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Abstract. In this paper, a new equation related to the sums of the squares of the first n k-Fibonacci numbers has
been found. From this equation, the problem of existing infinitely many primes exist p such that p ≡ 1 (mod 4) of
elementary number theory is obtained.
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1. Introduction

Prime numbers and their applications were studied by the ancient Greek mathematicians. Since then, these numbers
have been of great importance in mathematics. Let k ≥ 1 be any integer number. k-Fibonacci numbers are defined
recurrently by

Fk,n+1 = kFk,n + Fk,n−1 for n ≥ 1 (1.1)

with the initial conditions Fk,0 = 0 and Fk,1 = 1. As particular cases, if k = 1, we obtain the classical Fibonacci
sequence {0, 1, 1, 2, 3, 5, 8, ...} and if k = 2, the Pell sequence appears {0, 1, 2, 5, 12, 29, ...} (see fore more details [3, 4,
6, 7] and the references therein). Using matrix methods, some sum formulas for these numbers are obtained in [5].

In number theory, Dirichlet’s theorem states that there are infinitely many primes of the form am + b when m is a
natural number. ( (a, b) = 1 where a, b are natural numbers) At its proof, a difficult technical was used. In 1994, this
problem was studied with terrific logic using the properties fundamental of Fibonacci numbers and Fermat numbers by
Robbins [8] in the special case a = 4 and b = 1 . In this study, after finding a sum formula of k- Fibonacci numbers,
we use this equation to derive existing infinitely many primes exist p such that p ≡ 1 (mod 4) of elemantary number
theory.
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2. Sums of The Squares of The First n k-Fibonacci Numbers

In this section, we consider the sums of the squares of the first n k-Fibonacci numbers.

Theorem 2.1. For any integer n ≥ 1, we obtain
n∑

i=1

F2
k,i =

1
k

Fk,nFk,n+1. (2.1)

Proof. We apply the principle of mathematical induction. For n = 1, we find
n∑

i=1

F2
k,i = F2

k,1 =
1
k

Fk,1Fk,2 =
1
k

1k = 1

since we have Fk,1 = 1 and Fk,2 = k. Now suppose that the equation (2.1) is true for n. Then by (1.1) we get
n+1∑
i=1

F2
k,i =

n∑
i=1

F2
k,i + F2

k,n+1 =
1
k

Fk,nFk,n+1 + F2
k,n+1

= Fk,n+1(
1
k

Fk,n + Fk,n+1)

=
1
k

Fk,n+1(Fk,n + kFk,n+1)

=
1
k

Fk,n+1Fk,n+2.

�

If k = 1, we have the classical Fibonacci sequence and the equation (2.1) becomes
n∑

i=1

F2
i = Fn Fn+1.

If k = 2, we get the Pell sequence defined by

P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 for n ≥ 1

and the equation (2.1) becomes
n∑

i=1

P2
i =

1
2

PnPn+1.

Now, we reconfirm Theorem 2.1 using the Euclidean algorithm and the following fact (see [6]): Let a and b be any
two positive integers for a ≥ b with the equations

a = q0r0 + r1,

r0 = q1r1 + r2,

...

ri = qiri + ri+1,

...

rn−2 = qn−1rn−1 + rn,

rn−1 = qnrn + 0.

The above equations imply that

ab =

n∑
i=0

qir2
i . (2.2)

This last equation is true for any positive integer n. In our case, let a = Fk,n and b = Fk,n+1. By the Euclidean algorithm,
we have
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Fk,n+1 = k Fk,n + Fk,n−1,

Fk,n = k Fk,n−1 + Fk,n−2,

...

Fk,3 = k Fk,2 + Fk,1,

Fk,2 = k Fk,1 + 0.

For 0 ≤ i < n, we obtain qi = qn = k. Using (2.2), we get

ab = Fk,nFk,n+1 =

n∑
i=1

kF2
k,i = k

n∑
i=1

F2
k,i. (2.3)

So, if we rearrange the equation (2.3) we obtain
n∑

i=1

F2
k,i =

1
k

Fk,n Fk,n+1.

which is identity (2.1).

3. Primes of The Form 4k + 1

In order to show that there exist infinitely many primes p such that p ≡ 1 (mod 4), {Un} which is a sequence of
natural numbers, is constructed as follows

(i) Un > 1 for all n ≥ 1 ,

(ii) If q is prime and q | Un, then q ≡ 1 (mod 4) ,

(iii) (Um,Un) = 1 for all m , n .

If Pn be least prime divisor of Un for all n ≥ 1, then an infinite sequence {Pn} consisting of distinct primes such
that Pn ≡ 1(mod 4) for all n ≥ 1 exists. Let Un = a2

n + b2
n where an and bn are natural numbers such that (an, bn) = 1

and an . bn(mod 2). Then the sequence {Un} satisfies (i) and (ii). If (iii) also holds, then {Un} fulfills all requirements
in [8].

In order to see that infinitely many primes exist p such that p ≡ 1 (mod 4), firstly we shall prove the following
lemma.

Lemma 3.1. For any integer number n ≥ 1, we find

Fk,2n+1 = F2
k,n+1 + F2

k,n.

Proof. Let us consider the equation (2.1) for n→ 2n, 2n + 1, then we obtain
2n∑
i=1

F2
k,i =

1
k

Fk,2nFk,2n+1 (3.1)

and
2n+1∑
i=1

F2
k,i =

1
k

Fk,2n+1Fk,2n+2. (3.2)

By multiplying the equation (3.2) with (−1) and by adding the equation (3.1) to new equation, we obtain

Fk,2n+1 = −
1
k

(
Fk,2n − Fk,2n+2

)
.

After some algebra, the desired result is obtained. �
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Lemma 3.2 ( [1]). For any integer number m, n > 0, we have(
Fk,m, Fk,n

)
= Fk(m,n). (3.3)

Lemma 3.3. If n ≥ 3, then we have Fk,n > k.

Proof. From the definition (1.1), we can easily see that Fk,n > k. �

Now, the result finding for Generalized Fibonacci Polynomials in [2] will be adapted to k-Fibonacci Numbers with
the following theorem.

Lemma 3.4. For any positive real number k,

Fk,3 = (k2 + 1) | Fk,n ⇐⇒ 3 | n .

Proof. For the first part of theorem, clearly we have

(k2 + 1) | (k2 + 1). (3.4)

For t ≥ 1, let
Fk,3 | Fk,3t. (3.5)

It is known that

Fk,3(t+1) = Fk,3t+3

= Fk,3t Fk,4 + Fk,3t−1 Fk,3.

As seen in the equations (3.4) and (3.5), we find that

Fk,3 | Fk,3(t+1).

Thus if 3 | n, we find that
Fk,3 = (k2 + 1) | Fk,n.

As for another part of the theorem, let
Fk,3 | Fk,n.

Conversely, 3 - n. Then there exist integers q and r with 0 < r < 3, such that

n = 3q + r.

We get

Fk,n = Fk,3q+r

= Fk,3q+1Fk,r + Fk,3qFk,r−1.

From the fact that Fk,3 | Fk,3q where q ≥ 1 is fixed, this shows that Fk,3 | Fk,3q+1Fk,r. We know that
(
Fk,3q, Fk,3q+1

)
= 1

is true by the Lemma 3.2. This case shows that Fk,3 | Fk,r. But, this situation is impossible. Consequently, we can find
that r = 0 and 3 | n. �

Let Un = Fk,n and n ≥ 5 be is a prime. By Lemma 3.1, we have

Fk,n = F2
k,1/2(n−1) + F2

k,1/2(n+1) for all n ≥ 1.

Since (1/2(n − 1), 1/2(n + 1)) = 1 is true, Lemma 3.2 implies(
Fk,1/2(n−1), Fk,1/2(n+1)

)
= Fk,1 = 1 .

Since n > 3 and n is a prime, Lemma 3.4 implies Fk,3 = (k2 + 1) - Fk,n and so

Fk,1/2(n−1) . Fk,1/2(n+1) (mod k2 + 1).

Consequently, we find that (m, n) = 1 for all m , n. Thus, Lemma 3.2 implies
(
Fk,m, Fk,n

)
= 1.

To sum up, an infinitude of primes p such that p ≡ 1(mod 4) can be obtained by taking into account the least prime
divisor of the k-Fibonacci numbers Fk,n, where n is prime and n ≥ 5.
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