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ABSTRACT Phononic crystal waveguides (PnCW) have been of great interest due to their properties of
manipulating or filtering the acoustic waves with which they interact. Similarly, the presence of the phenomenon
of chaos in the classical transport of particles through billiards with analogous geometries has been investigated.
With this in consideration, in the present work an acoustic system of a two-dimensional PnCW is modeled,
composed of two plane-parallel plates and a periodic arrangement of circular cylindrical inclusions with acoustic
surfaces of real materials. In this system, we use the numerical technique of the integral equation, which
allows us to obtain the pressure field corresponding to the normal modes in a range of frequencies. In addition,
spatial statistical properties of pressure intensity such as the autocorrelation function (ACF) and its standard
deviation called correlation length were calculated. The results show that when the correlation length is very
small, the system presents disordered patterns of field intensities. Thus under certain conditions, the system
under consideration presents a chaotic behavior, similar to the corresponding classical system.
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INTRODUCTION

A phononic crystal (PnC) is a periodic material that exhibits a
forbidden band structure for certain frequency ranges of acoustic
waves (Maldovan 2013). This feature allows effective control of
sound propagation, as waves cannot propagate in certain direc-
tions or specific frequency ranges. These bands are determined by
the geometric parameters and the elastic properties of the material
used in the PnC (Khelif et al. 2004). The constant study of the prop-
erties of PnCs has allowed the development of structures that offer
optimal control over wave propagation. Thanks to this, advanced
devices such as acoustic diodes, waveguides (Otsuka et al. 2013),
selective filters, and acoustic superlenses (Chen et al. 2018) have
been manufactured, among others.

Among these devices, waveguides stand out as they are used
in various scientific and technological fields; such as optics, in pho-
tonic circuits of nanometric order (Lee et al. 2016); and concerning
this work, in acoustics, in phononic crystal waveguides (PnCWs).
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PnCWs are systems composed of a periodic structure formed by
two or more fluids, or a combination of solid and fluid, that interact
with a pressure field. In fact, the crystalline structures that make
up the PnCWs are fundamental in solid state physics (Kittel et al.
1996). That is why PnCW systems have emerged as a fascinating
area of research in recent years. As these band structures exhibit
properties such as the manipulation of acoustic wave propagation,
which has shown great potential for the control and direction of
acoustic waves in a wide range of applications.

The design of PnCW involves the manipulation of parameters
such as geometry, spacing, and material composition (Jia et al. 2018).
This allows the creation of specific frequency bands where acoustic
waves can be confined and guided along predetermined paths.
This ability to control sound propagation opens up a wide range
of potential applications, ranging from acoustic signal processing
devices (El-Kady et al. 2008) to noise isolation systems (Torrent and
Sánchez-Dehesa 2008).

Similarly, there have been notable advances in the theoretical
understanding, simulation, and manufacturing of PnCWs. Ex-
haustive research has been carried out on multiple waveguide
configurations, ranging from one- to two-dimensional and three-
dimensional (Pennec et al. 2010b; Liu et al. 2020). The literature has
studied the response of PnC and PnCW systems made of different
materials such as quartz whose acoustic response is in the order of
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kiloHertz (He et al. 2020), lead-epoxy unit cell to detect different
gases at different temperatures (Zaki et al. 2020), gas and water
pipelines over the 1-50 kHz (Jing et al. 2018), stainless steel with
mechanically drilled holes filled with liquid for its characterization
by measuring its bulk modulus (Mukhin et al. 2022). These ad-
vances have allowed a greater understanding of the fundamental
principles that govern the behavior of waves in these systems, as
well as the development of more sophisticated techniques for their
design and manufacture.

Additionally, it is important to note that PnCs share various
similarities with photonic crystals (PC). One of these similarities is
the simultaneous existence of forbidden bands for both photons
and phonons (Pennec et al. 2010a). This connection between PnCs
and PCs has led us to the hypothesis that the former can also
exhibit chaotic dynamics in systems of geometries similar to the
latter (Navarro-Urrios et al. 2017). These observations open the
door to new research and explorations in the field of phononic
crystals, in search of better understanding of their behavior and
take advantage of their properties for various purposes.

Classical fields (electromagnetic, acoustic, etc.) or quantum am-
plitude probabilities share the same interesting statistical features
when, in the corresponding geometrical or classical limits (wave-
length tends to zero), the dynamics of rays or trajectories exhibit
chaos (Stöckmann 1999). Wave and quantum chaos are thus now
well-documented topics covering a wide variety of physical sys-
tems: electrons in quantum dots (Wilkinson et al. 1996), cold atoms
(Hensinger et al. 2001), surface waves (Kudrolli et al. 2001), elasto-
dynamics (Weaver 1989), acoustics (de Rosny et al. 2000; Ellegaard
et al. 2001), microwaves (Sridhar 1991; Dembowski et al. 2000) and
optical cavities (Nöckel and Stone 1997; Doya et al. 2002a). In wave
cavities for which the limit of rays exhibits chaos, wave function
statistics is generally expected to follow the predictions of Random
Matrix Theory (RMT). According to this theory, wave functions
are uniformly distributed over the whole available phase space
which is ergodically explored by the rays, thus locally resulting in
a random superposition of plane waves (Berry 1977). Neverthe-
less, some ergodic modes of chaotic billiard systems are known to
show an anomalous increase in intensity along weakly unstable
periodic orbits, a phenomenon called scarring (Heller 1984; Kaplan
1998; Ellegaard et al. 2001; Doya et al. 2002a). Two alternative ap-
proaches are generally considered to study the influence of scars
on wave statistics in chaotic wave cavities. One is devoted to the
analysis of individual scarred eigenstates (Heller 1984), while the
other is dynamical as it is based on the evolution of wave pack-
ets launched along periodic orbits (Kaplan and Heller 1999), that
generally the long time evolution yields a typical specklelike field
pattern characterized by the well-known isotropic field autocor-
relation function (ACF) (Berry 1977; Doya et al. 2002a; Kuhl et al.
2005). In this context, it is relevant to highlight that the analysis
of the ACF has proven to be a very useful tool for understanding
and characterizing both theoretically and experimentally chaotic
behavior. This technique has been particularly applied in the study
of optical fibers with non-circular cross-sections, where light rays
exhibit chaotic dynamics (Doya et al. 2002b).

There are advances in the theory of chaotic dynamical systems,
particularly the results of Sinai (Sinai 1970) and Ruelle (Ruelle
1991), on wave mechanics experiments that use microwaves for
studying the so-called quantum-classical correspondence, a central
issue in quantum chaos. The properties of closed Sinai billiard
microwave cavities have been discussed in terms of universal pre-
dictions from RMT, as well as periodic orbit contributions, which
manifest as scars in eigenfunctions and standing wave patterns

(Sridhar and Lu 2002). In an equivalent analogy we study the
acoustic-classical correspondence of the properties of the eigenval-
ues and eigenfunctions of the Sinai billiard-shaped cavities and the
2-D n-disk billiards in PnCWs. Consequently, through the ACF, it
is possible to obtain precise information about the statistical prop-
erties of the acoustic response of the study system. The ACF allows
evaluating the similarity of a signal with itself as it moves both
in time and space, especially in cases where the stationary case is
assumed. In this way, the analysis of the ACF is positioned as a
valuable tool to deepen the study of chaotic systems and contribute
to a greater understanding of their dynamic behavior.

In our study, we have considered two acoustic systems of two-
dimensional PnCWs, one of infinite length and another of trun-
cated length. These systems are composed of two plane-parallel
plates and a periodic arrangement of circular cylindrical inclusions
with acoustic surfaces of particular materials, as illustrated in Fig-
ures 1 and 2. The inclusions play a crucial role in wave behavior,
acting as reflectors and diffractors. This leads to a significant mod-
ification in the pressure field compared to the case of a PnCW
having two plates with acoustic surfaces but no inclusions.

In our numerical simulations, we have used the Integral Equa-
tion Method (IEM) (Mendoza-Suárez and Pérez-Aguilar 2016; Villa-
Villa et al. 2017), which has proven to be a powerful tool for analyz-
ing acoustic response. This method has the advantage of consider-
ing interaction between two plane-parallel plates and cylindrical
inclusions, allowing more accurate results. Through this technique,
we can investigate and understand normal mode behavior in dif-
ferent geometric configurations and frequencies, specifically in
our particular systems. This gives us greater ability to analyze the
acoustic response of our system and allows us to obtain valuable
information about its statistical properties.

METHODOLOGY

Firstly, it is necessary to find the equation that characterizes the
problem posed. The wave equation is the central element that
determines and conditions the propagation of acoustic waves in
a given medium. For this, we consider the continuum theory in
a homogeneous medium, which means that its properties in the
unperturbed state are the same everywhere. We also consider
the case of perfect fluids, as these do not deform nor allow the
propagation of transverse mechanical waves, so processes such as
energy dissipation due to viscosity are ignored. Therefore, a linear
approximation is performed on the continuity equation of mass,
the non-viscous force equation and the equation of state around an
initial stationary state of the system (Blackstock 2001), obtaining

∂s
∂t

+∇ · u = 0, (1a)

−∇p(r, t) = ρ0
∂u
∂t

, (1b)

p = Bs, (1c)

where u is the average vectorial velocity of the fluid, B is called the
adiabatic volumetric modulus, s is the condensation at any point
and p is the acoustic pressure at any point, considered harmonic
in time. As acoustics studies the generation and spatio-temporal
evolution of small mechanical perturbations (vibrations) in a fluid
(sound waves) or in a solid (elastic waves), it is natural to de-
scribe the behavior of the acoustic pressure field in the waveguide
through the Helmholtz equation, similar to Maxwell equations in
electromagnetic system, from Eqs. (1). Thus, applying the diver-
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Figure 1 Infinite 2D PnCW system diagram. The system is composed of two plane-parallel plates and a periodic arrangement of circular cylin-
drical inclusions with acoustic surfaces. The Γ contours define the unit cell of the system with periodicity in the x-direction.

gence to Eq. (1a), we obtain

−∇2 p(r, t) = ρ0∇ · ∂u
∂t

, (2)

where ∇2 is the three-dimensional Laplacian operator. On the
other hand, considering the temporal derivative of Eq. (1a) and
using ∂(∇ · u)/∂t = ∇ · (∂u/∂t), we arrive at

∂2s
∂t2 +∇ · ∂u

∂t
= 0. (3)

Now, combining Eqs. (2) and (3), can be reduced to

∇2 p(r, t) = ρ0
∂2s
∂t2 , (4)

and substituting Eq. (1c) into Eq. (4) yields the acoustic wave
equation,

∇2 p(r, t) =
1

c2
m

∂2 p(r, t)
∂t2 , (5)

where cm is the longitudinal wave velocity in the acoustic medium
given by

cm =

√
β0
ρ0

γ, (6)

as the adiabatic bulk modulus has the relation B = β0γ, with ρ0
being the constant equilibrium density. Additionally, this is a char-
acteristic property of the fluid and depends on the equilibrium
conditions. Eq. (5) is also known as the homogeneous acoustic
wave equation for pressures. For a linear acoustic pressure wave
in a unit cell p(r, t), considering the harmonic case with time fre-
quency ω; that is, p(r, t) = p(r)e−iωt, we obtain the stationary
wave equation,

∇2 p(r) + k2 p(r) = 0, (7)

being

k2 =

(
ω

cm

)2
, (8)

the magnitude of the wave vector that gives us the dispersion
relation as a function of the frequency ω and the wave speed in the
medium cm (for more detailed of acoustic wave equation deduc-
tion is suggested see (Ginsberg 2018a)). The only property of the
medium that appears in Eq. (8) is the wave speed, which depends
on conditions such as laboratory temperature and pressure and
is closely related to the opposition that the medium presents to

the propagation of the pressure wave. That is why the specific
acoustic impedance plays a fundamental role since it is the quo-
tient between the acoustic pressure at a point in the medium and
the instantaneous velocity of the particles at that point,

Z =
p
u

. (9)

There are three limit cases for the acoustic impedance of a surface
(Ginsberg 2018b); when the opposition of the medium is enormous,
that is, it is not possible to disturb the medium for any pressure,
it is said that the impedance Z → ∞ and the surface is rigid; the
opposite case of the soft surface occurs when Z → 0, so a small
pressure on surface induces a great speed. The third case is when
the quotient of impedance is one, which represents a non-reflective
medium. In addition, when impedance is finite and different from
zero, a real material will be considered, and since we consider
time-harmonic plane waves, the characteristic acoustic impedance
is given by (Beranek and Mellow 2012)

Zm = ρcm, (10)

where the density ρ is the main constitutive parameter that deter-
mines the characteristics of the propagation of acoustic waves in
the medium. The dispersion relation for real acoustic media for
real constitutive media is obtained by substituting Eq. (10) into Eq.
(8), given by

k =
ρr

Zr

ω

cm
, (11)

where ρr and Zr are the relative density and relative characteristic
acoustic impedance of the medium in relation to air, respectively.
Finally, when it comes to a system of this type, it is necessary to
consider the boundary conditions at the interfaces between the
media involved (Filippi et al. 1998),

p(1) = p(2), (12a)

cm1

Zm1

∂p(1)

∂n
=

cm2

Zm2

∂p(2)

∂n
. (12b)

The first condition tells us that the pressure is continuous on the
interface, that is, there is no net force on the interface separating the
media. The second condition tells us that the normal component
of the pressure is continuous and requires that the media involved
remain in contact (Kinsler et al. 2000).

In extreme cases of infinite or zero impedance (soft or rigid
surface) the problem is significantly simplified. When there is a
rigid surface, the normal pressure of the particles at the boundary
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is zero; that is, the second boundary condition at the interface
equals zero. Whereas, when there is a soft surface, the transmitted
wave has zero pressure amplitude at the boundary, so the first
condition at the interface equals zero (Pike and Sabatier 2001).

Let us also note the similarity between transverse electrical
polarization (TE) with a surface considered as limits a perfect
electric conductor is equivalent to the case of the soft acoustic
surface; that is, a Dirichlet problem. In the same way, the transverse
magnetic polarization (TM) is equivalent to the case of the rigid
acoustic surface; that is, a Neumann problem (McGurn 2020).

NUMERICAL INTEGRAL METHOD

To calculate the corresponding pressure intensities of the eigen-
modes of the system, we use the numerical technique of the IEM
for a PnCW (Pérez-Aguilar et al. 2013). This technique is used, in
particular, to model the interaction of waves that disturb a system
with two-dimensional bodies (Pérez et al. 2009; Mendoza-Suárez
and Pérez-Aguilar 2016). This method has two analogous ap-
proaches depending on whether the system is infinite or a finite
length. The method is based on Green’s second integral theorem in
the equation that models our problem, allowing us to obtain a sys-
tem of coupled integral equations. Subsequently, the discretization
of the system of integral equations is carried out, which results in a
set of linear equations under boundary conditions that can be rep-
resented in a single homogeneous matrix equation MX = 0 in the
case of the infinite system, and inhomogeneous MX = A for the
finite system. It is important to mention that only a finite number
of sampling points are taken into account along the contours that
define the surface of the two-dimensional system of study, which
allows savings in computational resources when numerically cal-
culating line integrals in a discrete approximation form unlike
differential methods that require a two-dimensional discrete mesh.
Next, we describe the IEM corresponding to a two-dimensional
PnCW of infinite and finite length.

Infinite waveguide
In Figure 1, P is the period of the PnCW system in x-direction; b is
the distance between the flat plates; r is the radius of the circular
inclusion, and the region enclosed by the curves Γi for i = 1, 2, 3
and 4 can be considered as an unit cell of the system. This region
contains the circular inclusion with a profile given by Γ5. Taking
into account that the system is periodic along the direction of the
waveguide, it is possible to apply Bloch’s theorem (Bloch 1929),
which states that the field can be written as a product of a plane
wave and a periodic function along its direction of periodicity as

p(x + P, y) = p(x, y) exp(−iKP), (13)

where K is the one-dimensional Bloch vector. For each j-th
medium, the two-dimensional Green’s function corresponds,
which is the equivalent solution to Eq. (7), so the general form of
the Helmholtz integral equation is

1
4π

∮
Γ

[
G
(
r, r′

) ∂p (r′)
∂n′ − p

(
r′
) ∂G (r, r′)

∂n′

]
ds′ = p(r)Θ(r), (14)

with
G(R) =

i
4

H1
0(kR), (15)

where H1
0(ζ) is the Hankel function of the first kind and zero

order, R = |r − r′| and Θ (r) = 1 if r is inside the region and
Θ (r) = 0 otherwise. Given the geometry, the problem must be
posed as a system of n equations (one for each region between

the interfaces of the different homogeneous media) in which the
boundary conditions (Eqs. (12)) must be satisfied.

To solve the Eq. (14) numerically, it is necessary to discretize by
dividing curve Γ of the j-th region into curve segments Γi of arc
length ∆s small enough so that the field and its normal derivative
are constant. Thus, the integrals of Eq. (14) for the j-th region can
be approximated as follows (Mendoza-Suárez et al. 2011)∮

Γ

[
G
(
r, r′

) ∂E (r′)
∂n′

]
ds′ ≈ ∑

n
ΦnLmn, (16a)

∮
Γ

[
p
(
r, r′

) ∂G (r′)
∂n′

]
ds′ ≈ ∑

n
Ψn′ Nmn, (16b)

where the source functions are

Φn =
∂p (r′)

∂n′

∣∣∣∣
r′=r′n

, (17a)

Ψn = p
(
r′
)∣∣

r′=r′n
, (17b)

and matrix elements are defined as

Lmn =
∫ sn+∆s/2

sn−∆s/2
G
(
r, r′

)
ds′, (18a)

Nmn =
∫ sn+

∆s
2

sn− ∆s
2

∂G (r, r′)
∂n′ ds′. (18b)

In the previous expressions, the subscript m denotes the observa-
tion point and n the integration point. Substituting Eq. (15) in Eqs.
(18) to obtain explicit forms, it is also necessary to consider that the
Green function has a removable singularity in the two-dimensional
case at r = r′; since this is where the point source that gives rise
to this function is located. We then got the fact that Eqs. (18) are
respectively (Mendoza-Suárez and Villa-Villa 2006)

Lmn = [1 − δmn]
i∆s
4

H(1)
0

(
kj |rm − rn|

)
+

+

[
i∆s
4

H(1)
0

(
kj

∆s
2e

)]
δmn

(19)

and

Nmn = [1 − δmn]
i∆skj

4
nn · (rm − rn)

| rm − rn]1
H(1)

1

(
kj |rm − rn|

)
+

+

[
1
2
+

∆s
4π

nn · t′n

]
δmn,

(20)

where nn is the normal to the contour Γ at the point rn and t′n is
the curvature vector of the surface at the same integration point.

Therefore, we have converted the set of integral equations given
by Eq. (14) into a homogeneous system of linear equations,

∑
n

ΦnLmn − ∑
n

pn Nmn ≈ p(r)Θ(r), (21)

which can be represented by matrices such as

M (K, ω) X (K, ω) = 0, (22)

where M (K, ω) is the representative matrix associated with the
system, X (K, ω) are the source functions to be found that depend
on the Bloch vector K and the frequency ω. Since the system of
linear equations is homogeneous, a non-trivial solution can be
obtained if the determinant of this matrix is zero. It is possible to
determine the band structure, defining the function

D (K, ω) = ln (det M (K, ω)) , (23)
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which presents local minimum points that will give the numerical
dispersion relation ω(K), that determine the eigenmodes of the
system for a specific frequency.

For the idealized cases where soft or rigid acoustic surfaces
are present, which are characterized by having zero and infinite
impedance respectively, the problem is significantly simplified.
For example, in the case of the soft surface, the field is zero so there
is no pressure inside the surface, on the other hand, in the case
of the rigid surface, the normal derivative of the field is zero, so
modes propagate even with the surface (Pike and Sabatier 2001).

Finite waveguide
Because in nature the dimensions of this type of system is finite,
we can model a more realistic system taking the case of PnCW
characterized by the number of consecutive unit cells to choose,
thus we can truncate the infinite system to obtain a finite model
of the waveguide as shown in Figure 2. Furthermore, we consider
a plane pressure wave of pressure that interacts with the system
at normal incidence; so in addition to the theory already men-
tioned, together with the fact that we are now dealing with matrix
inversion problem (that is, a homogeneous matrix system) an inci-
dent pressure beam is considered (in region R0) and calculation of
scattered pressure field as response of the waveguide.

Since we have already described the integral numerical method,
we use Eq. (14) in such a way that we can express the field in
region R0 as

p(0)(r) = p(0)inc(r)+
1

4π

M

∑
j=1

∫
ri

[
G
(
r, r′

) ∂p (r′)
∂n′ −

−p
(
r′
) ∂G (r, r′)

∂n′

]
ds′.

(24)

The terms on the right side correspond to the incident pressure
field and the scattered pressure field, respectively. Then, for the
other regions, when approximating to the observation point, we
obtain

p(j)(r)Θj(r) =
1

4π

∮
ri

[
ρr,j

Zr,j
Gj

(
r, r′

) ∂pj (r′)
∂n′ −

−pj
(
r′
) ∂Gj (r, r′)

∂n′

]
δjids′,

(25)

where Θj (r) = 1 if r is inside the j-th medium or zero otherwise, δji
is the Kronecker delta and ρr,j, Zr,j are the density and impedance
of the j-th medium relative to that of air, respectively. With this the
inhomogeneous algebraic system is found that has the field and
its normal derivative as unknowns.

To deal with the finite PnCW problem with method described
above, it is necessary to make assumptions about the incident

pressure field. Once the sources Ψ(j)
n and Φ(j)

n are obtained, with
j = 1, 2, . . . , M bodies (using the notation of Eqs. (17)), the field
can be calculated at any point within the pressure regions that
constitute the system using the same integral equations. If r ∈ R0,
that is, the propagation region, the corresponding equation is

Ψ(0)
m =

N

∑
n=1

L(0)
mnΦ(0)

n −
N

∑
n=1

N(0)
mn Ψ(0)

n − Ψinc(0)
m , (26)

where, the incident pressure field is expressed as

Ψ(inc )(r) = Ψ0eik·r, (27)

where Ψ0 is a constant with appropriate units, k is the propagation
wave vector and r is the position of each point at which the wave
comes into contact. On the other hand, for the other regions r ∈ Rj,
the associated equation is

Ψ(j)
m =

N

∑
n=1

L(j)
mnΦ(j)

n −
N

∑
n=1

N(j)
mnΨ(j)

n . (28)

RESULTS

In the programming of the integral equation method, the Message
Passing Interface (MPI) protocol was implemented to reduce the
computation time for obtaining results. To obtain reliable results in
the case of high frequencies, it is necessary to use small discretiza-
tion intervals ∆s. To ensure the accurate approximation of the
integral corresponding to the profile that models the system, the
intervals must be smaller than the periodicity of the system, which
is related to the wavelength λ = 2πcm/ω. Thus, it is necessary
that ∆s ≪ λ. Furthermore, since statistical properties envision
disordered behavior in systems where chaos phenomenon occurs,
we calculated the average of the ACF for several data sets. This
tells us the similarity between the behavior of the function at a
given point and its behavior at any consecutive point.

Autocorrelation Function
An important mathematical tool for the interpretation of numerical
data is the ACF. The ACF defines how data points in a spatial (or
temporal) series relate, on average, to previous data points. In
other words, it measures the self-similarity of the data set (Vilela
et al. 2013).

The ACF for a pattern of acoustic pressure field intensity, I(r),
in the unit cell is defined as:

ACFj ≡
Np

∑
i=1

(
I (ri)− µ

(
I
(

ri−j

)
− µ

)
/Np

σ2 , (29)

being the average value of I,

µ =
Np

∑
i=1

I (ri)

Np
(30)

and the variance,

σ2 =
Np

∑
i=1

(I (ri)− µ)2

Np
, (31)

where Np is the number of sampling points with coordinates
(xi, y (xi)). In this case y(x) being fixed, with 0 < x < P in the
infinite system and 0 < x < 10P in the finite system and the
subscript j indicates the value of the ACF with respect to the j-th
coordinate point. In this way, autocorrelation was calculated using
points located in the upper middle section of the waveguide. The
autocorrelations of the intensity patterns that we will show in this
work result from correlations between the values of intensity I(r)
themselves. The ACF is positive when the relationship between
values is linear (they are very similar), it is negative when the
relationship is linearly inverse (they are very different) and it is
null when there is no linear relationship (Montenegro-García 1989;
Legendre 1993). A quantity that could be even more important
is the standard deviation of the ACF, known as correlation length
lc, which helps us to compare the cases considered since it is a
measure used to quantify the dispersion of a set of numerical data
(Doya et al. 2002a). Due to the oscillatory nature of the ACF, the
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Figure 2 Finite 2D PnCW system diagram.

length of the correlation is related to the typical speckle grain size.
Therefore, the decrease in the length of the correlation as the fre-
quency increases is a characteristic feature of chaos or equivalently
of the presence of a positive Lyapunov exponent (Sugihara and
May 1990).

Infinite PnCW
Let us consider the system illustrated in Figure 1 with a periodicity
P = 2π µm in one direction, a plate spacing b = 2π µm, a periodic
arrangement of circular inclusions with a filling fraction f for a
sufficiently small discretization step ∆s = 0.0126 µm for better data
acquisition. Furthermore, the determinant function D (kr = 0, ωr)
was calculated for a number of frequencies given by nω = 400
choosing a particular propagation mode given by (kr = 0, ωr). The
system is modeled in particular for a brass inclusion, however, it
is possible to apply the method for different types of materials
considering the characteristic acoustic impedance of the inclusion.
In the case of brass it is given by a value of Z = 40 MRayls, which
is a real rigid surface; while the top and bottom plates of the system
are composed of an ideal soft acoustic material.

First, the inclusion centered on the unit cell with a filling fraction
factor of f = 0.003 is considered. The pressure field intensities
as well as the ACFs are obtained. The numerical results obtained
range for frequencies from 504.8964 MHz to ω = 199.308 GHz
(from ultrasound to hypersonic) are shown in Figure 3. Data sets
are taken along 1200 different lines parallel to x that are equidistant
a distance ε > 0. Each of the ACFs are calculated from NP = 3063
sampling points and the ACFs are averaged showing behavior that
tends to zero with increasing frequency. Similarly, pressure field
intensity patterns are obtained for a brass inclusion with a larger
value of the filling fraction factor f = 0.3, leading to different
vibration modes as seen in Figure 4. The parameters used and
obtained are compiled in Table 1 for both cases.

The numerical results of infinite PnCW with different filling
fractions shown in both tables indicate that the value of the correla-
tion length is smaller as the frequency increases. Such decrease in
the correlation length deduced from the standard deviation of the
spatial ACF with increasing frequency is a characteristic feature of
chaos (or equivalently, of the presence of a positive Lyapunov expo-
nent) (Sugihara and May 1990). Furthermore, it complies with the

acoustic-classical correspondence of the already known properties
of the eigenvalues and eigenfunctions of the Sinai billiard-shaped
cavities. This also provides further evidence that the acoustic
modes in a PnCW at high frequencies (small wavelengths) is a
deterministically chaotic system.

To break the symmetry of the unit cell, the inclusion is placed in
the upper right corner of the unit cell for both values of the filling
fractions previously considered. Observing in Figures 5 and 6 how
field pressure patterns change as the frequency ω increases, we
see that modes inside the inclusion in some cases differ greatly
from the form held outside it. However, the continuity of the field
is maintained by boundary conditions. Table 2 shows the values
obtained for both figures.

■ Table 1 Numerical results of infinite PnCW with centered
brass inclusion.

f ω (MHz) lc

0.003 504.8964 0.37695

0.003 16958.3923 0.12054

0.003 66640.7837 0.06492

0.003 199308.6716 0.0555

0.3 509.2547 0.38954

0.3 16957.3781 0.11355

0.3 66640.9522 0.16325

0.3 199229.8121 0.10516

Finite PnCW
Let us now consider a more realistic system, such as the finite
PnCW of length d = 20π µm, plate spacing b = 2π µm, which
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Figure 3 Pressure field intensity patterns and their respective ACFs
for an infinite PnCW with small brass inclusion ( f = 0.003) centered
on the unit cell. The frequency values chosen for each field pattern
are indicated in Table 1.

■ Table 2 Numerical results of infinite PnCW with non-
centered brass inclusion.

f ω (MHz) lc

0.003 491.8217 0.38589

0.003 16956.8086 0.087289

0.003 66629.7729 0.071931

0.003 199323.604 0.050629

0.3 601.8675 0.31883

0.3 16953.4455 0.132

0.3 66646.2891 0.12757

0.3 199323.604 0.069709

Figure 4 Pressure field intensity patterns and their respective ACFs
for an infinite PnCW with a large brass inclusion ( f = 0.3) centered
on the unit cell. The frequency values chosen for each field pattern
are indicated in Table 1.
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Figure 5 Pressure field intensity patterns and their respective ACFs
for an infinite PnCW with small brass inclusion ( f = 0.003) non
centered on the unit cell. The frequency values chosen for each field
pattern are indicated in Table 2.

have a thickness of l = 30 µm to avoid edge effects and 10 brass
inclusions with filling fraction of f = 0.3 distributed by a period
P = 2π and the discretization of the mesh given by ∆s = 0.00338
µm (see Figure 2).

As in the finite system, brass inclusions are considered, while
the plates are made of soft acoustic material. The pressure field
intensities that were obtained for frequencies from ω = 830 MHz
to 66 GHz are shown in Figure 7. The values considered for the
case of a finite PnCW are shown in Table 3. The respective ACFs
are calculated from NP = 6254 sampling points in the same way
over the average of 1200 ACFs of the data set within the PnCW.
From the average of the ACFs, the minimum correlation length of
lc = 0.034718 corresponding to the highest frequency is obtained.
Similar to the case of the infinite system, in both cases the increase
in frequency results in a decrease in the correlation length, which
we also attribute to the fact that the system response is chaotic.

Figure 6 Pressure field intensity patterns and their respective ACFs
for infinite PnCW with a large brass inclusion ( f = 0.3) non centered
on the unit cell. The frequency values chosen for each field pattern
are indicated in Table 2.

■ Table 3 Numerical results of finite PnCW with centered
brass inclusion.

f ω (MHz) lc

0.3 830.269 0.20757

0.3 8459.2819 0.087232

0.3 16742.771 0.065393

0.3 33153.8227 0.038081

0.3 66260.371 0.034718
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Figure 7 Pressure field intensity patterns and their respective ACFs
for a finite PnCW with 10 large brass inclusion ( f = 0.3) centered on
the waveguide. The frequency values chosen for each field pattern
are indicated in Table 3.

CONCLUSION

We conducted a theoretical and numerical study to analyze the
chaotic effects in phononic crystal waveguides composed of two
plane-parallel plates and a periodic arrangement of circular cylin-
drical inclusions with acoustic surfaces of real materials. We used
the numerical integral method to study the acoustic response of
the system and examine the chaos phenomenon present in it. In
our simulations, we have observed that the periodic arrangement
of circular cylindrical inclusions in our acoustic systems has a
notable impact on the pressure field intensity patterns as the fre-
quency increases. This effect has been studied using the ACF and

it has been observed that the correlation length decays at higher
frequencies in both types of systems considered. This behavior
is an indication of the presence of chaotic behavior in the system
due to non-periodicity and disordered response. These findings
support our initial hypothesis and demonstrate that inclusions in
the system introduce complex and chaotic dynamics in the propa-
gation of acoustic waves. Our study has also revealed that the size
and arrangement of circular cylindrical brass inclusions influence
the acoustic response of the system. By changing the radius and
position of the inclusions, significant changes in the intensity of
the acoustic pressure field can be obtained. In summary, numerical
analysis using the Integral Equation Method has allowed us to
better understand the behavior of two-dimensional PnCW acous-
tic systems. This approach offers opportunities for design and
optimization of acoustic devices with customized properties, and
their application in fields such as sound engineering, acoustic com-
munication, and noise control. Furthermore, the phenomenon of
chaotic dynamics in PnCW could give rise to applications such as
the detection of defects in crystal geometry with ACF, the transmis-
sion and control of acoustic waves with metamaterials (Deymier
2013), or information encryption (Bose and Pathak 2006; Zhou et al.
2014).
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