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ABSTRACT:  

In this study, energy level calculations for an InP 2D quantum box structure with two distinct 

(infinite potential power-exponential) potential potentials have been conducted using the sparse 

Numerov method. The 2D Schrödinger equation has been transformed in accordance with the 

sparse Numerov approach, followed by the creation of the solution matrix employing appropriate 

finite difference expressions. A comparative analysis of calculation results has been performed 

with respect to CPU time, memory usage, and ground state energy for both 𝑂(ℎ4) and 𝑂(ℎ6) 

accuracy. The suitability of the sparse Numerov method for 2D nanostructures has been 

thoroughly discussed. The results revealed that the sparse Numerov approach yields physically 

meaningful and rational outcomes in the InP 2D quantum box structure. Importantly, it demands 

significantly lower CPU time and memory resources compared to the classical Numerov method, 

emphasizing its practical applicability in this context. 
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INTRODUCTION 

Semiconductor nanostructures (SCNSs) have emerged as versatile tools for various device 

applications owing to their size-dependent band gap energy, material-specific band alignment, enhanced 

quantum efficiency, and quantum coherency. These inherent characteristics enable SCNSs to 

meticulously tailor their optical and electronic properties, rendering them as promising candidates for a 

wide range of applications. These applications span diverse fields, including light-emitting diodes 

(LEDs) (Terada et al., 2022; Lu et al., 2023), lasers (Rafailov et al., 2007; Yadav et al., 2023), 

photovoltaic devices (Hu et al., 2021; Wang et al., 2023), quantum computation (Wang et al., 2022), and 

spintronics (Li et al., 2022). Given the extensive range of their utilities, SCNSs have attracted 

considerable attention from both theoretical and experimental researchers (Jiang et al, 2023; Ed-

Dahmouny et al., 2023), particularly in recent years. 

Solving the Schrödinger equation is an essential component of calculations involving the 

electronic and optical properties of SCNSs. The dimensionality of this equation (1D, 2D, or 3D) is 

contingent upon the geometry of the structure and the desired outcomes. Frequently, numerical methods 

prove to be the most suitable means to tackle this challenge. Within the scientific literature, numerous 

methods for solving the Schrödinger equation have been documented (Killingbeck, 1987; Koch et al., 

2006; Gamper et al., 2023), with the choice of method contingent upon the specific characteristics of the 

nanostructure under investigation, each method harboring its own set of advantages and disadvantages. 

Notably, among these methods, the Numerov method emerges as a versatile solution capable of 

addressing the Schrödinger equation in 1D, 2D, and 3D dimensions (Kolagiratou et al., 2005; Graen & 

Grubmüller, 2016), thus providing more stable and reliable results.  

The Numerov method, while versatile in its application to various nanostructures, comes with 

significant computational demands, particularly as the size of the nanostructure increases. This is 

especially pronounced in systems that require the solution of the Schrödinger equation in 2- or 3- 

dimensions. In such cases, the formation of large matrices for the eigenvalue problem becomes 

necessary, demanding high CPU power and memory resources, and consequently resulting in prolonged 

computation times. Additionally, it's important to note that the Numerov method has limitations in 

achieving a high degree of accuracy when solving the 2- and 3-dimensional Schrödinger equation (Graen 

& Grubmüller, 2016). This limitation can lead to a loss of computational precision, especially in specific 

geometries and specialized calculations. 

On the other hand, while the Numerov method can achieve higher accuracy through a method 

recommended by Dongjiao (2014), Kuenzer et al. (2016) have taken the Numerov method to the next 

level, unveiling an approach that notably reduces CPU and memory usage, particularly in 2- and 3-

dimensional Numerov solutions. This pioneering approach has been documented in the literature as the 

sparse Numerov approach. With the sparse Numerov approach, it becomes feasible to construct a sparse 

matrix, ensuring that the matrix needed for the eigenvalue problem remains symmetric. Consequently, 

substantial benefits have been realized in terms of both CPU and memory consumption. The sparse 

Numerov approach enables more efficient results, particularly in considerably larger systems or cases 

where the nanostructure problem demands a 2- or 3-dimensional Schrödinger equation solution. 

In this study, the 2D Schrödinger equation has been solved fully numerically using the sparse 

Numerov approach to determine the energy levels of the 2D quantum box structure for two distinct 

potentials. The Schrödinger equation has been approximated with both 𝑂(ℎ4) and 𝑂(ℎ6) accuracy levels 

using their respective finite difference expressions. Additionally, sensitivity analyses has been carried 

out, and comparisons of CPU time and memory usage has been conducted. 
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MATERIALS AND METHODS  

In this study, a 2D InP quantum box structure has been chosen as the model structure, and full 

numerical calculations have been performed using different potential profiles. The governing equation 

for this system is the 2D Schrödinger equation, which is expressed as: 

−
ℏ2

2𝑚
(
∂2𝜓(𝑥,𝑦)

∂𝑥2
+
∂2𝜓(𝑥,𝑦)

∂𝑦2
) + 𝑉(𝑥, 𝑦)𝜓(𝑥, 𝑦) = 𝐸𝜓(𝑥, 𝑦).             (1) 

During the numerical solution of the 2D Schrödinger equation, the Numerov method has been 

utilized as the preferred computational technique. This method is well-known for its adaptability, as it 

can be applied to solve all ordinary differential equations expressed in the form 𝛥𝜓(𝑥, 𝑦) =

𝑓(𝑥, 𝑦)𝜓(𝑥, 𝑦).  To make the Schrödinger equation compatible with the Numerov method, it can be 

rearranged as: 

𝛥𝜓 (𝑥, 𝑦 ) =
2𝑚

ℏ2
(𝑉( 𝑥, 𝑦)  − 𝐸) 𝜓(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)𝜓(𝑥, 𝑦)               (2) 

where 𝑉(𝑥, 𝑦) is the 2D confinement potential, 𝐸 is the energy eigenvalue, and 𝜓(𝑥, 𝑦) signifies the 

wavefunction of the system. With the utilization of the standard Numerov method, the energy 

eigenvalues and wave functions of a quantum system can be expressed as (Pillai et al., 2012): 

𝔸𝜓 + 𝔹𝕍𝜓 = 𝐸𝜓 ⟹ (𝔹−1𝔸 + 𝕍)𝜓 = 𝐸𝜓.                 (3) 

It's important to highlight that 𝔸 and 𝔹 represent tridiagonal, symmetric, and sparse matrices; 

however, products like 𝔹⁻¹𝔸 are generally not symmetric. When dealing with eigenvalue problems for 

matrices of types 𝔸 and 𝔹, the utilization of specialized sparse matrix algorithms available in libraries 

such as Armadillo (Sanderson & Curtin, 2016; Sanderson & Curtin, 2018) significantly enhances 

efficiency and reduces system resource requirements. However, for multiplications like 𝔹⁻¹𝔸 in general, 

the need to resort to a dense matrix solution becomes unavoidable. This leads to a substantial increase 

in computation time, memory usage, and CPU consumption, particularly when addressing the 2D 

Schrödinger equation using the standard Numerov method. These demands become increasingly evident 

as the size of the structure being studied grows. It's worth emphasizing that the standard Numerov 

method is limited in terms of accuracy, typically reaching only 𝑂(ℎ⁴) accuracy. This limitation can 

considerably impact the overall precision of calculations, especially when applied to the 2D Schrödinger 

equation. 

To address the accuracy limitations of the standard Numerov method, the literature contains 

studies that propose the use of the Numerov method with higher accuracy, as initially suggested by 

Dongjiao (2014), and subsequently adapted for the 2D and 3D Schrödinger equations by Kuenzer et al. 

(2016). The general form of the modified Numerov method applied with enhanced accuracy in two 

dimensions can be derived as follows: 

𝜓𝑖+1,𝑗+1 + 𝜓𝑖+1,𝑗−1 + 𝜓𝑖−1,𝑗+1 + 𝜓𝑖−1,𝑗−1 − 4𝜓𝑖,𝑗 = 2ℎ
2𝑓𝑖,𝑗𝜓𝑖,𝑗 +

4∑
ℎ2𝑘

(2𝑘)!
(∑

(2𝑘)!

(2𝑘−2𝑙)!(2𝑙)!

𝜕2𝑘𝜓

𝜕𝑥2𝑘−2𝑙𝜕𝑦2𝑙 

𝑘
𝑙=0 ) + 𝑂(ℎ2𝑛+2)𝑛

𝑘=2 .             (4) 

As illustrated by this equation, it's clear that accuracy can be tailored to the desired degree by 

adjusting the value of 𝑛. However, it's important to note that increasing 𝑛 to achieve higher accuracy 

also results in a greater number of diagonals in the matrix that needs to be solved. Consequently, this 

leads to an increase in processing time and greater system resource requirements. Therefore, considering 
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these requirements, it is a more practical approach to determine an optimal value for 𝑛 rather than 

pursuing extremely high accuracy. 

In this study, calculations were conducted with 𝑂(ℎ6) accuracy by selecting 𝑛 = 3. When 𝑛 = 3 

is chosen, Equation 4.  transforms into the following forms: 

2𝑓𝑖,𝑗𝜓𝑖,𝑗 =
𝜓𝑖+1,𝑗+1+𝜓𝑖+1,𝑗−1+𝜓𝑖−1,𝑗+1+𝜓𝑖−1,𝑗−1−4𝜓𝑖,𝑗

ℎ2
−
4ℎ2

4!
(
𝜕4𝜓

𝜕𝑥4
+ 6

𝜕4𝜓

𝜕𝑥2𝜕𝑦2
+
𝜕4𝜓

𝜕𝑦4
) −

4ℎ4

6!
(
𝜕6𝜓

𝜕𝑥6
+

15
𝜕6𝜓

𝜕𝑥4𝜕𝑦2
+ 15

𝜕6𝜓

𝜕𝑥2𝜕𝑦4
+
𝜕6𝜓

𝜕𝑦6
) + 𝑂(ℎ6).               (5) 

The issue of generally needing a dense matrix solution for the multiplication of matrices 𝔹−1𝔸 

can be resolved by implementing the sparse Numerov method (Kuenzer et al., 2016). When the sparse 

Numerov method is employed, the eigenvalue equation takes the following form(Pillai et al., 2012): 

(𝔸 + 𝕍)𝜓 = ℍ𝜓 = 𝐸𝜓                 (6)  

Here, matrices 𝔸 and 𝕍 possess the characteristics of being symmetric and sparse matrices, leading 

to matrix ℍ also acquiring symmetry and sparsity. Only the main diagonal of the potential matrix 𝕍  

contains non-zero values, while all other entries are zeros. As a result, it exclusively influences only the 

main diagonal of the solution matrix in its entirety, preserving its symmetry. As previously mentioned, 

solving this eigenvalue problem becomes significantly faster and requires fewer system resources when 

utilizing specialized sparse matrix algorithms. 

Taking into account all the provided information, the initial step involves applying finite difference 

expressions to Equation 5., which subsequently leads to the generation of the necessary matrix, 𝔸, for 

the solution. As indicated by Equation 5., the expansion of fourth derivatives with 𝑂(ℎ4) accuracy and 

sixth derivatives with 𝑂(ℎ2)  accuracy leads to the overall equation possessing 𝑂(ℎ6) accuracy. Upon 

expanding all derivatives using finite difference methods and aggregating their contributions, the 

resulting 2D-stencil is as follows: 

(

 
 
 
 
 
 
 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 𝑓𝑖,𝑗 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0)
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1

2ℎ2
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120

1

45

0
1
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9

19
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−
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9

1

36
0

0 −
1

144

1

36
−

41

120

1

36
−

1

144
0

0 0 0
1

45
0 0 0)

 
 
 
 
 
 
 
 

         (7) 

The right side of Equation 7. represents the main matrix necessary for solving the 2D Schrödinger 

equation. Within each row or column of the stencil lies the diagonals of distinct block matrices, 

collectively forming the main matrix. When considering symmetric matrices as one, it becomes evident 

that four distinct block matrices must be constructed to compose the main matrix. For instance if the 

problem is presumed to be resolved on an 𝑀 ×𝑁 grid, it is imperative to establish four distinct block 

matrices, each of 𝑀 × 𝑁 dimensions. As an example for a 10 × 10 grid problem, the block matrices 

established are as follows: 
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𝐴 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

−
401

36

19

6
−

41

120

1

45
0 0 0 0 0 0

19

6
−
401

36

19

6
−

41

120

1

45
0 0 0 0 0

−
41

120

19

6
−
401

36

19

6
−

41

120

1

45
0 0 0 0

1

45
−

41

120

19

6
−
401

36

19

6
−

41

120

1

45
0 0 0

0
1

45
−

41

120

19

6
−
401

36

19

6
−

41

120

1

45
0 0

0 0
1

45
−

41

120

19

6
−
401

36

19

6
−

41

120

1

45
0

0 0 0
1

45
−

41

120

19

6
−
401

36

19

6
−

41

120

1

45

0 0 0 0
1

45
−

41

120

19

6
−
401

36

19

6
−

41

120

0 0 0 0 0
1

45
−

41

120

19

6
−
401

36

19

6

0 0 0 0 0 0
1

45
−

41

120

19

6
−
401

36)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

         B = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

19

6
−
1

9

1

36
0 0 0 0 0 0 0

−
1

9

19

6
−
1

9

1

36
0 0 0 0 0 0

1

36
−
1

9

19

6
−
1

9

1

36
0 0 0 0 0

0
1

36
−
1

9

19

6
−
1

9

1

36
0 0 0 0

0 0
1

36
−
1

9

19

6
−
1

9

1

36
0 0 0

0 0 0
1

36
−
1

9

19

6
−
1

9

1

36
0 0

0 0 0 0
1

36
−
1

9

19

6
−
1

9

1

36
0

0 0 0 0 0
1

36
−
1

9

19

6
−
1

9

1

36

0 0 0 0 0 0
1

36
−
1

9

19

6
−
1

9

0 0 0 0 0 0 0
1

36
−
1

9

19

6 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐶 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

−
41

120

1

36
−

1

144
0 0 0 0 0 0 0

1

36
−

41

120

1

36
−

1

144
0 0 0 0 0 0

−
1

144

1

36
−

41

120

1

36
−

1

144
0 0 0 0 0

0 −
1

144

1

36
−

41

120

1

36
−

1

144
0 0 0 0

0 0 −
1

144

1

36
−

41

120

1

36
−

1

144
0 0 0

0 0 0 −
1

144

1

36
−

41

120

1

36
−

1

144
0 0

0 0 0 0 −
1

144

1

36
−

41

120

1

36
−

1

144
0

0 0 0 0 0 −
1

144

1

36
−

41

120

1

36
−

1

144

0 0 0 0 0 0 −
1

144

1

36
−

41

120

1

36

0 0 0 0 0 0 0 −
1

144

1

36
−

41

120)

 
 
 
 
 
 
 
 
 
 
 
 
 

           𝐷 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

45
0 0 0 0 0 0 0 0 0

0
1

45
0 0 0 0 0 0 0 0

0 0
1

45
0 0 0 0 0 0 0

0 0 0
1

45
0 0 0 0 0 0

0 0 0 0
1

45
0 0 0 0 0

0 0 0 0 0
1

45
0 0 0 0

0 0 0 0 0 0
1

45
0 0 0

0 0 0 0 0 0 0
1

45
0 0

0 0 0 0 0 0 0 0
1

45
0

0 0 0 0 0 0 0 0 0
1

45)

 
 
 
 
 
 
 
 
 
 
 
 
 

  

Upon scrutinizing the resulting block matrices, it becomes apparent that each of them exhibits 

symmetry, with only the diagonals in proximity to the main diagonal being populated.  

In the second step essential for solving the problem, these block matrices need to be amalgamated 

to form the main matrix. For an 𝑀 ×𝑁 grid, the size of the main matrix formed is (𝑀 × 𝑁) × (𝑀 × 𝑁 ). 

If each of the aforementioned block matrices is regarded as a diagonal of the main matrix, matrix 𝐴 

constitutes the main diagonal, matrix 𝐵 constitutes the immediate upper and lower diagonals, and 

matrices 𝐶 and 𝐷 form the subsequent upper and lower diagonals. The schematic representation of the 

main matrix, constructed by adhering to these steps, is as follows: 
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)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

In the final step, the potential matrix 𝕍, with dimensions 𝑀 ×𝑁 for the 2D Schrödinger equation, 

is generated and added to the matrix 𝔸 to produce the matrix ℍ. By solving the eigenvalue problem for 

ℍ, the energy levels of the 2D system and their corresponding wave functions can be determined. 

RESULTS AND DISCUSSION  

In this study, InP has been considered as the material of the 2D quantum box, and eigenvalue 

solutions have been obtained using the sparse Numerov method. InP is characterized by high carrier 

mobility and low toxicity, making InP-based applications more reliable and promising as a future 

alternative to Cd-based applications (Zhang et al., 2019; Chen et al., 2020). In addition, with its large 

absorption coefficient and tunable emission from the visible to the near-infrared region, different nano-

sized InP quantum structures (dot/wire/disk) can be used in many areas such as quantum LEDs (Won et 

al., 2019), quantum dot/dash lasers (Liu et al., 2023), quantum sensing applications (Chang et al., 2023) 

and etc (Liang et al., 2022).  

Throughout the calculations, atomic units have been employed, where fundamental constants such 

as charge, bare mass, and Planck's constant have all been set to unity, i.e., 𝑒 = 𝑚0 = ℏ = 1, for 

simplicity. In these atomic units, with InP as the reference material, the atomic Bohr radius of the 

structure has been determined as 1𝑎0 ≅  82.7 Å , and the effective Rydberg energy has been found to be 

1𝑅𝑦 ≅  7.0 𝑚𝑒𝑉. The effective mass of the electron in InP has been taken as 0.08 𝑚0. The step size 

used in the calculations has been set to 0.01. To clarify, when referring to a 100 ×  100 grid, it indicates 

that the structure spans dimensions of 1𝑎0 in both the x and y directions. 

The initial step involved the calculation of energy levels for a structure with an infinite potential, 

as described in Equation 8. The primary objective was to assess the variance in precision between 

computations conducted at accuracy levels of 𝑂(ℎ4) and 𝑂(ℎ6). Calculating with infinite potential has 

been chosen because it offers a more straightforward analysis of energy levels and has provided reliable 

data for comparing numerical results. 

𝑉(𝑥, 𝑦) = {
0,         𝑥, 𝑦 < 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥      
∞,        𝑥, 𝑦 ≥ 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 

                                                                                          (8) 
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In Table 1., the calculation results for the 2D InP quantum box with infinite potential are presented. 

The table includes CPU time, memory utilization by the main matrix, and ground state energies for both 

𝑂(ℎ4) and 𝑂(ℎ6) accuracy levels, categorized by various grid sizes. The last column of the table 

provides analytical calculation results for the ground state energy levels of a structure with the same grid 

dimensions. As observed in the table, there is a noticeable difference in ground state energy levels 

between 𝑂(ℎ4) and 𝑂(ℎ6) accuracy levels in small grid sizes. Additionally, these energy levels, 

calculated with the sparse Numerov method, appear to deviate somewhat from the analytical values at 

small grid sizes. However, as the grid sizes increase, the difference in energy levels 𝑂(ℎ4) and 𝑂(ℎ6)  

accuracy decreases significantly. They gradually converge to each other and to the analytical values. 

Table 1. Comparison of the CPU times, matrices sizes and ground state energy levels 

 𝑶(𝒉𝟒) 𝑶(𝒉𝟔)  

N Grid 
CPU Time 

(s) 

M. Size 

(kbytes) 

GS Energy 

(meV) 

CPU Time 

(s) 

M. Size 

(kbytes) 

GS Energy 

(meV) 

R. Energy 

(meV) 

50 × 50 2.24 175.23 527.98 5.36 551.49 532.25 550.02 

100 × 100 16.35 710.43 134.68 70.33 2262.69 135.21 137.51 

150 × 150 53.24 1605.63 60.26 259.98 5133.89 60.42 61.11 

200 × 200 164.63 2860.83 34.01 690.17 9165.09 34.08 34.38 

250 × 250 426.45 4476.03 21.81 1634.31 14356.30 21.84 22.00 

300 × 300 900.56 6451.23 15.17 3378.67 20707.50 15.19 15.28 

350 × 350 1670.92 8786.43 11.15 5475.33 28218.70 11.17 11.22 

400 × 400 2392.66 11481.60 8.55 8875.11 36889.90 8.55 8.59 

On the other hand, in terms of CPU time comparisons, it becomes evident that calculations 

performed with 𝑂(ℎ6)  accuracy demand roughly four times more CPU time compared to calculations 

conducted with 𝑂(ℎ4) accuracy. Moreover, as the grid size increases, CPU time exhibits a rapid increase. 

A similar pattern is observed in the memory usage attributed to the main matrix established for 

eigenvalue calculations. Specifically, calculations executed with 𝑂(ℎ6) accuracy result in approximately 

3.2 times more memory consumption compared to those performed with 𝑂(ℎ4) accuracy. Based on these 

findings, it can be concluded that achieving 𝑂(ℎ6) accuracy in ground state energy level calculations 

may not be necessary, particularly when dealing with larger structures, as it entails increased CPU time 

and memory usage. 

In this study, power-exponential potential as described in Equation 9. (Ciurla et al., 2002) has been 

employed. Calculations have been performed using this 2D potential, considering different grid sizes 

and 𝑘 parameters with 𝑂(ℎ6) accuracy, and the results have been subsequently compared and analyzed. 

𝑉(𝑟) = 𝑉0 ∗ (1 − 𝑒
(−𝑟/𝑅𝑚𝑎𝑥)𝑘).                (9) 

Here, a bare InP quantum box is considered and the effect of the power-exponential potential on 

the energy levels at higher values of 𝑘 is observed. To facilitate this investigation, 𝑉0 has been set at 

2.72 𝑒𝑉. 𝑅𝑚𝑎𝑥  has been defined as the edge length of the 2D quantum box, and 𝑟 being determined as 

𝑟 = √𝑥2  +  𝑦2. 
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Figure 1. The ground state, 1𝑠𝑡 excited state and 2𝑛𝑑 excited state energies of the 2D Quantum Box are presented as a 

function of the side length of the box for various values of the parameter 𝑘. These calculations were conducted with the 

assumption that the side lengths in both the 𝑥 and 𝑦 directions are equal (𝑥 =  𝑦) 

Figure 1. illustrates the variation in energy levels for the ground state, 1𝑠𝑡 excited state, and 2𝑛𝑑 

excited state of the 2D quantum box as a function of the box size for different values of the parameter 

𝑘. As expected, an increase in the size of the 2D box leads to a decrease in all energy levels. Furthermore, 

the figure clearly demonstrates that as the value of 𝑘 increases, the energy levels also increase. According 

to Equation 9., this behavior can be attributed to the fact that with an increase in 𝑘, the potential 𝑉 

reaches its maximum, 𝑉0 over a much shorter distance. Consequently, the confinement well, where the 

electron is localized, becomes narrower, resulting in an increase in energy levels. Figure 2. provides a 

visual representation of the potential changes with respect to varying values of 𝑘. 

 
Figure 2. Schematic illustration depicting the variation in potential concerning the parameter 𝑘 

Another noteworthy observation in Figure 1. is that, with increasing 𝑘, especially in smaller box 

sizes, the energy levels surpass the 𝑉0 limiting potential, transitioning to free-state energy levels. This 

transition occurred for ground state energies only at 𝑘 =  15 when the box dimensions were 1𝑎0 ×  1𝑎0, 

as clearly depicted in the graph. For the 1𝑠𝑡 and 2𝑛𝑑 excited states, which are degenerate as expected in 

the 2D box, such transitions are more common, given that these energy levels are higher than the ground 

state. As illustrated in Figure 1., the 𝑉0 potential was exceeded at 𝑘 =  5, 10, 15 in the 1𝑎0 ×  1𝑎0 box 

dimensions, and at 𝑘 =  15 in the 2𝑎0 ×  2𝑎0box dimensions. The k parameter for this potential can be 

considered an effective tool for manipulating energy levels and controlling confinement in the system.  
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CONCLUSION 

In conclusion, the results demonstrate that the sparse Numerov method provides sound and valid 

results for both potentials, thus confirming its applicability to 2D quantum nanostructures. This approach 

streamlines the analysis of larger structures by maintaining symmetry and facilitating sparse matrix 

solutions, consequently reducing the considerable burden on CPU and memory resources. However, it's 

crucial to note the observed deviation in energy levels, particularly noticeable in calculations involving 

small-sized structures with infinite potential. It appears that achieving higher accuracy levels is necessary 

for low-dimensional nanostructures in terms of computational precision. 
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