

Number of hidden layers (number
of neurons in each layer)

FIXED dataset RANDOM dataset SINUSOIDAL dataset

1 Hidden layer (10) MSE: 2.5814 Epoch: 158 MSE: 2.4924 Epoch: 90 MSE: 3.7088 Epoch: 537

2 Hidden layers (10,2) MSE: 2.4327 Epoch: 130 MSE: 2.3492 Epoch: 407 MSE: 3.6975 Epoch: 606

3 Hidden layers (10,20,2) MSE: 2.5152 Epoch: 188 MSE: 2.2804 Epoch: 463 MSE: 2.6966 Epoch: 998

4 Hidden layers (10,20,5,2) MSE: 2.4944 Epoch: 269 MSE: 2.2983 Epoch: 213 MSE: 2.4054 Epoch: 835

5 Hidden layers (10,20,10,5,2) MSE: 2.4609 Epoch: 146 MSE: 2.349 Epoch: 577 MSE: 3.4659 Epoch: 384

(a) (b)

(c)

Figure 12 Lowest MSEs obtained by training the FFBP-NN models with the SCG algorithm and for the three different datasets: (a) Lowest
MSE (Fixed Dataset, 2 hidden layers), (b) Lowest MSE (Random Dataset, 3 hidden layers), and (c) Lowest MSE (Sinusoidal Dataset, 4 hidden
layers).
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(a) (b)

(c)

Figure 13 Regression results of some proposed FFBP-NN models obtained with the SCG algorithm and for the three different datasets: (a)
Regression (Fixed Dataset, 2 hidden layers), (b) Regression (Random Dataset, 3 hidden layers), and (c) Regression (Sinusoidal Dataset, 4
hidden layers).

and predicted results produced by the SCG Algorithm using two
different datasets. When employing the SCG algorithm, it became
evident that our neural network excelled when dealing with ran-

dom data. However, it faced difficulties in accurately reproducing
sinusoidal patterns. The analysis comparing the estimated joint
angles between the system output and the FFBP-NN model is illus-
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trated in Figure 14. In the first series of plots, which represents the
scenario with the lowest MSE using a random dataset, a striking
similarity is observed between the outputs of the system and the
FFBP-NN model. The blue and cyan lines, representing the sys-
tem and FFBP-NN model outputs, closely overlap, indicating that
the model effectively captures the underlying patterns within the
random data. This suggests the model performs reasonably well
when the data lacks a clear structure and is relatively unorganized.
Conversely, a different story unfolds in the second series of plots
depicting the scenario with the highest MSE using a sinusoidal
dataset. In this case, the system outputs (depicted in blue) follow a
clear sinusoidal pattern, while the FFBP-NN model’s outputs (de-
picted in cyan) exhibit noticeable deviations. The model appears to
encounter challenges in accurately replicating the cyclical nature
of sinusoidal data, resulting in a significant disparity between the
two lines. This emphasizes the difficulties of an FFBP-NN model
when confronted with datasets characterized by intricate, periodic,
or oscillatory behaviors.

(a) (b)

Figure 14 Comparative analysis of actual and estimated outputs
obtained with the SCG Algorithm and using two different datasets:
(a) Lowest MSE (Random Dataset, 3 hidden layers), and (b) Highest
MSE (Sinusoidal Dataset, 1 hidden layer).

CONCLUSION

In conclusion, our work presented a contribution in the fields of
robotics and automation through the development and implemen-
tation of various Feed-Forward Back-Propagation Neural Network
(FFBP-NN) algorithms for the computation of the inverse kinemat-
ics of a 2-DoF manipulator robot. A pivotal aspect of our research
involves an in-depth exploration of these algorithms, coupled with
rigorous experimentation and evaluations to discern their perfor-
mance characteristics.

We mainly used the MSE metric to evaluate the performance of
the different proposed neural network architectures. Based on such
metric, our findings highlighted the substantial impact of train-
ing with Levenberg-Marquardt (LM) and Bayesian Regularization
(BR) algorithms, particularly noting that the optimal results (that
correspond to the lowest MSEs) were achieved when trained with
random-step-size datasets in the context of a four-hidden-layer
configuration. Similarly, for the Scaled Conjugate Gradient (SCG)
algorithm, we observed the best outcomes (lowest MSE) when
employing random-step-size datasets in a three-hidden-layer set-
ting. This nuanced understanding of algorithmic behavior pro-
vides valuable insights for practitioners. Most notably, our work
achieves a remarkable milestone by applying FFBP-NN models
to address inverse kinematics problems with an unprecedented
level of precision and reliability, surpassing the capabilities of tra-
ditional methods. These outcomes underscore the transformative

potential of FFBP-NN models in tackling complex problems within
the realm of robotics.

In future works, it is essential to expand the applicability of
the proposed FFBP-NN models by testing them on manipulator
robots with greater degrees of freedom, such as SCARA or 6-DoF
industrial robots. This evaluation will assess the scalability and
adaptability of the FFBP-NN models across diverse robotic plat-
forms.

Furthermore, in order to improve the selection phase of the
hyperparameters of the FFBP-NN, the idea is to integrate the meta-
heuristic optimization algorithms within the training process in
order to find the optimal architecture to provide the best accuracy
or the lowest MSE. In addition, the objective is to explore and uti-
lize more advanced ANN architectures, such as Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks (CNNs),
for the modeling of the inverse kinematics of manipulator robots.
This exploration can significantly enhance the capabilities of the
training process and prediction when operating with a complex
structure of the robot and also with a high number of degrees of
freedom and then for redundant manipulator robots.

Moreover, the current work can be extended and applied to
the control part of manipulator robots using some nonlinear con-
trol approaches as those proposed in (Jenhani et al. 2022) for the
position control of robotic systems, as well as for particular appli-
cations like in medical robotics such as exoskeleton systems for
pediatric gaits (Narayan et al. 2018, 2023).
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