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ABSTRACT This paper presents the emergence of two collective behaviors in interconnected networks.
Specifically, the nodes in these networks belong to a particular class of piece-wise linear systems. The global
topology of the network is designed in the form of connected subnetworks, which do not necessarily share the
same structure and coupling strength. In particular, it is considered that there are two levels of connection,
the internal level is related to the connection between the nodes of each subnetwork; while the external
level is related to connections between subnetworks. In this configuration, the internal level is considered to
provide lower bounds on the coupling strength to ensure internal synchronization of subnetworks. The external
level has a relevant value in the type of collective behavior that can be achieved, for which, we determine
conditions in the coupling scheme, to achieve partial or complete cluster synchronization, preserving the
internal synchronization of each cluster. The analysis of the emergence of stable collective behavior is
presented by using Lyapunov functions of the different coupling. The theoretical results are validated by
numerical simulations.
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INTRODUCTION

In recent years, there has been a growing interest in the study of
networks containing subnetworks, spanning various scientific and
technological fields. This is because studying interconnected net-
works plays a fundamental role in modeling systems composed
of multiple interacting components (Huang et al. 2008; Mucha
et al. 2010; Lu et al. 2014; Boccaletti et al. 2023). Usually, a network
of subnetworks is considered to be composed of a large set of
interconnected groups, where subnetworks, clusters, or communi-
ties can be identified, sharing a common topological or dynamic
classification feature (Chen et al. 2014; Kenett et al. 2015). Further-
more, synchronization in complex dynamic networks has many
applications in different fields as secure communications (Méndez-
Ramírez et al. 2023; Zhou and Wang 2016).
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In this field, research approaches can be categorized into two
main lines. The first line concentrates on the analysis of the struc-
tural or spectral properties of networks of subnetworks, with the
primary objective of characterizing the "subnetwork structure" of
a complex system. This involves the identification of groups of
closely interconnected nodes that can address aspects such as tran-
sitivity, degree distribution, the presence of recurring patterns,
as well as the spectral characteristics of their Laplacian matri-
ces (De Domenico et al. 2013; Cozzo et al. 2016; Tang et al. 2023;
Katakamsetty et al. 2023). The second research line focuses on the
dynamic properties of networks of subnetworks, where each sub-
network is composed of nodes with similar or identical dynamic
properties Kenett et al. (2015). In this context, the principal objec-
tive is to describe the development of collective motion within
these subnetworks, which includes the observation of various pat-
terns of synchronized behavior and other dynamic phenomena
(Liu et al. 2023; Arellano-Delgado et al. 2023; Boccaletti et al. 2014,
2023; Lu et al. 2014).

Many recent studies have been dedicated to analyzing the emer-
gence of collective behavior in subnetworks, often defining two
types of collective behaviors: inner synchronization and outer syn-
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chronization. Usually, outer synchronization, also referred to as
complete synchronization, happens when all nodes within a net-
work of subnetworks synchronize their dynamics, demonstrating
that same behavior or state. In outer synchronization, there is no
distinction between nodes or subnetworks of nodes; instead, the
entire network functions as a single coherent unit. This synchro-
nization is typically observed in networks with strong couplings
or interactions between nodes, where information and dynamics
propagate swiftly throughout the network, resulting in a collective
behavior where all nodes converge to the same state.

On the other hand, inner synchronization, also referred to as
local synchronization or cluster synchronization, occurs when a
subnetwork of nodes within a network achieve synchronization
of their dynamics while maintaining distinct dynamics between
the subnetwork or cluster (Ruiz-Silva and Barajas-Ramírez 2018;
Ruiz-Silva 2021). In other words, nodes within each subnetwork
synchronize with one another, while nodes in separate subnet-
works exhibit distinct behaviors. Inner synchronization is often
observed in networks with a modular or hierarchical structure,
where nodes within the same module or hierarchy exhibit stronger
synchronization with each other compared to nodes outside their
respective module or hierarchy. It should be noted that most pre-
vious studies on cluster synchronization analyze the collective
behavior for networks in which nodes are different systems where
different emergent behaviors are mainly related to the nature of the
nodes. However, there are few investigations focused on the syn-
chronization problem for a set of dynamical systems that exhibit
different collective behaviors in networks with identical nodes,
where depending on the correlation between the states and the
dynamical systems involved is the type of collective behavior that
appears.

The simplest type of synchronization to identify is when states
oscillate identically, and when they oscillate differently it is known
as generalized synchronization. In particular, we consider piece-
wise linear systems, since represent a specific category of dynamic
systems that display linear properties within discrete regions of
their state space, delimited by potentially nonlinear boundaries.
These systems have proven to be valuable tools for modeling a
wide range of phenomena in various disciplines, from physics to
biology and engineering. In this research, we focus on the analysis
of networks whose nodes are piece-wise linear systems, adding a
layer of complexity to the interconnected dynamics. The use of this
type of system is attributed to its facilitation of stability analysis for
network models. Furthermore, there exist prior results regarding
the synchronization of these systems in regular network models
(Ruiz-Silva et al. 2022b; Ávila-Martínez et al. 2022; Ruiz-Silva et al.
2022a).

In this work, our primary focus is on the exploration of the
emergence of collective behaviors in interconnected subnetworks
under changes in the nature of coupling scheme, which have been
configured with two levels of interconnection. The internal level
pertains to individual connections within each subnetwork, while
the external level encompasses connections between different sub-
networks. It is imperative to highlight that the external level serves
a dual role, as it not only facilitates communication between sub-
networks but also plays a crucial role in determining the collective
behaviors observed in the entire network. Furthermore, in order to
simplify the analysis, the nodes are regarded as a specific class of
piece-wise linear systems capable to displays infinite scrolls along
one-dimensional grid (Gilardi-Velázquez et al. 2017).

In particular, we consider a network of identical multiscroll
systems where the coupling scheme is linear, bidirectional, and

diffusive, for which the emergence of stable collective behavior
is analyzed. For this purpose, we consider that systems are cou-
pled by one, two, or three state variables. There is a theoretical
analysis to determine the conditions under which synchronization
arises using a common Lyapunov function for all the nodes in
an unweighted network. The stabilization analysis, in the syn-
chronization problem between clusters in a complex network, is
interesting because the individual dynamics of each cluster can
have a different qualitative behavior that depends on the initial
conditions and its inner coupling, hence the steady state of the syn-
chronous solution. It isn’t easy to know it a priori due to sensitivity
to initial conditions. Moreover, numerical simulations are used to
illustrate the emergent behavior in the networks of multi-scrolls as
partial and complete cluster synchronization.

The rest of the document is structured as follows: First, we
introduce multi-scroll systems, the subnetwork model, and the
construction of the subnetwork network model. Second, we ana-
lyze the synchronized behavior for a subnetwork and network of
subnetworks using Lyapunov stability theory. Third, we present a
case study, followed by numerical simulations that illustrate our
result. Finally, we conclude with a discussion of our findings.

PRELIMINARIES

Multi-scroll System
In literature, various approaches have been proposed for gener-
ating attractors with multiple scrolls (Campos-Cantón et al. 2010;
Echenausía-Monroy and Huerta-Cuéllar 2020). It is widely known
that the generation of this type of attractor is influenced both by
the stability properties of the generated equilibrium points and the
choice of an appropriate switching function for implementation.
In general terms, it is possible to evaluate the stability of the equi-
librium points in these systems by applying the theory of Unstable
Dissipative Systems (UDS). This theory is formulated within a
three-dimensional manifold encompassing dissipative and conser-
vative components. Consequently, the coexistence of these two
components results in the emergence of attractors referred to as
multi-scroll attractors (Campos-Cantón et al. 2012; Campos-Cantón
2016).

As a previous work (Gilardi-Velázquez et al. 2017), we consider
that each node is a nonlinear dynamical system defined for a
specific class of affine linear systems given by the round function
which is defined as follows:

ψ̇i = Aψi + B(ψi),
ẋi

ẏi

żi

 =


yi

zi

−a31xi − a32yi − a33zi

+


0

0

c ∗ Round
( xi

0.6
)

 , (1)

where ψi = [xi, yi, zi]
T ∈ R3 is the state vector of the i-th node,

the constant matrix A = {aij} ∈ R3×3 is the linear operator of the
system, and B = [b1, b2, b3]

T ∈ R3 is the affine vector. It should
be noted that the behavior of the system (1) is determined by the
spectrum of matrix A, which can generate a wide variety of combi-
nations and, therefore, various dynamic behaviors. In particular,
(Gilardi-Velázquez et al. 2017) introduced a commutation law be-
tween different regions of the phase space, reflected in the affine
vector B, which is controlled by the Round(x) function. So that the
system can show infinite scrolls along one dimension or infinite
attractors for a specific bifurcation parameter, in this work we just
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consider the parameters for which the systems display infinite
scrolls.

Under these conditions, an example of the system described in
equation (1) is shown in Figure 1 for a31 = 10.5, a32 = 7.0, a33 =
0.7, and c = 6.3 with initial condition ψ0 = [3, −0.5, 0.5]T . In Figu-
re 1(a) we show the projection of the multi-scroll system onto the
planes (xi, yi), (xi, zi), and (yi, zi). Figure 1(b) corresponds to the
temporal behavior of the states xi, yi, and zi with arbitrary units
(a.u.) time. Additionally, in Figure 2 we show the phase portrait of
the resulting attractor.

Figure 1 Projection of trajectories of the system (1) onto the the
planes (xi, yi), (xi, zi) and (yi, zi), and time series with initial condi-
tion ψ0 = [3,−0.5, 0.5]T marked by black asterisk.

Subnetworks model

Consider a regular dynamical subnetwork (RDS) formed by a set
of r interconnected nodes, where each of the node is a multi-scroll
system (1), and the interaction structure between them is modeled
by a regular graph. Therefore, the individual dynamics of each
node in the subnetwork of the RDS is given by:

ψ̇
[k]
i = f (ψ[k]

i ) + g[k]
r

∑
j=1

ℓ
[k]
ij Γ[k]ψ

[k]
j , for i = 1, 2, · · · , r. (2)

Here, the supra-index k indicates the label of each subnetwork,

ψ
[k]
i = [x[k]i , y[k]i , z[k]i ]T ∈ R3 is the state vector of i-th node in

k-th subnetwork; f (ψ[k]
i ) = Aψ

[k]
i + B(ψ[k]

i ) determines the dy-
namics of an isolated node, i.e., multi-scroll system. The constant
g[k] > 0 denotes the uniform coupling strength of the subnetwork;
Γ[k] ∈ R3×3 is a zero-one diagonal matrix describing the internal
coupling between nodes in the k-th subnetwork. The Laplacian
matrix gives its external coupling configuration for each subnet-

work, L[k] = {ℓ[k]ij } ∈ Rr×r, which is considered to be a regularly
connected graph. Furthermore, we assume that each subnetwork

Figure 2 Multi-scroll attractor, in the phase space (xi, yi, zi) with the
initial condition ψ0 = [3,−0.5, 0.5]T .

is connected, i.e., that there are no isolated nodes in the subnet-
work. As a result, the Laplacian matrix, L[k], is a symmetric and
irreducible matrix, with just one zero eigenvalue and all other
eigenvalues strictly negative (Wang and Chen 2002).

Notice that in general, the set of admissible structures L[k] may
include all possible patterns of connections. However, it is neces-
sary to determine some restrictions when establishing the model
for a network of subnetworks. Although they may be networks
with different topologies, they must contain the same number of
nodes.

Defining χk = [ψ
[k]
1 , ψ

[k]
2 , · · · , ψ

[k]
r ] ∈ R3r as the state variable

of a single subnetwork. Then, (2) can be expressed as

χ̇[k] = F[k](χ[k], g[k], Γ[k], L[k]). (3)

In what follows we will use the following shorthand notation,
F[k](χ[k]), for the dynamics of the k-th subnetwork, whose elements
depend on the coupling matrix, the connection strength and the
internal dynamics of the nodes.

Network of subnetworks
Now, consider that M subnetworks are interconnected in a network
model. In this context, the dynamical equation of the full system is
described as follows

ψ̇
[k]
i = f (ψ[k]

i ) + g[k]
r

∑
j=1

ℓ
[k]
ij Γ[k]ψ

[k]
j +

M

∑
l=1

dkl H
[l]ψ

[l]
i , (4)

for i = 1, 2, · · · , r, and k, l = 1, 2, · · · , M. Note that the first two
terms on the right-hand side of (4) represent the individual dy-
namics of each subnetwork, whose elements were described in (2).
While the third element to the right-hand side of (4) is related to
the coupling among subnetworks.

Hence, H[l] is the inner connection matrix for nodes in different
subnetworks, and the D = {dkl} ∈ RM×M elements belong to the
outer connection matrix for different subnetworks, which is con-
structed as follows: if a node in the k-th subnetwork is connected
with its replica in the l-th subnetwork thus dkl ̸= 0 (with k ̸= l),
otherwise dkl = 0, and dkk = −∑M

l=1 dkl for k, l = 1, 2, · · · , M.
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In vector form the eq. (4) can be written as:

χ̇ = F(χ) + (D ⊗ H)χ (5)

where χ = [χ[1], χ[2], · · · , χ[M]]T ∈ R3rM, is the state equations
of the networks of subnetworks, with χ[k] ∈ R3r; D ∈ RM×M is
the outer connection matrix described in the previous paragraph,
while H = Diag(H[1], H[2], · · · , H[M]) ∈ R3r×3r, and ⊗ denotes
the Kronecker product. It is worth noting that the network model
describes all kinds of topologies, where they can consider connec-
tion patterns with uniform weights or non-uniform connections.

An example of our proposed structures is shown in Figure 3. In
this case, both networks are composed of six subnetworks made
up of r = 4 nodes, each of the subnetworks is represented by a
color, and black lines represent the connections between the sub-
networks. In Figure 3(a) all subnetworks have a star structure with
a bidirectional coupling. Additionally, the connection between
subnetworks is through a bidirectional ring structure. In Figure
3(b) the subnetworks have different topologies, and the connection
between subnetworks is shown with some directed links.

Figure 3 Two schematic illustrations of a network consisting of six
subnetworks. Each subnetwork is represented by a color, and black
lines represent the connections between subnetworks.

For complex dynamical networks, one of the most investigated
collective behavior is synchronization, which occurs when the
dynamics of its nodes are correlated over time (Chen et al. 2014;
Pecora and Carroll 1998; Arenas et al. 2008). There are several
definitions of synchronization among nodes in a network (Arenas
et al. 2008). Even the definitions can be extended when consid-
ering the synchronization problem in a group of interconnected
subnetworks.

In this paper, we will mainly focus on complete synchroniza-
tion when discussing the subnetwork model. According to (Chen
et al. 2014; Ruiz-Silva et al. 2021), a subnetwork of uniform, linearly,
and diffusively coupled identical dynamical systems with a state
equations description given by (2) is said to achieve (asymptoti-
cally) synchronization, if all the solutions converge to the same
solution s[k] as t tends to infinity. For any initial condition in the
neighborhood of the synchronization solution, one has that

lim
t→∞

∥ψ
[k]
i − s[k]∥ = 0, for i = 1, 2, · · · , r. (6)

where s[k] ∈ R3 satisfies the dynamics of an isolated multi-scroll
attractor ṡ[k] = A(s[k]) + B(s[k]).

To demonstrate that each subnetwork achieves the synchroniza-
tion there are different methodologies. Following the proposal in

(Ruiz-Silva et al. 2021) where they define the error as ei = ψ
[k]
i − s[k]

for each i = 1, 2, · · · , r, and the error dynamics are linearized

around the synchronization solution and diagonalized in terms of
the eigenvalues of the Laplacian matrix for a subnetworks, result-
ing in the λ2 criterion for the stability of the synchronized solutions.
Therefore, the following Theorem has been reconstructed to estab-
lish complete synchronization on subnetwork:

Theorem 1 (Ruiz-Silva et al. 2021) The RDS (2) achieves the complete
synchronization (5). If the internal coupling matrix Γ[k] ∈ Γcs with

Γcs = {Diag(1, 1, 1), Diag(1, 0, 1), Diag(1, 1, 0), Diag(1, 0, 0)},
(7)

and the coupling strength, g[k] ∈ R+ satisfies the condition:

g[k] ≥ |d∗|
|λ[k]

2 |
(8)

where d∗ is a non-positive constant, and λ
[k]
2 is the largest nonzero

eigenvalues of L[k] ∈ Rr×r.

The above theorem is a useful result to simplify the analysis of
the collective behaviors that can arise in a network of subnetworks.
Therefore, when each subnetwork has completely synchronized
the solution to (2) has r identical components s[k] ∈ R3, which we
write as S[k] = [s[k], s[k], · · · , s[k]]T ∈ R3r.

In this paper, our aim is to find sufficient conditions for the
interconnected subnetwork to achieve different collective behavior.
Since that we assume that each subnetwork achieves complete
synchronization then the global analysis of collective behavior can
be transformed into the synchronization problem for a weighted
network. In this context, the complete and cluster synchronization
between subnetworks is defined as follows:

Definition 1 The network of subnetworks (4) is said to achieve identical
synchronization, if

lim
t→∞

∥S[k] − S[l]∥ = 0, for k, l = 1, 2, · · · , M (9)

where the symbols ∥ · ∥ is the Euclidean norm of a vector, and S[k]

and S[l] are the synchronous solutions of the k-th and l-th subnetworks,
respectively.

Definition 2 The network of subnetworks (4) is said to achieve cluster
synchronization, if nodes in the same subnetwork achieves the complete
synchronization, in the sense of equation (6), and the differences among
the synchronization solutions of different subnetworks do not converge to
zero, i.e.,

lim
t→∞

∥S[k] − S[l]∥ = ϵ, for k, l = 1, 2, · · · , M (10)

where ϵ ∈ R+, and S[k] and S[l] are the synchronous solutions of the
k-th and l-th subnetworks, respectively.

Synchronization stability analysis
To begin our analysis of the emergence of synchronized behavior in
the network of subnetworks, we have the following assumptions:

A1. The interconnected subnetworks contain the same number of
nodes.

A2. For simplicity, the inner connected matrices H[l] are the same
throughout the network of the subnetworks model to be stud-
ied.
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A3. From each weighted outer connected matrix D we obtain the
unweighted matrix B whose elements are

bkl =

1 dkl ̸= 0

0 dkl = 0
, for k, l = 1, 2, · · · , M and k ̸= l. (11)

and bkk = −∑M
k=1,k ̸=l bkl . Also, these matrices satisfy the

following condition

λ2(D) ≤ d̃λ2(B). (12)

Similar to the case of a simple network, we need to find suf-
ficient conditions to achieve complete synchronization or clus-
ter synchronization. Firstly, we assume that there exists a global
synchronization solution S ∈ R3rM, to which all subnetworks
are synchronized so that analysis can be carried out. Here, the
synchronization solution, S, may be an equilibrium point of the
subnetwork, the average dynamics of all subnetworks, some peri-
odic orbit, or a chaotic solution. Therefore, we define the error as
Ek = S[k] − S for k = 1, 2, · · · , M, and its variational equation as
follow

Ėk = F(Ek + S)− F(S) +
M

∑
j=1

dkl HEl (13)

The stability of the solution S[k] for the subnetwork intercon-
nected in a weighted network can be established following a simi-
lar procedure as in (Ruiz-Silva et al. 2021; Ruiz-Silva and Barajas-
Ramírez 2018). That is, by establishing stability conditions for an
unweighted network, and the difference between the weighted
and unweighted outer Laplacian matrices, we obtain sufficient
conditions to guarantee synchronization. The result is stated in the
following result:

Theorem 2 Consider a dynamical network of M identical subnetworks
(4), which satisfy conditions the Asssumptions A1. and A2.. If the
elements of the outer connection matrix D satisfies

dkl ≥
|d∗|
|µ2|

, (14)

where d∗ is a non-negative constant and µ2 is the second largest eigen-
value of the unweighted outer connection matrix (Assumption A3.),
then Ek = 0 for all k = 1, 2, · · · , M. Consequently, the network of
subnetworks achieves synchronization.

Proof: To prove the stability of the systems (13) a Lyapunov func-
tion is chosen as follows: V = 1

2 ∑M
k=1 E⊤

k Ek > 0. The time derivate
of V along the trajectories of (13) gives:

V̇ =
M

∑
k=1

ET
k

(
F(Ek + S)− F(S) +

M

∑
l=1

dkl HEl

)
(15)

Assuming that each subnetwork is a connected graph, which
achieves internal synchronization, it is considered that the dynam-
ics of each subnetwork are bounded by

∥F(Ek + S)− F(S)∥ ≤ d∥Ek∥. (16)

where d is a non-negative real number, which is related to a limit
for the dynamics of each subnetwork in isolation. Due to the

eigenvalues of the external coupling matrix D can be sorted in
ascending order, this implies that µ̄k ≤ µ̄2, and holds

V̇ ≤
M

∑
k=1

(
dE⊤

k Ek +
M

∑
l=1

E⊤
k (µ̄2H)El

)
≤

M

∑
k=1

(
d∥Ek∥2 − µ̄2h

M

∑
l=1

∥Ek∥∥El∥
)

(17)

where h > 0 is the largest eigenvalue of the inner con-
nection matrix. The right-hand side of (17) is quadratic in
p = (∥E1∥, ∥E2∥, · · · , ∥EM∥)⊤, which can be written as
V̇ = −p⊤Φp, whose elements are defined by

ϕkl =

d − µ̄2h l = k

−µ̄2h l ̸= k
(18)

If one choose d ≤ µ̄2h, then Φ ≥ 0. If follows that V̇ ≤ 0. Now to
guarantee that the derivative of the Lyapunov function is strictly
negative, we use the properties of the weighted and unweighted
outer connection matrices.

Since the outer connection matrix satisfies the assumption A3.
It follows that there exists a positive constant d̄ such that the ma-
trices satisfy d̄B ≥ D. It is known that both matrices are negative
semidefinite, which implies that their second largest non-zero
eigenvalues are: µ2 < 0 for the weighted connection matrix and
µ̄2 < 0 for the unweighted connection matrix. Therefore,

µ2 ≤ d̄µ̄2 (19)

Additionally, individually the elements of the weighted matrix
satisfy

dkl > d̄ f or k ̸= l k, l = 1, 2, · · · , M (20)

Now, defining a constant d∗ = d/h such that d∗ > d, and using
the (19)-(20), the condition (14) is obtained.

□

It is important to emphasize that the previous problem provides
us with sufficient conditions for the error to be asymptotically sta-
ble. However, to achieve identical synchronization of the network
of networks, the inner connection matrices of each subnetwork H[l]

play a very important role because these matrices must be a com-
bination of the matrices of the equation (7). So that the error in all
states of the network is exactly zero. On the other hand, if the ma-
trix H is made up of any linear combination that does not connect
the first state of each node, then identical synchronization cannot
be achieved, for these cases, the type of synchronization achieved
is by cluster. To compactly express the previous discussion, the
following two corollaries are extended from the theorem.

Corollary 1 Ruiz-Silva et al. (2022b) The network of subnetworks (4)
achieves the identical synchronization (9). If the elements of the outer
connection matrix (14), and all inner connection matrix H[l] belongs to

{Diag(1, 1, 1), Diag(1, 0, 1), Diag(1, 1, 0), Diag(1, 0, 0)} (21)

for all k = 1, 2, · · · , M.

Corollary 2 Ruiz-Silva et al. (2022b) The dynamical network (4)
achieves the cluster synchronization (10). If the elements of the outer
connection matrix (14), and some of the inner connection matrix H[l]

belongs to

{Diag(0, 1, 0), Diag(0, 0, 1), Diag(0, 1, 1)}, (22)

for all k = 1, 2, · · · , M.
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Figure 4 Numerical simulation of six decoupled subnetworks with an
internal coupling matrix Γ[k] = Diag(1, 0, 1) for k = 1, 2, · · · , M, and
the coupling strengths are: g[1] = 1, g[2] = 2, g[3] = 1.5, g[4] =
3, g[5] = 2.3, g[6] = 4

NUMERICAL SIMULATIONS

We consider a network of M = 6 subnetworks each made up of
4 identical multi-scroll systems (1). Thus, we describe the RDS
model by equation (2) whose topology to use is a star graph (see
Figure 3(a)).

First, it is necessary to ensure that identical synchronization is
achieved within each RDS. In this example, let the internal cou-
pling matrix Γ = Diag(1, 0, 1) for each RDS. Consequently, condi-
tion (7) of Theorem 1 is satisfied, so it is necessary to obtain the
appropriate critical value, d∗, associated with the internal matrix
(see table 1). Finally, we calculate the minimum coupling strength
to achieve synchronization, that is,

g[k] >
|d∗|
|λk

2|
=

0.9
1

, for k = 1, 2, · · · , M. (23)

For this example, it is possible to choose the coupling strengths
g[1] = 1, g[2] = 2, g[3] = 1.5, g[4] = 3, g[5] = 2.3, g[6] = 4, with
which the conditions (7) of Theorem 1 are satisfied.

To illustrate the above in more detail, Figure 4 shows the time
series of the subnetworks, with randomly chosen initial conditions.
In numerical simulations, it is assumed that for t < 25 (a.u.) the
nodes are decoupled so that each solution evolves its own attractor.
While for t ≥ 25 (a.u.) the multi-scroll are connected in a subnet-
work structure with a respective coupling strength. Moreover, for
each subnetwork. In the first state of the nodes it is easy to observe
how the trajectories collapse into six solutions, each one belonging
to the synchronous state of each subnetwork.

Complete synchronization
Now, to illustrate complete synchronization in a network of subnet-
works, we consider that the inner connection matrices described
in Equation (21), particularly for H[l] = Diag(1, 0, 0) ∈ R3×3 for
l = 1, 2, · · · , M, satisfying Corollary 1. Moreover, using the Table

Figure 5 Numerical simulations of a network of six subnetworks
interconnected in a ring structure, where the inner connection matri-
ces are: H[l] = Diag(1, 0, 0) for l = 1, 2, · · · , 6.

1 we obtain the critical value for the entries of the outer Laplacian
matrix, whose elements must satisfy the Theorem 2 equation (14),
i.e.,

dkl >
|d∗|
|µ2|

=
3
1

, f or k ̸= l (24)

and k, l = 1, 2, · · · , M. Consequently, we select the external con-
nection matrix as:

−6.6 3.1 0 0 0 3.5

3.1 −7.1 4 0 0 0

0 4 −7.1 3.1 0 0

0 0 3.1 −11.1 8 0

0 0 0 8 −11 3

3.5 0 0 0 3 −6.5



. (25)

The results of the numerical simulation are presented in Figures
5. First, for times less than 25, the 24 multi-scrolls of the global
network are decoupled. At time 25, each of the subnetworks is
individually connected with the aforementioned coupling strength,
g[k]. Furthermore, in the numerical simulation corresponding to
the first state of the systems it is possible to observe how the 24
individual solutions collapse into six different solutions, that is,
the synchronization solution of each subnetwork.

Finally, starting at time 75, the subnetworks are connected
to each other, generating the entire network of the subnetworks
model. Here, it can be observed how the trajectories of all subnet-
works collapse in the three states, i.e., the nodes achieve complete
synchronization. It is important to note that the synchronization
solution location is related to the mean of each state for both cases:
the subnetwork and the entire network (Ruiz-Silva et al. 2022b).

In Figure 6, we show the error synchronization between nodes
that belong to different subnetworks. Since the subnetworks
archive the complete synchronization, we can observe that the
error converges to zero in the three states.
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■ Table 1 Bounded of d∗ for each internal coupling matrix

Γ d∗ Γ d∗

Diag(1, 1, 1) 0.6 Diag(0, 1, 0) 3.4

Diag(1, 0, 1) 0.9 Diag(0, 0, 1) 1.8

Diag(1, 1, 0) 0.32 Diag(0, 1, 1) 0.6

Diag(1, 0, 0) 3

Figure 6 Evolution of the error synchronization between nodes of
different subnetworks

Cluster synchronization
For the cluster synchronization model, the same structure of the
network of subnetworks is considered (see Figure 3 (a)), only that
the association matrices between subnetworks described in eq. (22)
particularly for Hl = Diag(0, 1, 1) for l = 1, 2, · · · , 6, satisfying
Corollary 2.

Analogously to what is calculated in complete synchronization,
the connection strength between the subnetworks can be calcu-
lated with Theorem 2, specifically with Equation (14). Under the
proposed connection scheme, the critical value of d∗ is 0.6 (see
Table 1). Therefore, the elements of the external coupling matrix
must satisfy

dkl >
|d∗|
|µ2|

=
0.6
1

, f or k ̸= l, (26)

and l = 1, 2, · · · , 6. It is easy to verify that the elements of the
matrix (25) satisfy the previous condition. Therefore, it is the
matrix that we will use for this scheme. The results of the numerical
simulation are presented in Figure 7 where the dynamics of the six
subnetworks are shown. First, for times less than 25, the 24 multi-
scrolls of the global network are decoupled. At time 25, each of the
subnetworks is individually connected with the aforementioned
coupling strength, g[k].

Figure 7 Numerical simulations of a network of six subnetworks
interconnected in a ring structure, where the inner connection matri-
ces are: H[l] = Diag(0, 1, 1) for l = 1, 2, · · · , 6.

For simulation times less than 75 a.u., it is possible to observe
the six synchronous solutions of each uncoupled subnetwork. Sub-
sequently, starting at time 75 the subnetworks are connected to
each other, it can be observed how the trajectories of all subnet-
works collapse in two states, but they are kept separate in the
first state, i.e. the complete synchronization in each subnetwork
is preserved but the subnetworks reach partial synchronization
between them. This can also be observed in Figure 8, note that the
error between the nodes that connect the subnetworks are shown,
where the error in the first state remains constant, and for the state
two and three the error converges to zero.
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Figure 8 Evolution of the error synchronization between nodes of
different subnetworks.

CONCLUSION

Our work focused on studying the synchronization of a set of cou-
pled subnetworks and the emergence of collective behaviors in
interconnected subnetworks when the coupling scheme changes.
We considered subnetworks coupled by one, two, or three state
variables and found two emerging behaviors in the synchroniza-
tion state: complete and partial cluster synchronization. The results
were validated using complex network theory and Lyapunov sta-
bility analysis and numerical simulations. In the first instance, we
analyze a subnetwork of mutually coupled systems with uniform
coupling strength, which must achieve complete synchronization
to simplify the synchronization problem of a network of subnet-
works. Furthermore, it is considered that the subnetworks have the
same number of nodes and the same structure, so as not to have to
perform an analysis to determine the node or nodes that should be
interconnected between subnetworks. As a second instance, our
analysis focused on the synchronization problem for subnetworks,
where the outer connection matrix is crucial in determining the col-
lective behavior of the network of subnetworks. In summary, this
study delves into the emergence and characterization of collective
behaviors in interconnected subnetworks. We strongly believe that
the methodology discussed here can be applied to a subnetwork
whose node dynamics are given by a broad class of PWL systems.

As future studies, it would be interesting to verify that the syn-
chronization results can be extended to subnetworks with different
structures or sizes, or even change the linear coupling between
subnetworks.
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