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ABSTRACT The study of dynamical systems is based on the solution of differential equations that may exhibit
various behaviors, such as fixed points, limit cycles, periodic, quasi-periodic attractors, chaotic behavior, and
coexistence of attractors, to name a few. In this paper, we present a simple and novel method for predicting
the occurrence of tipping points in a family of Piece-Wise Linear systems (PWL) that exhibit a transition
from monostability to multistability with the variation of a single parameter, without the need to compute time
series, i.e., without solving the differential equations of the system. The linearized system of the model is
analyzed, the stable and unstable manifolds are taken to be real vectors in space, and the changes suffered by
these vectors as a result of the modification of the parameter are examined using such simple metrics as the
magnitude of a vector or the angle between two vectors in space. The results obtained with the linear analysis
of the system agree well with those obtained with the numerical resolution of the dynamical system itself. The
work presented here is an extension of previous results on this topic and contributes to the understanding of
the mechanisms by which a system changes its stability by fragmenting its basin of attraction. This, in turn,
enriches the field by providing an alternative to numerical resolution to identify quantitative changes in the
dynamics of complex systems without having to solve the differential equation system.
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INTRODUCTION

In a world governed by complex systems that describe behaviors as
mundane as our social interactions to the interconnected workings
of our brains as the control center of the human body, the ability
to anticipate the moment when a system reaches a point of no
return is critical (Scheffer et al. 2001; Lenton et al. 2008; Jung and
Ager 2023). This is a strategic advantage that can be applied to
a wide range of disciplines. In this context, we should think of a
complex system as an entity consisting of multiple parts whose
individual behavior is known and which interact with each other.
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The behavior of the complex system, in turn, is not equal to the sum
of the behaviors of the individual parts, resulting in structures that
are generally characterized by nonlinearities (Ott 2002; Echenausía-
Monroy et al. 2022; Keleş et al. 2023).

In the study and characterization of dynamical systems lies one
of the central problems: exploring the asymptotic properties of
the model when the parameter is continuously changed (Guan
et al. 2005). A variety of behaviors that a dynamical system can ex-
hibit include equilibrium points, limit cycles, periodic oscillations,
chaotic behavior, quasi-periodic behavior, and even the coexistence
of attractors can occur, to name a few examples (Ott 2002; Awal
and Epstein 2021).

Even if a system exhibits only one type of behavior, the contin-
uous change of system parameters or the influence of external dis-
turbances can lead the system to the point of no return mentioned
above. This point is called tipping point, where the dynamic be-
havior of the system changes abruptly and sometimes irreversibly
(Biggs et al. 2009; Lane 2011). These two types of bifurcations can
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be distinguished from a bifurcation point because the tipping point
refers to an abrupt and irreversible change in dynamic behavior. In
contrast, the bifurcation point can describe changes in equilibrium
points, for example, but does not necessarily imply a dynamic
change. Examples of this type of abrupt modification in behavior
include power outages in electricity grids or the occurrence of
massive congestion in urban transportation systems. It is there-
fore crucial to have tools that allow us to predict the occurrence
of these bifurcation points, for example, to make public health
decisions regarding the spread of a disease that could lead to a
pandemic, to predict a financial crisis, or to measure the tolerance
of an ecosystem on the verge of collapse (Rial et al. 2004; Jiang et al.
2019; O’Regan et al. 2020; Lohmann et al. 2021; Wunderling et al.
2023).

Such a change in parameters in a complex system can lead to
transitions between different behaviors, for example, a double
limit cycle can bifurcate into the occurrence of chaotic states. These
transitions may also involve the occurrence of coexisting states,
which is referred to as multistability (Gilardi-Velázquez et al. 2018;
Echenausía-Monroy et al. 2020; Fang et al. 2022; Safavi and Dayan
2022). This nearly universal phenomenon describes a range of
behaviors from optical illusions to chemical reactions, the use of
words, and even emotions. The coexistence of states in complex
systems entails the existence of more than one basin of attraction.
For a given parameter of the system, the dynamics may oscillate at
near of a stable attractor (equilibrium points, periodic orbit, chaotic
attractor) for certain initial conditions, but converge to another for
a different set of, albeit very similar, initial conditions.

Since Lorenz’s work (Lorenz 1963), many research has been
done on how to characterize and find the existing behaviors in
a dynamic system with complex behavior. One of the most com-
monly used forms for this is bifurcation diagrams, both for the
existence of fixed points and for changes in their stability, but de-
scribing only local behaviors. In the case of systems with complex
behavior, there are no tools that allow to describe the types of
behavior through the analysis of vector fields, but only through
the analysis of time series (Nazarimehr et al. 2018).

Currently, the search for new ways to predict tipping points
in dynamical systems has attracted the attention of the scientific
community, as it is seen as an advantage for decision making in
critical situations (Moore 2018; Peng et al. 2019). In this search and
the development of techniques capable of anticipating the occur-
rence of abrupt dynamic changes, tools based on the analysis of
time series are used. This technique is based either on the storage
of time series of the phenomenon under study or on the system of
equations that describes it. Various statistical and mathematical
techniques are used to detect patterns, trends, or changes in the be-
havior of the system that may indicate that the dynamic behavior is
approaching a tipping point. In these cases, early warning signals
may be observed, such as increased variance, autocorrelation, or
a slowing of recovery rates in response to system perturbations,
also known as resilience (Nazarimehr et al. 2018; Chen et al. 2020;
Moghadam et al. 2022). Bifurcation theory has also been used to
study how the qualitative behavior of a system changes as its pa-
rameters vary. By analyzing bifurcation points, it is possible to
identify critical thresholds at which inflection points are likely to
occur. Similarly, the use of Lyapunov exponents is a popular tool
for identifying when a dynamical system is about to change its
behavior (Tsakonas et al. 2022).

In some cases where the descriptor model leads to a numerical
simulation with high computational costs, surrogate or reduced-
order models can be used to approximate the behavior of the

system and predict inflection points, just as network-based ap-
proaches have been used to detect changes in the network struc-
ture that might indicate an impending tipping point (Jiang et al.
2018).

Although there is a wealth of literature with different ap-
proaches to identifying and predicting tipping points in dynamical
systems, in most cases there is one constant: time series analysis,
which is effective but involves a high computational cost. We have
recently published a paper that addresses the prediction of inflec-
tion points in a single-parameter Piece Wise Linear (PWL) system
that generates multiple scrolls based on the study of the linear
operator of the system. This approach shows a relation between
vector field properties and the occurrence of coexisting states, with
which is possible to predict the tipping points when the system un-
dergoes a change in its global stability due to the variation of one
parameter, which causes the system to go from monostability to
multistability. The method described in (Echenausía-Monroy et al.
2022b) is based on the study of the stable and unstable manifolds
of the system as real vectors in three-dimensional space which
characterizes the changes in their magnitudes so that the points
at which an abrupt change in the dynamics of the system can be
identified. While the results are interesting, they are limited to a
monoparametric family of attractors that are not able to predict
the emergence of multistable dynamics in a system like the one
published in (Gilardi-Velázquez et al. 2017), where the multi-scroll
system has three distinct parameters.

In the present work, the results shown in (Echenausía-Monroy
et al. 2022b) are generalized to a multiparametric family of oscil-
lators, which are described by three dynamical parameters that
change the size, order, and the Lyapunov exponent of the dynam-
ics. In this paper, metrics of vector fields such as the magnitude of
a vector and the angle between two vectors in space are used to
characterize the variations of real vectors associated with the vari-
eties of the multiple scroll system. The proposed method allows
the prediction of tipping points through the eigenspace associated
to the vector field, i.e., without the need to solve the system of
differential equations, which brings a significant reduction in com-
putational costs. Since the numerical resolution of the system is
eliminated, these results can be extended to systems with a larger
number of variables without increasing the computational cost.

The remainder of the work consists of the following sections:
Section 2 presents the necessary groundwork used in this paper
and delineates the problem to be solved. Section 3 describes the
methodology used, while the results are discussed in Section 4.
The conclusions are explained at the end of the work.

PRELIMINARIES

Consider a third-order Piece-Wise Linear system defined as fol-
lows:

Ẋ = MX + g(X), (1)

where M is a non-singular linear operator, X is the state vector,
g : Rn → Rn is a real commutation function based on a state
variable and defined for a set of constant vectors as shown in Eq.
(2), where Bi = [b1, . . . , bl ] ∈ Rn for h = 1, 2, . . . , l is a set of vectors
with real entries. On the other hand, Ω1, . . . , Ωl denote a polytopic
partition of the state space, also called switching domains, such
that

⋃l
h=1 Ωh = Rn and Ωh

⋂
(Ωm)

0 = ∅, where the notation
(Ωm)

0 denotes the interior of Ωm. Moreover, in each domain Ωh ⊂
Rn, the system has equilibrium points located at χ∗

h = −M−1g(X),
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where M is the linear operator of the system, and it is easy to see
that there are as many equilibria as domains Ωh.

g(X) =



B1 if X ∈ Ω1,

B2 if X ∈ Ω2,
...

...

Bl if X ∈ Ωl .

(2)

The interest of this work is to characterize the behavior of PWL
systems with the same number of scrolls as equilibrium points.
To this end, the eigenvalues of Eq. (1) must be described by an
Unstable Dissipative System type 1 (UDS I) (Campos-Cantón et al.
2010; Campos-Cantón 2015), characterized by having unstable
saddle points for the following conditions:

• The linear operator M must have a negative real eigenvalue
and a pair of complex conjugates with a real positive compo-
nent.

• The eigenvalues λ ∈ C1×3 of M must satisfy: ∑3
i=1 λi < 0.

Under these conditions, this article examines a jerk-inspired
oscillator generated by:

M =


0 1 0

0 0 1

−α1 −α2 −α3

 , X =


x1

x2

x3

 , g(X) =


0

0

α1b(x1)

 ,

(3)

b(x1) =


−2 if X ∈ Ω1 = {X ∈ Rn : x1 < −1} ,

0 if X ∈ Ω2 = {X ∈ Rn : −1 ≤ x1 < 1} ,

2 if X ∈ Ω3 = {X ∈ Rn : x1 ≥ 1} ,
(4)

where xi are the state variables, αi, i = 1, 2, 3 are the dynamical
parameters corresponding to the family of oscillators that also
modify the Lyapunov exponent, the order and the size of the
attractor (Echenausía-Monroy et al. 2018), where b(x1) is a function
that generates a commutation based on a state variable that induces
multiple scrolls in the x1-dimension.

Since this work focuses on the system responding to the con-
figuration of eigenvalues defined as UDS I, which in turn are
defined by the combination of the system parameters, mathemati-
cal analysis as described in (Anzo-Hernández et al. 2018) is used to
determine the proper values:

Proposition 1 (Anzo-Hernández et al. 2018) Consider the family of
affine linear systems given by Eq. (1,3), and the linear operator MMM with
parameters α1, α2, α3 ∈ R+. If α1 > 0, 0 < α2 <

α1
α3

, and α3 > 0, then

the system described by Eqs. (1,3) is based on an Unstable Dissipative
System type 1 (UDS-I).

Proof 1 (Anzo-Hernández et al. 2018) Suppose that α1, α2 > 0. Since
α3 = Trace(M) = ∑3

i=1 λi < 0, where λi, i = 1, 2, 3, is each of
the eigenvalues of M, the system Eq. (1,3) is dissipative. Moreover,
with α1 = det(M), the system Eq. (3) has saddle equilibrium points

determined by the characteristic polynomial of the linear operator M,
λ3 + α3λ2 + α2λ + α1 = 0, which for α2 <

α1
α3

by the Hurwitz polyno-

mial criterion implies instability. Since α1, α2 and α3 are positive real
constants and the characteristic polynomial has no positive characteristic
values by Descartes’ sign rule, it has only one negative eigenvalue by
which the equilibrium point is saddle fixed. Then the eigen spectrum
is given by a negative real eigenvalue and a pair of complex conjugate
eigenvalues with a positive real part.

Considering Proposition 1, a multi-scroll jerk inspired system
with parameters α1 = 10.5, α2 = 7; α3 = 0.7 for Eq. (3) and the
commutation function described by Eq. (4) satisfies the UDS I
conditions, generating the attractor shown in Figure 1. The red
dots indicate the location of the equilibrium point, and the vertical
lines indicate the location of the commutations delimiting each of
the system domains, or polytopic partitions.

(a)

(b)

Figure 1 Attractor generated by Eq. (3) and Eq. (4) for α1 =
10.5, α2 = 7; α3 = 0.7 seen in the projection (a) x1 − x2 and
(b) in phase space. The red dots denote the equilibrium points, while
the black vertical lines (plane) represent the commutation surfaces.

Remark 1 Note that the αi values used in Figure 1 are the same as
described in (Gilardi-Velázquez et al. 2017), but with a restricted commu-
tation function, since the authors use the "round to the nearest integer"
function as commutation law in the work described, generating an infinite
number of equilibrium points.
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In (Gilardi-Velázquez et al. 2017), the authors show that a multi-
scroll system like the one described in Eq. (3) (for α1 = 10.5,
α2 = 7, α3 = 0.7) is able to go from monostability to multistability
by changing a bifurcation parameter that affects the third equation
of the descriptor system. The resulting system of equations is
shown in Eq. (5), where the parameter µ is a positive constant that
scales with the dynamical parameters of the system, changing its
stability and allowing the transition between monostability and
the coexistence of stable single-wing attractors.

ẋ1 = x2,

ẋ2 = x3,

ẋ2 = µ[−α1x1 − α2x2y − α3x3 + α1b(x1)].

(5)

Through numerical simulations, it is possible to identify the
points at which the system changes its global stability by frag-
menting its basin of attraction, from the generation of a 3-scroll
attractor (as in Figure 1) to the generation of a single-wing attractor
capable of living stably at each of the equilibrium points of the
system. If we use a bifurcation diagram, by µ variation (see Figure
2(a)), and count the number of scrolls that the dynamics generates
by changing the parameter µ, we obtain the graph shown in Fig-
ure 2(b), where the starting point of the multistable dynamics is
1.03 ≤ µ ≤ 2.14. For µ ≥ 2.14, all dynamics are eliminated from
the system and converge to the equilibrium point.

Remark 2 Although the results shown in Figure 2 are not identical to
those previously published in (Gilardi-Velázquez et al. 2017), they are
not the main result of this work, but they are necessary to understand the
contribution of the paper, which is why they are kept in the Preliminary
remarks section.

Problem Statement
In our previous study (Echenausía-Monroy et al. 2022b), we pre-
sented an innovative approach to predict tipping points in Piece
Wise-Linear (PWL) systems by using linear algebra techniques
to analyze the magnitude of manifolds within a monoparametric
family of oscillators (α1 = α2 = α3). The focus of that research was
primarily on identifying these tipping points for a particular class
of oscillators. In this current work, we have extended, refined our
methodology and generalized its applicability to multiparametric
families of multi-scroll PWL oscillators. Our main goal remains the
same: to predict the occurrence of tipping points in PWL systems
transitioning from monostability to the occurrence of multistable
behavior without the need to compute time series, i.e., without
solving the differential equations of the system. To achieve this,
we have developed an innovative approach that analyzes the an-
gular relationships between real vectors associated with stable and
unstable manifolds.

This study builds on our previous research, but it is important to
emphasize that the problem, while conceptually related, applies to
a broader range of dynamical systems. We improve and generalize
the methodology so that it is applicable to different families of
multiparametric oscillators. This advance is crucial to gain deeper
insights into the transition from monostability to multistability
in complex systems without relying on numerical resolution or
bifurcation parameter change detection.

1 1.2 1.4 1.6

µ (a.u.)

-2

0

2

4

x
1

m
a
x

 (
a
.u

.)

(a)

(b)

Figure 2 Numerical simulation of the system described by Eqs. (4,5)
for α1 = 10.5, α2 = 7; α3 = 0.7 by µ variation. (a) Bifurcation
diagram of the local maxima in x1 by tracking the attractor (using the
final state as the initial condition for parameter variation for the initial
conditions xi = [−0.1 0.1 0.1]'). (b) Summary of the behavior shown
in the bifurcation diagram.

METHODOLOGY

Matrix algebra, or linear algebra as it is treated in college textbooks,
focuses on the study and manipulation of algebraic structures
called vectors and matrices. At its core, it deals with the proper-
ties and operations associated with these objects and is used to
solve a variety of problems in fields ranging from physics and
engineering to computer science and statistics. It has its origins
in civilizations such as the Babylonians and Greeks, who were
concerned with problems of systems of linear equations by matrix
representation, and developed into a mathematical discipline with
the contributions of notable mathematicians such as Leonhard
Euler and Joseph-Louis Lagrange (Kleiner 2007).

As mentioned in the previous sections, the methodology used
in this paper is based on the notion of the changes suffered by the
stable and unstable manifolds of the multi-scroll system, which
are conceived as real vectors in space. By conceptualizing them as
vectors in space, we can quantify their changes by examining their
magnitude and the angle that exists between these in the plane or
in space.

The determination of the manifolds and their subsequent con-
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struction as vectors is done using the linear operator of the de-
scriptor system by computing the eigenvalues and eigenvectors
of the model, graphing them in space, and determining their
three-dimensional coordinates. As example, and considering
Proposition 1, a multi-scroll jerk inspired system with parame-
ters α1 = 10.5, α2 = 7, α3 = 0.7, µ = 1 for Eq. (5) and the
commutation function described by Eq. (4) satisfies the UDS I
conditions, generating the attractor shown in Figure 1. For this
combination of αi values, the linear system to study is described
by Eq. (6), being its eigenvalues described in (7):

M =


0 1 0

0 0 1

−µα1 −µα2 −µα3

 , (6)

Λ = {λ1,2,3},

= {−1.3372, 0.3186 ± 2.784 i},
(7)

and their corresponding eigenvectors are equal to:

ϑ = {ϑ1,2,3},

=




0.4087

−0.5466

0.7309




−0.1160 ± 0.0269 i

0.0379 ± 0.3316 i

0.9351




.

(8)

The stable and unstable manifolds of the multiscroll system
are defined such that ϑ = [ϑi], for i = 1, 2, 3 is a set of column
eigenvectors, where Mϑi = λiϑi, where λi are the system eigen-
values. Under this assumption, the stable manifold is defined by
E∗

s =Span{ϑ1} and the unstable manifold by E∗
u =Span{ϑ2,3}, and

to represent these manifolds, we consider the real part of both as
Es = Re{E∗

s } and Eu = Re{E∗
u}. With this in mind, it is possible

to plot the attractor shown in Figure 1 along with the real vectors
associated with the stable and unstable manifolds as shown in
Figure 3.

Note that Figure 3 shows both manifolds (Eu, Es) as real vec-
tors in space that always intersect the equilibrium point and are
bounded by the commutations induced by the nonlinear function.
Under this premise, it is possible to analyze the behavior of these
vectors by characterizing their variation and calculating their mag-
nitude change induced by the parameter µ in the system. For this
purpose, consider the points A, B, C, and D (see Fig. 3(b)), which
have three-dimensional coordinates, intersections with the com-
mutation surfaces, and intersections with the equilibrium point;
the associated real vectors can be constructed as follows:

M⃗s = D⃗B = D − B,

M⃗u = A⃗C = A − C,
(9)

where the vectors associated with both manifolds have coordinates
in space and their magnitude is then defined as:

(a)

(b)

Figure 3 (a) Attractor generated by Eq. (3,5) for µ = 1, α1 =
10.5, α2 = 7, α3 = 0.7, where the real vector associated with the
stable manifold is shown in blue and the one associated with the
unstable manifold is shown in red. (b) Real vectors associated with
the system manifolds in phase space, omitting the trajectory shown
in (a).

||M⃗s|| =
√
(x1s1 − x1s2 )

2 + (x2s1 − x2s2 )
2 + (x3s1 − x3s2 )

2 ,

||M⃗u|| =
√
(x1u1 − x1u2 )

2 + (x2u1 − x2u2 )
2 + (x3u1 − x3u2 )

2 .
(10)

In the same way as for the magnitude of the real vectors as-
sociated with the stable and unstable manifolds, it is possible
to calculate the cross product between these vectors, defined as
shown in Eq. (11), where θ is the angle between the vectors M⃗s
and M⃗u.

||M⃗s × M⃗u|| = ||M⃗s|| ||M⃗u|| sin(θ), (11)

Remark 3 Both metrics described previously, the magnitude of the vec-
tors described in Eq. (10) and the cross product between the vectors
shown in Eq. (11), are defined for a set of parameters αi and µ. In this
work, the variations of the two metrics are analyzed based on the effect in-
duced by the bifurcation parameter µ, and these variations are illustrated
in Figure 4.
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Figure 4 Illustration of the variations of the real vectors associated with the stable and unstable manifolds as the parameter µ changes, consid-
ering the vector magnitude (||M⃗u,s||) and the angle between vectors (θ).

In addition, Appendix A presents an analytical method for character-
izing the angles between real vectors in the system. This approach uses
both the eigenvalues and the eigenvectors of the system under analysis.

RESULTS AND DISCUSSION

In the same spirit that (Echenausía-Monroy et al. 2022b), the
eigenspace changes are analyzed along the variation of the pa-
rameter µ in the linear operator of the system described by Eq. (5).
For each value of µ, the real vectors associated with the stable and
unstable manifolds are computed, and in turn, the magnitude of
these vectors is calculated. These changes are plotted (for both the
stable and unstable manifolds), and points are searched for where
these curves intersect. The intersections describe (from what has
been reported) the regions where the system shows qualitative
changes in its behavior, indicating the occurrence of multistable
states, associated with the tipping points in the system. Figure
5 shows the curves obtained for the parametric variations of the
magnitudes of the vectors M⃗s (solid lines) and M⃗u (dashed lines).
Each of the magnitudes is calculated for the three-dimensional
space and in each of the system projections, resulting in 4 curves
for each of the vectors.

Remark 4 In the results presented in this section, the notation xI, θI is
used, where the subindex I indicates whether the result was computed
in the three-dimensional plane I = 1, 2, 3 or in one of the state-space
projections (I = 1, 2, I = 1, 3, I = 2, 3). Then for each metric used
(vector magnitude and angle between vectors) there are 4 values.

Analyzing the behavior of Figure 5, it becomes clear that there
are no intersections in the curves describing the changes in the
magnitudes of the real vectors associated with the manifolds of the
system under study. The linear operator of the system described
by Eq. (5) for the values α1 = 10.5, α2 = 7, α3 = 0.7 serves as a
reference point. The absence of the appearance of intersections,
as seen in Figure 10 of (Echenausía-Monroy et al. 2022b), is due
to the fact that in this work we analyze the behavior of the whole
family of oscillators described by different parameters αi. The
above mentioned article it was worked with a family of attractors
described in the UDS I-value section (α1 = α2 = α3), which allows
visualization of intersection points between the magnitudes of M⃗s
and M⃗u as a function of µ.

In this sense, and maintaining the goal of being able to predict
the occurrence of multistable states of the system in the context of a
linear analysis without having to analyze the time series, the cross
product between vectors is used. This vector operation results in
a new vector that is perpendicular to the analyzed vectors. With

1 1.4 1.8 2.2

µ (a.u.)

0

10
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|M
s
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|

x
1,2,3

x
1,2,3

x
1,2

x
1,2

x
1,3

x
1,3

x
2,3

x
2,3

Figure 5 Behavior of the magnitudes of vectors M⃗s and M⃗u through-
out the change of parameter µ. The values used are the same as in
the attractor in Figure 1 (α1 = 10.5, α2 = 7, α3 = 0.7), and the sub-
index indicate the projection in which the magnitude is calculated
(see Remark 4).

the vectors M⃗s and M⃗u, a perpendicular vector between them is
obtained, which in turn gives the angle between the analyzed
vectors (θ). This is the value used to characterize the variations of
the linear operator, as described in Eq. (11). Figure 6 shows the
results obtained by graphing the angle between the vectors of the
variations obtained by the cross product. Appendix A presents
an analytical method to describe the angles between real vectors
within the system. This method relies on both the eigenvalues and
eigenvectors of the system under study. It provides an alternative
to the visual representation of changes in the system.

Analyzing the behavior of the curves of the angles between the
vectors M⃗s and M⃗u in space and in each of the projections, we can
identify three intersections. The first one for µ = 1.038; it occurs
when the angle between the vectors in both projections x1,2 − x1,3
reaches the same value, where the plane x1,2 is the one where the
attractor projection reveals the multistable behavior.

The second intersection point appears for µ = 1.158 when the
angle between the vectors reaches the same value for both the
projection x1,2 and the plane x2,3. The last interesting point ap-
pears for µ = 1.5 when the angle between the vectors in the three-
dimensional space reaches the same value as the angle between
the vectors in the plane where the coexistence of the attractors is
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Figure 6 Behavior of the angle between the vectors M⃗s and M⃗u
when varying the parameter µ, determined with the cross product.
The values used are α1 = 10.5, α2 = 7, α3 = 0.7, which are the
same as in the attractor in Figure 1.

appreciated (x1,2).

Remark 5 The first intersection point, where the angles between the va-
rieties converge to the same value, is consistent with what was determined
by the analysis of the time series (see Figure 2).

Comparing the behavior of the angles between the vectors (Fig-
ure 6) with the bifurcation diagram shown in Figure 1, we can see
that the first intersection between the curves corresponds to the
value of µ at which the system breaks its global stability and the
coexisting states arise. But it is impossible to ignore the fact that
these angular curves have three intersection points. To investigate
this behavior, Figure 7 shows the attractors obtained for the values
of µ given in the angular curves, where the vectors reach interest-
ing values. The time series used for these figures were calculated
for 218 points for an integration step τ = 0.01 with RK4.
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Figure 7 Multistable behavior of the system described by Eqs. (3,5)
for the values used corresponds to that of the attractor in Figure
1 α1 = 10.5, α2 = 7, α3 = 0.7 and initial conditions x1i =
−1, x2i,3i = 0.1. (a) µ = 1.038, (b) µ = 1.158, (c) µ = 1.5.

After analyzing the dynamic behavior of the multi-scroll system
described by Eqs. (3,5), we can say that the intersection points
between the curves of the angles between the vectors correspond
to three points where the dynamics of the system undergoes a
change, or tipping points:

• 1 < µ < 1.15 The system exhibits the coexistence of attractors,
but the dynamics is such that there is a basin of attraction with
6 possible attractors, as shown in the (Echenausía-Monroy
et al. 2022a) obtained by using fractional derivatives. The
global monostability has been slightly modified. There is the
possibility of i) attractors of a single-wing living in each of the

equilibrium points, ii) two symmetric double-scroll attractors,
and iii) a small region in the initial conditions for which the
system remains monostable.

• 1.15 < µ < 1.5 The basins of attraction of the multistable
system have become larger, the monostable attractor is almost
improbable, and the probability of the occurrence of a double-
scroll attractor is small.

• 1.5 < µ < 2.14 The system exhibits only the coexistence
of attractors of one wing, which live stably in each of the
polytopic partitions of the system, which in turn have a single
associated equilibrium point.

• µ > 2.14 The system exhibits only the coexistence of stable
equilibrium points, in accordance with Proposition 1.

CONCLUSION

The work developed and presented here addresses the problem of
predicting the occurrence of inflection points, also called tipping
points, in a multi-scroll system moving from monostability to
coexistence of attractors. The implemented methodology is based
on the study of the linear operator of the descriptor model. Without
having to solve the system of equations and/or analyze time series,
the points at which the dynamics change such that the coexistence
of attractors occurs were predicted.

Using simple techniques of matrix algebra, such as the magni-
tude of a vector and the cross product between vectors, the linear
operator of the system was analyzed. The results obtained are in
agreement with those published in other papers on time series anal-
ysis. More importantly, considering Proposition 1, the developed
method is applicable to the whole family of oscillators described
by Eq. (5), and the linear operator depicted in (9). At the same
time, it is worth noting that the result can be extrapolated to any
number of scrolls in phase space as long as a nonlinear function
with equidistant equilibrium points at the center of each of the
polytopic partitions is used.

Although the analysis and metrics used are simple and easy to
implement, it is worth noting that this allows us to better under-
stand the transition between monostability and coexistence with
attractors in dynamical systems. If we develop a tool to relate the
angles between the stable and unstable manifolds to the dynam-
ical transitions of the oscillator, then the points where the angles
between said manifolds reach the same values in the projection
x1,2 with the projection x2,3 are the points where the system breaks
its stability. It is important to emphasize that the projection in
which the multistability is estimated is in the plane x1,2. It is worth
noting that, contrary to what was reported in (Echenausía-Monroy
et al. 2022b), the methodology proposed in this article is not able to
predict the point at which the system changes the stability of its
equilibrium points and transforms them into attractive foci points.

In addition, throughout Appendix A, the approach to analyti-
cally describe the angle between the real vectors in the system is
described by using both the eigenvalues and the eigenvectors of
the analyzed system. This is an alternative to the graphical method
of visualizing the varieties of the system as real vectors, and en-
riches the contribution of the paper. It should be emphasized that
with the results shown in this paper it is possible to predict the
occurrence of multistable states in jerky systems given by Eq. (5)
for any nonlinear function b(x1) such that there are as many scrolls
as equilibrium points, regardless of whether the parameters of the
system are the same (α1 = α2 = α3) or different (α1 ̸= α2 ̸= α3), as
long as the system satisfies the conditions to be classified as UDS I.

Future work must be able to apply the obtained results to other
systems to confirm the generality of the developed technique, or
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otherwise implement new tools for predicting tipping points in
dynamical systems without having to solve the systems of equa-
tions. Overall, this study advances our understanding of inflection
points in dynamical systems and provides a solid foundation for
future research in this field since the prediction of tipping points is
critical in numerous contexts, from ecology to economics.

APPENDIX: ANGULAR EQUIVALENCE

Next we will develop an equivalent form to Eq. (11 ) to determine
the angle between the manifolds.

Let ϑ1 ∈ R and ϑ2 = ϑ3 ∈ C are the eigenvectors of the matrix
M given in (6). We define the vectors vi = Re{ϑi} for i = 1, 2
and form the set V = {v1, v2}. Let χ = (χ1, χ2, χ3) ∈ R3 be the
equilibrium point of the system described by Eq. (1) for the region
Ω2 ⊂ R3, and the parameter γi

d ∈ R defined as:

γi
d = {γ ∈ R : χ1 + γvi1 = d},

where vi = (vi1, vi2, vi3) ∈ V. Then, the points A, B, C, and D
illustrated in Figure 3 can be described as follows:

A = χ + γ2
−1v2, B = χ + γ1

+1v1,

C = χ + γ2
+1v2, D = χ + γ1

−1v1.
(12)

Explicitly, the parameter can be obtained as follows:

γi
d =

d − χ1
vi1

,

and since the equilibrium point for the region Ω2 is the origin, we
have χ = 0 ∈ R3. Thus, the parameters are:

γi
−1 =

−1
vi1

, γi
+1 =

+1
vi1

, (13)

where it can be observed that γi
+1 = −γi

−1, i = 1, 2.
If we use the same construction as in Eq. (9), but substitute the

points from (12), we get the following:

Ms = D⃗B = D − B = (χ + γ1
−1v1)− (χ + γ1

+1v1) = . . .

γ1
−1v1 − γ1

+1v1 = (γ1
−1 − γ1

+1)v1,

Mu = A⃗C = A − C = (χ + γ2
−1v2)− (χ + γ2

+1v2) = . . .

γ2
−1v2 − γ2

+1v2 = (γ2
−1 − γ2

+1)v2.

(14)

Substituting (13) into Eq. (14), we have that

Ms = 2γ1
−1v1, Mu = 2γ2

−1v2. (15)

Without loss of generality, let’s assume that γ1
−1, γ2

−1 > 0, and
therefore

∥Ms∥ = 2γ1
−1∥v1∥, ∥Mu∥ = 2γ2

−1∥v2∥. (16)

To calculate the angle between the vectors Ms and Mu, the dot
product (denoted by ·) can be implemented as follows:

Ms · Mu = ∥Ms∥∥Mu∥ cos(θ).

When substituting (15) and (16) into the above equation, you
get:

(2γ1
−1)(2γ2

−1)(v1 · v2) = (2γ1
−1)(2γ2

−1)∥v1∥∥v2∥ cos(θ),

and therefore:
cos(θ) =

1
⟨v1⟩⟨v2⟩ ∑

i∈I

v1iv2i,

where

⟨vj⟩ =
(

∑
i∈I

v2
ji

)1/2

,

for j = 1, 2 and with I ⊆ {1, 2, 3} a collection of indices. Note that
⟨vj⟩ ≡ ∥vj∥ when I = {1, 2, 3}. Then the angle between vectors is
defined by:

cos(θI) =
1

⟨v1⟩⟨v2⟩

∣∣∣∣∣∑i∈I

v1iv2i

∣∣∣∣∣ .

Explicity, we will have:

cos(θ1,2) = |v11v21+v12v22|√
v2

11+v2
12

√
v2

21+v2
22

,

cos(θ1,3) = |v11v21+v13v23|√
v2

11+v2
13

√
v2

21+v2
23

,

cos(θ2,3) = |v12v22+v13v23|√
v2

12+v2
13

√
v2

22+v2
23

,

cos(θ1,2,3) = |v11v21+v12v22+v13v23|√
v2

11+v2
12+v2

13

√
v2

21+v2
22+v2

23
.

(17)

Now suppose that the matrix M given in (6) has the eigenvalues
λ1 = p ∈ R, and λ2,3 = a± ib with a, b ∈ R. Then the eigenvectors
of the matrix M can be written as:

(
ϑ1, ϑ2, ϑ3

)
=


1 1 1

p a − ib a + ib

p2 −b2 − 2iab + a2 −b2 + 2iab + a2

 ,

while their real part is as follows:

(
v1 v2

)
=


1 1

p a

p2 a2 − b2

 .

Substituting the aboved described into Eq. (17), we get:

cos(θ1,2) =
|1+pa|√

1+p2
√

1+a2
,

cos(θ1,3) =
|1+p2(a2−b2)|√

1+p4
√

1+(a2−b2)2
,

cos(θ2,3) =
|pa+p2(a2−b2)|√

p2+p4
√

a2+(a2−b2)2
,

cos(θ1,2,3) =
|1+pa+p2(a2−b2)|√

1+p2+p4
√

1+a2+(a2−b2)2
.

(18)

Regardless of which way is chosen, via eigenvectors as de-
scribed in Eqs. (17) or using the eigenvalues as in Eqs. (18), analy-
sis of these expressions when the parameter µ is varied yields the
same plot as in Figure 6.
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