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Abstract 

In the current era, detecting mental workload is one of the most important methods used to determine the mental state of humans, 

which in turn helps determine whether there is an issue in the brain. Machine learning became the most used field used by 

researchers due to its accurate ability to deal with and analyze the state of the brain. In this study, machine learning was used 

to classify the Mental Arithmetic Task Performance (before and after) using EEG signals. Initially, as a preprocessing method, 

due to the variance of the signal received from the brain, we divide the signal into Sub-bands namely alpha, beta, gamma, theta, 

and delta for artifact removal. Then we applied Approximate entropy (ApEn) to extract features from the signals. Next, the 

deduced features were applied to 8 different types of classification methods, which are ensemble classifier, k-nearest neighbor 

(KNN), linear discriminate (LD), support vector machine (SVM), decision trees (DT), logistic regression (LR), neural network 

(NN), and quadratic discriminate (QD). We have achieved an optimal result using ES, furthermore, we compared our work with 

other papers in the literature, and the results outperformed them. 
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1. Introduction 

Scientists and researchers have paid a great deal of attention to the investigation of cognition in humans from lots 

of fields, such as biophysics, connectomics, computational neuroscience, and signal processing. One of the primary 

disciplines that interest them is the study of brain patterns, activities, and emotional states and how they impact 

cognition. Through the past few years, lots of theoretical and empirical assistance on various problems have been 

considered and already been developed, including the connections across cognitive phenomena as well as the 

behavior of the brain's structures, the "global workspace" theory of brain function during emotions and mental 

activity, the dynamical properties of cortical areas and their coordination, and the interaction of brain networks 

during creative cognition and artistic performance (Duru and Assem 2018). To go deeply into the field, there are 

lots of prominent publications that have been released on mental neurophysiology, and neuroscience (Duru and 

Assem 2018; Duru et al. 2020).  

The brain’s cognitive workload can be evaluated, which is divided into objective measures and subjective ones. 

Subjective measuring is based on perceived feelings which are based on questionnaires. While the objective 

measures used physiological signals to check the cognitive workload. Whereas the common types use 

electroencephalogram (EEG), eye movement, electromyogram, and many other types. EEG was the tool that opened 

the human brain to science and scientists to discover brain mysteries especially when there is a disorder such as 

epilepsy, or Alzheimer's or even when a disease such as a brain tumor and COVID-19 (Al-azzawi et al. 2023; Al-

Jumaili et al. 2021; Al-Jumaili et al. 2023; Al-azzawi et al. 2022; Saif). Currently, the use of modern techniques in 

detecting mental workload is one of the most important ways that help reveal the human mind issues, which reduces 

the risks of human action errors. The most important and used technology that helps in early disorder detection is 

the technique of extracting the brain signals by using an electroencephalogram (EEG). And then extract the most 
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important features from these signals. In addition, there are review articles(Arico et al. 2017; Aricò et al. 2018) ,that 

discuss current developments and potential future directions in brain-computer interface techniques and methods 

utilized to gauge and classify emotional disorders scientifically. The basic methods of spectral (Soleymani, Pantic, 

and Pun 2011; Kortelainen, Väyrynen, and Seppänen 2015), and coherence analysis (Weiss and Mueller 2003; 

González-Garrido et al. 2018), are among the most well-known and potent instruments utilized to disclose the 

significant aspects of neurological operation and to study the activation of functional and anatomical brain regions 

during mental tasks. It is necessary initially to classify the brain's function during cognitive engagement utilizing 

these novel markers before turning this study in the direction of investigating the new opportunities of nonlinear 

methods for signal processing. Table 1 below summarizes methods that have been used in various studies in order 

to classify the mental workload.  

Table 1. Various studies classified the mental workload. 

Ref Task 
Feature 

domain 
Feature types Data divided types 

Classifier 

types 
Acc% 

(Zarjam, Epps, 

and Chen 2011) Silent Reading 1,3,5 T-TEST HOLD-OUT SVM 83 

(Zarjam et al. 

2013) 

Complex Task 

And Memory 
2 NA 10-FOLD SVM 82 

(Yu et al. 2015) 
Visual 

Degradation 
2,4 NA 4-FOLD SVM 80 

(So et al. 2017) 
Cognitive And 

Motor 
2 NA 10-FOLD SVM 75 

(Mazher et al. 

2017) 

Multimedia 

Learning 
5,6 DWT NA SVM 88 

(Bashivan, 

Yeasin, and 

Bidelman 2015) 

Sternberg 2,5 RF 10-FOLD SVM 92 

(Dimitrakopoulos 

et al. 2017) 
N-Back 6 SFS LOSOCV SVM 87 

(Wang, Gwizdka, 

and 

Chaovalitwongse 

2015) 

N-Back 1,2,3 MRMR 10-FOLD SVM 84 

(Yin and Zhang 

2014) 
ACAMS 2 RFE HOLD-OUT SVM 74 

(Zhang, Yin, and 

Wang 2014) 
ACAMS 2 AES, LPP 10-FOLD SVM 93 

(Ke et al. 2014) N-Back 2 RFE 3-FOLD SVM NA 

(Baldwin and 

Penaranda 2012) 
Memory Task 2 

TOTAL 

POWER 
HOLD-OUT ANN 85 
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(Penaranda and 

Baldwin 2012) 
N-Back 2 POWER NA ANN 81 

(Wilson and 

Russell 2003a) 
ATM 2 SFR HOLD-OUT ANN 88 

(Tremmel et al. 

2019) 
N-Back 2 FFT 4-FOLD LDA 63 

(Roy et al. 2016) Sternberg 1,2 NA 10-FOLD LDA 91 

(Kakkos et al. 

2019) 
Flight 6 RFE 10-FOLD LDA 82 

(Kohlmorgen et 

al. 2007) 
Real Drive 2 NA 11-FOLD LDA 92 

(Aricò et al. 

2016) 
ATM 2 NA HOLD-OUT SWLAD NA 

(Borghini et al. 

2017) 
ATM 2 FFT HOLD-OUT SWLAD NA 

(Chakladar et al. 

2021) 
N-Back 4 MI 10-FOLD NB 84 

(Dimitriadis et al. 

2015) 
Arithmetic 6 LPP HOLD-OUT KNN 75 

(Wang et al. 

2012) 
MATB 3 FT 5-FOLD HB 80 

(Tao et al. 2019) ACAMS 1,2,5 NA HOLD-OUT ELM 93 

(Cheema et al. 

2018) 
N-Back 1,2,3 MRMR HOLD-OUT 

KNN, DT, 

RF, SVM 
84 

(Appriou, 

Cichocki, and 

Lotte 2018) 

N-Back 4 MI HOLD-OUT CSP+LDA 72 

(Friedman et al. 

2019) 
Raven Test 2,5,6 NA HOLD-OUT 

ANN, LR, 

XGB 
71 

. 

Based on the results obtained in previous studies, they were acceptable to some extent. We are trying to increase the 

accuracy by proposing a new classification method by using machine learning. The advantages of the study can be 

summarized in the following points:1) High ability to classify mental workload using 1-second brain signals. 2) Use 

a Band Pass filter to reduce unwanted signals. 3) Providing a method that has the potential to be applied in the health 

sector and that would help doctors in classifying mental workload. 

2.  METHODOLOGY 

In this study, publicly available data from the Internet were employed. The datasets contained two types of brain 

signals: (before and after) the mental strain. Where (24 subjects) performed a hard math calculation (average number 
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of operations per 4 minutes = 21, SD = 7.4) and (12 subjects) performed a easy math calculation (average number 

of operations per 4 minutes = 7, SD = 3.6). The brain signals were collected using 23 channels using the 10-20 

system. Table 2 shows the details of the data that were used in this study, Females are marked with “♀”, males are 

marked with “♂”, as well as for the two groups “1” for the hard calculation and “0” for the easy calculation. Figure 

1 which shows the details of the signal before and after the mental workload (Zyma et al. 2019). 

Table 2. Subjects details used in this study 

Participate Age Gender Number of subtractions Rank quality 

subject00 21 ♀ 9.7 0 

subject01 18 ♀ 29.35 1 

subject02 19 ♀ 12.88 1 

subject03 17 ♀ 31 1 

subject04 17 ♀ 8.6 0 

subject05 16 ♀ 20.71 1 

subject06 18 ♂ 4.35 0 

subject07 18 ♀ 13.38 1 

subject08 26 ♂ 18.24 1 

subject09 16 ♀ 7 0 

subject10 17 ♀ 1 0 

subject11 18 ♀ 26 1 

subject12 17 ♀ 26.36 1 

subject13 24 ♂ 34 1 

subject14 17 ♀ 9 0 

subject15 17 ♀ 22.18 1 

subject16 17 ♀ 11.59 1 

subject17 17 ♀ 28.7 1 

subject18 17 ♀ 20 1 

subject19 22 ♂ 7.06 0 

subject20 17 ♀ 15.41 1 

subject21 20 ♀ 1 0 

subject22 19 ♀ 4.47 0 

subject23 16 ♀ 27.47 1 

subject24 17 ♂ 14.76 1 
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subject25 17 ♂ 30.53 1 

subject26 17 ♀ 13.59 1 

subject27 19 ♀ 34.59 1 

subject28 19 ♀ 27 1 

subject29 19 ♂ 16.59 1 

subject30 17 ♂ 10 0 

subject31 19 ♀ 19.88 1 

subject32 20 ♀ 13 1 

subject33 17 ♂ 21.47 1 

subject34 18 ♀ 31 1 

subject35 17 ♀ 12.18 1 

 

 

Figure 1. The Data Signal Before and After the Mental Workload 

 

 

2.1. Feature Extraction 

In this section, we explain the data extraction method, where the five sub bands are inserted into the Long Entropy 

in order to extract the features from these signals. To obtain the features via the EEG data in our research, we 

employed Long Entropy which is described as a method of determining if a time series of data is regular or random. 

Because Long Entropy lower sensitivity to noise, it is employed for short-length signals. The total length of the data 

slice that is being compared, e, and N are all indicated in Eq. 1 where r stands for the similarity criteria. 
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2.2. Classification 

There are several classification strategies in machine learning, each with its own way of categorization. In this 

research, 8 different types of classification methods were used, which are ensemble classifier, k-nearest neighbor 

(KNN), linear discriminate (LD), support vector machine (SVM), decision trees (DT), logistic regression (LR), 

neural network (NN), and quadratic discriminate (QD). K-nearest neighbor (KNN), which stands for how to choose 

the optimal value of K. It belongs to the algorithms that under the supervised type used to solve classification and 

regression problems. KNN can naturally handle multi-class cases and it's one of the oldest, simplest, and most 

accurate algorithms. Meanwhile, linear discriminant analysis (LDA) applies to two separate but related techniques. 

The first step is to create a classifier. Each class is modeled as Gaussian (with a covariance matrix and a mean vector) 

given a set of variables as the data representation. Observations are now assigned to the nearest mean vector class 

based on Mahalanobis distance. If two classes share a covariance matrix, the decision surfaces between them become 

linear. Support Vector Machine (SVM) is one of the algorithms that deal with huge datasets and also deals with 

multidomain data since it is a supervised learning algorithm. SVM on the other hand, is theoretically difficult and 

computationally costly. Decision trees (DT) are suitable for many statistics and machine learning applications at 

multiple levels of measurement and with varied data quality. Trees are resilient in the presence of missing data and 

provide several methods for integrating missing data into the final models. Although trees are strong, they are also 

adaptable and simple to utilize. This ensures the generation of high-quality outcomes with minimum assumptions. 

Logistic regression (LR) was well-known for its performance as a machine learning (ML) model for predicting the 

risk of major illnesses with low incidence and simple clinical factors. Among the top models were logistic regression, 

gradient boosting machine, and neural network. MATLAB neural network (NN) tool is the preferred cascade 

forward-back algorithm for the classification of EEG signals. NN offers structure development adjustments based 

on needs as well as tools for analyzing the outcomes, making it an excellent choice for tackling a difficult problem 

in a straightforward manner. The backpropagation algorithm has a simple structure, several parameters that may be 

adjusted, a large training algorithm, and strong operating performance. Finally, Quadratic discriminant classifier 

which is a common classification method that uses quadratic discriminant analysis to locate or distinguish variables 

(Alkan and Günay 2012; Srivastava, Gupta, and Frigyik 2007). 

2.3. Performance Evaluation 

In order to assess the efficacy of the suggested approach, many measures have been taken. These measurements 

include receiver operating characteristic (ROC) analysis, accuracy, sensitivity, specificity, precision, negative 

predictive value (NPV), F1-Score, and Matthew’s correlation coefficient (MCC) values. The formulae utilized to 

determine the levels for every metric are displayed in Table 3. 



AURUM JOURNAL OF HEALTH SCIENCES 

A. J. Health Sci  

Volume 5, No 3 | Winter 2023 

 

Table 3. Performance evaluation that have been considered in this study. 

Function name Equations 

Accuracy  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Sensitivity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑃𝑉) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑝
 

Negative Predictive Value (𝑁𝑃𝑉) 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

𝑀𝐶𝐶 
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

3. RESULTS AND DISCUSSION 

Table 4 shows the results of the confusion matrices that were obtained by using classifiers, as the results were uneven 

in terms of the accuracy of classification. 

Table 4. The confusion matrices obtained by using classifiers. 

Feature 

Name 
Classes Name 

SVM KNN 

Predicted Class Predicted Class 

Long 

Entropy 

Actual Class 
Before 6411 33 6425 19 

After 62 2169 32 2199 

Classes Name 
LD LR 

Predicted Class Predicted Class 

Actual Class 
Before 6294 150 6189 255 

After 600 1631 430 1801 

Classes Name 
QD NN 

Predicted Class Predicted Class 

Actual Class 
Before 6375 69 6389 55 

After 62 2169 74 2157 

Classes Name DT ES 
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Predicted Class Predicted Class 

Actual Class 
Before 6094 350 6440 4 

After 437 1794 16 2215 

 

In this section we will discuss the results obtained by using 8 different types of classifiers. Whereas, the highest 

results were obtained by using extracted brain signals (before and after) mental workload, which were used as inputs 

to the workbooks. In terms of the results shown in Table 5, the best classifier that obtained results was ES, as the 

results achieved were all 99. While the lowest results were obtained by the DT classifier, the accuracy obtained was 

90, which is the lowest result among all classifiers. As the rest of the workbooks had different results, but mostly 

the results were acceptable to some extent. 

Table 5. The accuracy obtained from the 8 classifiers. 

Classifier types Feature extraction 

Evaluation metrics 

Acc Sen Spec Pre Npv F1-score Mcc 

SVM 

lo
n

g
 e

n
tr

o
p

y
 

98 99 98 99 97 99 97 

KNN 99 99 99 99 98 99 98 

LD 91 91 91 97 73 94 76 

LR 92 93 87 96 80 94 78 

QD 98 99 96 98 97 98 96 

NN 98 98 97 99 96 99 96 

DT 90 93 83 94 80 93 75 

ES 99 99 99 99 99 99 99 

 

In the next section, Table 6 compares our work and results with papers that used different techniques with different 

mental tasks to be sure about the results that we obtained from different classifiers. Our proposed method shows that 

we achieved higher accuracy compared to the papers, and the results were perfect for all evaluation metrics using 

features that were extracted using Long_Entropy with an ES classifier. Moreover, for the other classifiers, all of 
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them obtained results over 90%, which is fairly acceptable if compared to the other methods proposed in the state-

of-the-art. 

Table 6. Comparing various papers techniques with their results. 

Ref Task 
Feature 

Domain 
Feature Types 

Data 

Divided 

Types 

Classifier Types Acc% 

(Wilson 

and 

Russell 

2003b) 

MATB 2 SFR Hold-Out ANN 86 

(Almogbel, 

Dang, and 

Kameyama 

2019) 

Memory and Delay 5 Feature Fusion LOSOCV SVM NA 

(Zarjam, 

Epps, and 

Lovell 

2015) 

Arithmetic 3 KW_Test LOSOCV ANN 98 

(Dehais et 

al. 2019) 
Flying 1,3 MRMR 5-Fold LDA 70 

Ours Arithmetic 1 Long_Entropy 5-Fold ES 99 

 

4. Conclusion 

The mental workload is one of the most important studies that are based on taking brain signals because it has a 

great effect on treating people, especially if the brain condition is detected in the early times. In this study, we 

classified brain signals that depend on mental workload in two cases (before and after). Long_Entropy was used in 

order to extract features from the signals, where we used these features as inputs to 8 types of classifiers. The best 

results were obtained by using the ES classifier compared to other classifiers used. We concluded that this proposed 

method has the ability to deal with this type of data and can obtain high accuracy. Moreover, for future work, we 

can apply this technique to other diseases and increase the number of datasets. Furthermore, we plan to convert the 

EEG signal to an image and apply it to the novel convolutional neural network. 
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