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ABSTRACT
In the present work a detailed study is presented, on the design, programming, and investigation of the
behavior of flocking (Movement type flock), through the model of BOIDS, for its acronym in English "Bird Oid
Object" (Object type bird), which was devised by Craig Reynolds in 1986. This complex flocking behavior
that occurs arises from the interaction of simple local rules, in which complexity and sensitivity to initial
conditions are present. A measure of chaotic compound will be introduced to the algorithm by means of a new
four-dimensional autonomous hyperchaotic system based on the 3D Méndez-Arellano-Cruz-Martínez (MACM)
system. The measures proposed herein, therefore, may have the potential to predict, control, and exemplify
the behavior of group intelligence study systems that occur in nature, allowing the implementation of these
systems in groups of robots through the implementation of hyperchaotic trajectories in the future, to obtain
greater speed and efficiency, obstacle and collisions avoidance in their flights.
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INTRODUCTION

The grouping of animals that occurs frequently in nature be-
tween different types of species; such as the behavior of bee
swarms Karaboga et al. (2005), schools of fish (Pourpanah et al.
2023), flocks of birds (Duman et al. 2012), among others, has been
an inspiration for different research groups in recent years, taking
this behavior as an approach to solve very complex problems. By
studying and simulating how animals behave, scientists hope to
create powerful computational models that can solve challeng-
ing problems, optimize processes, and make decisions in ways
inspired by the efficient and adaptive strategies found in nature.

Multi-agent-based simulation (MBS) is a valuable technique
used to model flocking behavior, where collective behavior
emerges from individual interactions. It helps understand com-
plex interactions at a larger scale, which are often hard to pre-
dict, comprehend, and simulate. This difficulty arises because
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of the non-linear relationship between micro (individual agent)
and macroscopic (overall group) properties. Small changes in an
agent’s environment or rules can result in vastly different out-
comes in the simulation. Due to these complexities, MBS becomes
a powerful tool for studying and analyzing emergent phenom-
ena, providing insights into systems where traditional approaches
might fall short.

One of the most commonly used methods to simulate the emer-
gent behavior that occurs in different groups of animals in na-
ture, are the so-called boids, devised by Craig Reynolds in 1987
(Reynolds 1987). This model was the first published way of simu-
lating a fairly realistic flock simulation from an algorithm. It was
developed into an artificial life program where each individual in
the flock is called an agent, which has its own position, speed, and
orientation, exhibiting complex flock behavior that arises from the
interaction of three simple local rules:

• Separation. An agent must avoid collisions with other nearby
agents. To avoid collisions, a separation factor is added. An
agent will keep a certain distance from all other agents in his
neighborhood. If the agent finds another agent too close, it
will try to move away from them to avoid collisions.

• Cohesion. An agent must stick to the group or flock. To
ensure this, a cohesive factor is added. The agent will move
towards the average position of the neighboring agents. When
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other agents are within the neighborhood, the agent will try
to move to the midpoint of all the others.

• Alignment. The alignment rule is obtained by calculating a
force directed at the average of the velocities of the neighbors.

The three rules of separation, alignment, and cohesion will re-
sult in different vector forces that must act on the agent to which
they belong. Since animals cannot turn instantly in real life, a resul-
tant force is calculated by adding the three effective vectors. The
three forces can be applied differently by normalizing the individ-
ual vectors and then multiplying them with appropriate weights.
Therefore, the specific behavior of each agent could be induced by
the slight alteration of an aspect of the so-called flocking.

The resulting force is added to the velocity vector of the agent.
Then the speed is normalized or limited to a maximum allowed
speed. Finally, the agent’s velocity is added to its position vector
resulting in motion. The previous velocity can also be used as
the base vector for the resultant, giving each agent a flow motion
closer to what occurs in nature. Currently there are few works that
can be found about the study of boids applied to chaotic systems,
however there is great potential to use the dynamics of boids in
relation to this type of systems, since adding rules can present
behaviors that can be considered emergent, as was presented in
previous work (Itoh and Chua 2007).

In this paper, we propose implement a new rules for the be-
havior of the boids, first with the introduction of a hyper MACM
chaotic system (Méndez-Ramírez et al. 2021), where the boids are
led in this trajectory. Emerging behavior was investigated through
simulations implemented in MATLAB. After the analysis of the
movement of each boid as well as the chaotic component of their
trajectories, finally the conclusions obtained about the control of
the boids are presented.

BASIC ANALYSIS AND MODELING OF BOIDS

We consider a network of N identical nodes that will be called
boids, each node is considered like basic element with behavior de-
pending on the nature of the network, which can be modeled by a
set of nonlinear autonomous differential equations, with each boid
being an n-dimensional dynamical system. The state equations of
the entire network of boids are described as follows,

u̇i = fi(u1, u2, ..., un), i = 1, 2, ..., n (1)

where ui = (u1, u2, ..., un)T ∈ Rn is a state vector of boid i, and
f(u) = ( f1(u), f2(u), ... fn(u)) is a nonlinear vector function of u.
Given initial state ui

α(0) at t = 0, the state ui
α of each isolated boid

Bα is assumed to envolve for all t ≥ 0 via state equations,

u̇α
i = fi(u1, u2, ..., un), i = 1, 2, ..., n. (2)

For ease of modeling we will assume that all boids are identi-
cal, they are only influenced in their trajectories by those nearby
neighboring boids which are located on a sphere described as Sα,
if a boid moves in a random trajectory but in its trajectory the boid
gets close to another boid they will be coupled as long as they are
positioned at any distance inside the sphere Sα with radius ϵ as
shown in Figure 1 a),

Sα(ϵ, t) =

{
Bβ : rα,β ≜

√
n

∑
i=1

(ui
α(t)− ui

β(t))2 ≤ ϵ

}
, (3)

at time t, where rα,β indicates the distance between the boids Bα

and Bβ. We will usually delete ϵ and t from Sα(ϵ, t) and simply
write Sα to prevent confusions, see Figure 1 a.

Then, the dynamics of the nonlinear chaotic network of the locally
coupled boids defined by

u̇α
i = fi(uα

1 , uα
2 , ..., uα

n) + ∑
Bβ∈Sα

Dβ
i gi(u

β
1 , uβ

2 , ..., uβ
n),

i = 1, 2, ..., n, α = 1, 2, ..., M (4)

where Dβ
i are coupling coefficients, and g(u) =

(g1(u), g2(u), ..., gn(u)) is a nonlinear vector function of u.
The dynamics of Equation (4) describes networks of boids with

nonlinear behaviors, the number of boids belonging to Sα can
change continuously as time t increases. Since at first, the boids
can be found in random positions and speeds within some area,
and as time passes they can get closer to a certain distance within
the sphere Sα, continuously changing the number of boids in Sα.

The behaviors that make up the flock model are expressed in
terms of "close flockmates". While a boid is in motion, it does not
require full knowledge of the position and speed of each boid in
the entire herd, it only knows the information of a small subset of
it. This subset is composed of what we call the expression "near
flockmates", often used in boid modeling of steering behavior,
which refers to the awareness each boid has of the bodies of other
nearby boids, based on the distance between them. Thus the boid
has a range of perception of the world in the shape of the sphere
around it, described in Equation (3). When different boids are
within a very close distance of each other the boids perception
spheres can overlap, influencing each other’s behavior depending
on their rule parameters.

In this section, we will describe the implementation of the boid
rules. Based on the Reynolds model (Reynolds 1987), a model was
made a boid swarm model in MATLAB software, the boid model
has 5 rules: separation, cohesion, alignment, edge avoidance, and
hyperchaotic MACM attractor, described as follows.

Cohesion
The cohesion force has the objective of keeping the flock of boids

together. This means that this force will drive each agent to move
towards the average position of its nearest neighbors which is in
the volume of the sphere Sα(ϵ, t) of each boid, as shown in Figure
1 b). This is expressed mathematically in the Equation (5). Boid
cohesion is calculated using two steps.

First, the central position of the nearest neighbors of each agent
is calculated by,

uα
i (t) =

∑
β∈Sα

uβ
i (t)

Nα
, (5)

where Nα indicates the number of nearby flockmates. Then the
tendency of the boid to sail towards the visible flock center of
density uα

i (t). Therefore the control dynamics is calculated as
shown below,

u̇α
i = fi(uα

1 , uα
2 , ..., uα

n) + dα
i (u

α
i − uα

i ), (6)

where dα
i > 0.

There is a special case when there is no one around. The center
of the nearby flockmates uα

i (t) = 0. In this case, Equation (5) is not
defined and the cohesion rule does not apply.

This principle encourages boids to stay close to their neighbors,
leading to a sense of togetherness within the flock. By gravitating
towards the average position of nearby companions, the cohesion
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rule promotes collective movement, enabling boids to exhibit coor-
dinated behaviors without any centralized leadership. As a result,
the flock maintains a cohesive structure.

a)

b)

c)

r

B B

f 
d)

Figure 1 Graphic description of boids: a) Boid inside sphera Sα with
radius ϵ. Rules governing the movement of boids, b) Cohesion, c)
Separation, d) Alignment.

Separation
Separation force is the complementary force to the cohesion

force as shown in Figure 1 c). Each member of a flock tends to
avoid collision with its nearby neighbors. This tendency is called
separation or collision avoidance. In the case where the distance
rα, between the boids Bα and Bβ becomes less than δ > 0, the
boids will tend to disperse from the center of nearby flockmates.
This is calculated by the following dynamics:

u̇α
i = fi(uα

1 , uα
2 , ..., uα

n) + eα
i (u

α
i − uα

i ),

u̇β
i = fi(u

β
1 , uβ

2 , ..., uβ
n) + eβ

i (u
β
i − uβ

i ),

 (7)

where eα
i , eβ

i > 0.
The separation rule in boids algorithm is a fundamental principle

for simulating flocking behavior. Each boid maintains a minimum
distance from its nearby flockmates, preventing collisions and
promoting spacing within the group. By avoiding crowding, boids
create a sense of personal space, enhancing overall flock stability
and preventing individual boids from getting too close to each
other.

Alignment
Alignment is the process by which each boid attempts to match

its velocity and direction with that of its nearby flockmates as
shown in Figure 1 d). It promotes the cohesive and coordinated
movement of the group, leading to the emergence of flocking
behavior. This rule is essential because it enables the boids to
maintain alignment and unity without relying on any centralized
control or explicit communication between individuals.

The alignment rule is implemented as follows: each boid exam-
ines its surroundings and identifies its nearby neighbors within
a certain perception radius Sα(ϵ, t), dictating how far it can "see"
other flockmates. The boid then calculates the average velocity
of its neighbors, which represents the average direction in which
the neighboring boids are moving. The average velocity of nearby
flockmates is defined by

f α
i =

∑
β∈Sα

fi(u
β
1 , uβ

2 , ..., uβ
n)

Nα
. (8)

To align with the flock, the boid adjusts its own velocity to
match the computed average velocity of its neighbors. However,
it doesn’t do this instantaneously; instead, it gradually changes
its velocity over time to create a smooth and realistic alignment
process. This gradual adjustment prevents sudden changes in
direction that could disrupt the cohesion of the flock.

IMPLEMENTATION OF THE HYPERCHAOTIC MACM AT-
TRACTOR TO THE NETWORK OF BOIDS

The behavior of the boids is given by Reynolds (1987), and each
of the behavioral rules is expressed as a vector. These rules are
sorted by priority and added to an accumulator of the boids. This
continues until the sum of the accumulated magnitudes increases
the maximum acceleration value. In this work, the value of a new
vector given by the new 4D hyperchaotic MACM system in the
network of boids is prioritized, so that the boid has the priority to
follow the hyperchaotic attractor trajectory, see Figure 2.

The implementation of a new rule consists of placing a new 4D
hyperchaotic MACM system (Méndez-Ramírez et al. 2021), as a
new rule in the behavior of the boids. This MACM attractor is
obtained by modifying the 3D MACM system inspired by previous
works (Méndez-Ramírez et al. 2017). A hyperchaotic system is a
mathematical concept that extends the idea of a chaotic system.
It has more than one positive Lyapunov exponent, see Table 1,
this indicates greater complexity in its dynamic behavior in the
projection of the phase space in the plane (Rajagopal et al. 2018).
To create a hyperchaotic system, k chaotic systems can be coupled,
resulting in an attractor with n positive Lyapunov exponents. This
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■ Table 1 Analysis of stability of equilibrium points for a new
hyperchaotic MACM system based on the Lyapunov exponents.

Point Eigenvalues Stability

P0 λ1 = −0.5247 λ1,λ2,λ4< 0, and λ3 > 0

λ2 = −1

λ3 = 4.5361 unstable saddle point

λ4 = −6.5113

P1−4 λ1 = −0.4939 λ1,λ4 < 0, and the real part

λ2 = 0.94767 − 3.4506i λ2,λ3 > 0

λ3 = 0.94767 + 3.4506i unstable saddle point

λ4 = −4.9014

P5−6 λ1 = −0.4918 λ1,λ4 < 0, and λ2, λ3 > 0

λ2 = 1.5384

λ3 = 2.7915 unstable saddle point

λ4 = −7.3381

P7−8 λ1 = 0 λ2< 0, and the real part

λ2 = −1 λ2,λ3 < 0

λ3 = 1.25 + 0.9682i Spiral stable point

λ4 = −1.25 − 0.9682i

coupling causes the dimension of the attractor to increase, leading
to a transition from chaos to hyperchaos. As this transition occurs,
the second Lyapunov exponent increases continuously (Kapitaniak
et al. 2000), highlighting the greater complexity and richness of the
system in its behavior compared to a normal chaotic system.

The dynamics of the hyperchaotic MACM system used is defined
as follows (Méndez-Ramírez et al. 2021):

ẋ = −ax − byz,

ẏ = −x + cy + cw,

ż = d − y2 − z,

ẇ = x − w.

(9)

The given system in the Equation (9) is a mathematical repre-
sentation with ten terms, including two quadratic nonlinearities.
It also involves four parameters, denoted as a, b, c, and d, which
must satisfy certain conditions: a, b, c, d ∈ R+ and c < a + 2. In
this context, b and d are referred to as the bifurcation parameters,
which influence the system’s behavior. When the specific values
a = 2, b = 2, c = 0.5, and d = 14.5 are used in the MACM system
exhibits hyperchaotic behavior.

ALGORITHM IMPLEMENTATION HIERARCHY

The algorithm for the simulation of the boids was realized in
MATLAB software.

-30
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-10 -100

Figure 2 Hyperchaotic attractor of MACM system (9). Phase space
x versus y versus z.

A boid can have conflicting requests as long as the matching
algorithm is applied. The behavior is simply the result of the
interaction of the aforementioned rules. For example, if two boids
are moving in such a way that they are getting closer, with different
speeds, the cohesion priority could override the spacing rule, since
the boid cohesion request is opposite to the spacing rule, and
therefore they could overlap, cancel directions, the boid could
make only a small turn and crash into another boid. The highest
priority should be to avoid collisions between the boids and the
cohesion rule. Therefore, the behavior of the boids is modeled
using a rule order priority as shown in Table 2.

■ Table 2 Rule Order Priority.

Priority Order Rule

High 1 Avoid edge

High 2 Cohesion

Medium 3 Separation

Low 4 Alignment

Low 5 MACM attractor

NUMERICAL SIMULATION RESULTS

This section shows the results obtained from the numerical sim-
ulation.

Numerical simulations for two boids
Figures 3 and 4 show the modeling of two boids following

the trajectory of the hyperchaotic MACM attractor, Figure 3 show
the projections of the phase space in the planes. Figure 4 shows
the temporary states x, y, z, and w. Both figures show two boids
modeled with the strange attractor of Equation (9) system by using
the initial conditions x(0) = 0.5, y(0) = 0, z(0) = −5, w(0) = 0.51,
the parameter values a = 2, b = 2, c = 0.5, and d = 14.5. The
value of 80 has been added to each point of the solution of the
Equation (9) system, because the attractor is located from -80 to 80
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on the x axis, from -13 to 13 on the y axis, -30 to 13 on the z axis
approximately.

Computer simulations use the following parameters.

■ Table 3 MACM´s oscillator.

Rule Parameter

Flock centering dα
i = 5

Velocity matching Rmax = 2

Collision avoidance δ = 1.5

Figures 3 and 4 show the trajectories followed by two boids,
their cohesive movement as a flock. The distance between the two
boids can be seen in Figure 5, it is shown that for 1000 iterations,
the maximum distance does not exceed the value of 8, proving that
the cohesion rule holds along the trajectory of the two boids.

The value of 80 has been added to each point of the solution of
the hyperchaotic MACM system, because the attractor is located
from -80 to 80 on the x axis, from -13 to 13 on the y axis, -30 to 13
on the the z axis approximately, to facilitate the implementation in
robot trajectories in the future.

The synchronization behavior of the two boids is presented in
Figure 6. However, it is important to note that exact synchroniza-
tion is not achieved, leading to a certain thickness in the Lissajous
figures. A thinner line would indicate perfect timing, but it can
also lead to potential collisions.

In Figure 6 in particular, when considering the MACM oscil-
lators, the two boids maintain a close distance of approximately
δ = 1.5.

Error analysis in trajectories of 2 boids
The separation measure was obtained in the trajectories of two
boids, concerning the desired trajectory of the hyperchaotic MACM
attractor employing the Root Mean Square Error, commonly re-
ferred to as RMSE, which is a statistical measure used to quantify
the average magnitude of the error between predicted values and
actual values. It is frequently employed to evaluate the precision of
a predictive model. RMSE calculates the mean squared difference
between forecasted numbers and subsequently observed numbers.
the RMSE is defined by:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (9)

where n represents the total number of data points or observations
being considered, yi represents the actual observed values, y repre-
sents the predicted values from the model. An RMSE = 7.54 was
obtained for boid 1 and an RMSE = 8.56 for boid 2.

It is observed that there is a difference between the trajectory of
the hyperchaotic MACM attractor and the trajectory of the boids,
this is because of the order of priority shown in Table 2. is imple-
mented so that the boids adjust their speed and position to the
rules that define the boids, this implies that the distance between
the trajectory of the boids and the trajectory of the MACM chaotic
attractor will increase for certain coordinates, despite this, the abil-
ity of the boids to drive along the trajectory of the chaotic attractor
is observed in Figure 3.

It is worth mentioning that RMSE gives greater weight to larger
variations, as it squares off the differences before averaging. Con-
sequently, larger variations between the position of the boids con-
cerning the hyperchaotic MACM attractor trajectory have a greater
impact on the RMSE than smaller gaps.

It is observed that the distance maintained between the tra-
jectories of the two boids is less than the distance between the
trajectories of the boids and the trajectory of the hyperchaotic at-
tractor, this is because the rules of behavior are imposed, and it
is the objective in this studio. If the boids give priority to follow-
ing the trajectory of the hyperchaotic attractor, collisions could
occur between them since the separation rule would be secondary.
The scenario could also arise that the distance between them was
greater than the parameter implemented in the cohesion rule and
the boids would no longer remain together in the trajectory since
they would not recognize each other as close neighbors.
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Figure 5 Distance between two boids (MACM’s oscillators).
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Figure 7 Synchronization of 5 boids (MACM’s oscillators for
t ∈ [0, 50]. MATLAB overwrites the existing graph in some sec-
tions and plots the trajectories in order of purple, green, yellow,
orange, red, blue).

Computer simulations of the behavior of 5 boids controlled by
the hyperchaotic MACM system is illustrated in Figure 7, it is
observed that the flock of 5 boids that two boids are together all
the way from the start and as time increases. In Figure 7, it can be
seen that the trajectories are intertwined by observing the different
colors throughout the entire journey. It is observed that in some
sections the trajectories overlap over the same region in space,
observing only two or three lines.

CONCLUSION

The investigation of a nonlinear system was carried out through
the implementation of an algorithm that describes the behavior of
the boids, which are controlled by a hyperchaotic MACM system,
the implementation of this system forces the boids to follow their
attractor trajectory, induce them to follow it. In this work a network
formed by N identical nodes was considered, this behavior can be
described using a set of nonlinear autonomous differential equa-
tions. The boids maintain the three rules of cohesion, alignment,
and separation that define them while maintaining a hyperchaotic
trajectory.

It is observed that the boids have characteristics that they share
with complex systems with dynamic behavior, and emergent prop-
erties that arise from the interactions between the boids were pre-
sented.

For future work, tasks remain to be performed described below:

• Implementation of a rule for the introduction of one or more
predators in the system, where the prey are the boids.

• Implementation of the rule to avoid obstacles, which prevent
continuing with the trajectory, and the boids are forced to sur-
round them to continue with the trajectory of the hyperchaotic
attractor.

• Implement a rule to find specific targets.
• Implement a rule to adhere to a leader, the boid who is in front

will take the position of leader and the others will follow.
• Implement this study in robots through the generation of hy-

perchaotic trajectories to directly influence the behavior of
the robot’s speeds, using the inputs to the system; as are the
speeds of the engines. One of the advantages of this method is
its simplicity and ease of being implemented in mobile robots
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since it is only necessary to know the number of inputs han-
dled by the robot to implement the algorithm. For a potential
application in experimentation, we are considering the use
of quadcopters. Each quadcopter would function as a boid,
interconnected through wireless communication employing
a Wi-Fi network, facilitating information exchange through
sockets. The positional data for each boid would be acquired
either through a Motion Capture System (Mocap, such as
OptiTrack) or alternative methods like mounting cameras on
each quadcopter, implementing infrared sensors, or utiliz-
ing radio frequency triangulation. To attain synchronization
within a hyperchaotic MACM system, we propose the inclu-
sion of an additional rule, assigned a lower priority compared
to existing rules. This supplementary rule endows each boid
with a distinct speed component, individually generated by
a hyperchaotic trajectory generator algorithm as reported in
(Cetina-Denis et al. 2022). This approach aims to provide each
boid with a unique characteristic, similar to the individuality
observed in a flock of birds, where differences in size, weight
or, agility contribute to distinctive behaviors emerging from
group interactions.
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