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ABSTRACT. In this paper, a new equation related to the sums of the squares of the first n k-Fibonacci numbers has
been found. From this equation, the problem of existing infinitely many primes exist p such that p = 1 (mod 4) of
elementary number theory is obtained.
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1. INTRODUCTION

Prime numbers and their applications were studied by the ancient Greek mathematicians. Since then, these numbers
have been of great importance in mathematics. Let £ > 1 be any integer number. k-Fibonacci numbers are defined
recurrently by

Fk,n+l :ka,n+Fk,n—l forn > 1 (1.1)

with the initial conditions Fyo = 0 and F;; = 1. As particular cases, if k = 1, we obtain the classical Fibonacci
sequence {0,1,1,2,3,5,8, ...} and if k = 2, the Pell sequence appears {0, 1,2,5, 12,29, ...} (see fore more details [3,4,
6,7] and the references therein). Using matrix methods, some sum formulas for these numbers are obtained in [5].

In number theory, Dirichlet’s theorem states that there are infinitely many primes of the form am + b when m is a
natural number. ( (a,b) = 1 where a, b are natural numbers) At its proof, a difficult technical was used. In 1994, this
problem was studied with terrific logic using the properties fundamental of Fibonacci numbers and Fermat numbers by
Robbins [8] in the special case a = 4 and b = 1 . In this study, after finding a sum formula of k- Fibonacci numbers,
we use this equation to derive existing infinitely many primes exist p such that p = 1 (mod 4) of elemantary number
theory.
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2. Sums oF THE SQUARES oF THE FIrST n k-FiBoNaccl NUMBERS
In this section, we consider the sums of the squares of the first n k-Fibonacci numbers.

Theorem 2.1. For any integer n > 1, we obtain
n 5 1
ZF’@!' =7 FinFins1- 2.1
i=1
Proof. We apply the principle of mathematical induction. For n = 1, we find
anF? =F;, = lelez Lo
ki ki = et = ¢

i=1

since we have Fy; = 1 and F» = k. Now suppose that the equation (2.1) is true for n. Then by (1.1) we get

]
=
|

n+1

S F2 + F? = lF F + F?
ki kon+l — k knl kn+1 k,
i=1

1
= Fk,n+1(EFk,n + Fipi1)

1
sz,n+1(Fk,n + ka,rHl)
1

= sz,nH Finso.

If k£ = 1, we have the classical Fibonacci sequence and the equation (2.1) becomes

iF? =F, Fp1.
i=1

If k = 2, we get the Pell sequence defined by
P():O,Pl =1andPn+1 =2Pn +Pn—1 forn>1

and the equation (2.1) becomes

c 1
> = 5 PaPrer.
i=1

Now, we reconfirm Theorem 2.1 using the Euclidean algorithm and the following fact (see [6]): Let a and b be any
two positive integers for a > b with the equations

a = (qoro+r,
rn = qiry+rn,
ri = gili i,
Thn-2 = {qn-1Tp-1+Tn,
Fuel = gutn +0.
The above equations imply that
n
ab = Zqiriz. 2.2)
i=0

This last equation is true for any positive integer n. In our case, leta = Fy, and b = Fy ,+1. By the Euclidean algorithm,
we have
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Finet = kFip+ Frp,
Frn = kFppq+Fiuo,
Frz = kFio+Fr,
Fk’z = k Fk,l + 0.

For 0 <i < n, we obtain ¢g; = ¢, = k. Using (2.2), we get

ab = FiuFinn = ) KFE; =k Y FL,. (2.3)

i=1 i=1

So, if we rearrange the equation (2.3) we obtain

< 1
ZF/%J = EFk,n Fk,n+1-
i=1
which is identity (2.1).

3. PriMEs oF THE Form 4k + 1

In order to show that there exist infinitely many primes p such that p = 1 (mod 4), {U,} which is a sequence of
natural numbers, is constructed as follows

() U,>1foralln>1,
(ii) If g is prime and ¢ | U,,, then ¢ = 1 (mod 4) ,

@ity (U, Uy) =1forallm #n.

If P, be least prime divisor of U, for all n > 1, then an infinite sequence {P,} consisting of distinct primes such
that P, = 1(mod 4) for all n > 1 exists. Let U,, = aﬁ + bﬁ where a, and b,, are natural numbers such that (a,, b,) = 1
and a, # b,(mod 2). Then the sequence {U,} satisfies (i) and (ii). If (iii) also holds, then {U,} fulfills all requirements
in [8].

In order to see that infinitely many primes exist p such that p = 1 (mod 4), firstly we shall prove the following
lemma.

Lemma 3.1. For any integer number n > 1, we find
2 2
Fk,2n+l = Fk,n+l + Fk,n‘

Proof. Let us consider the equation (2.1) for n — 2n,2n + 1, then we obtain

2n
1
ZFI%,Z‘ = % Fk,Zan,2n+l (31)
i=1
and
2n+1 R 1
ZFk,i =% Fione1Fionao- (3.2)
i=1

By multiplying the equation (3.2) with (—1) and by adding the equation (3.1) to new equation, we obtain

1
Firon1 = 7 (Fron — Frone2) -

After some algebra, the desired result is obtained. m]
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Lemma 3.2 ([1]). For any integer number m,n > 0, we have

(Fims Frn) = Fronn- (3.3)
Lemma 3.3. Ifn > 3, then we have Fy, > k.
Proof. From the definition (1.1), we can easily see that F, > k. |

Now, the result finding for Generalized Fibonacci Polynomials in [2] will be adapted to k-Fibonacci Numbers with
the following theorem.

Lemma 3.4. For any positive real number k,
Fiz=0+1)| Fr, = 3|n.

Proof. For the first part of theorem, clearly we have

K+ 1| K +1). (3.4)
Fort > 1, let
Fi3 | Fi3;. (3.5)
It is known that
Fraoey = Fraus

Firzi Fra + Fiain Figa.

As seen in the equations (3.4) and (3.5), we find that

Fis | Fraasn.

Thus if 3 | n, we find that
Fi3 =0 +1)| Fep

As for another part of the theorem, let

Fis | Frn.
Conversely, 3 1 n. Then there exist integers g and r with 0 < r < 3, such that
n=3g+r.
We get
Frn = Fiager

= Fizgr1Fir + FizgFrr-1.

From the fact that F 3 | F 3, where g > 1 is fixed, this shows that Fy 3 | Fy 34+1F%,. We know that (Fkﬁq, Fk,3q+1) =1
is true by the Lemma 3.2. This case shows that F 3 | Fy .. But, this situation is impossible. Consequently, we can find
that r = 0 and 3 | n. |

Let U, = Fy, and n > 5 be is a prime. By Lemma 3.1, we have
Fin = Fiyjnety + Firjaner foralln > 1.
Since (1/2(n —1),1/2(n + 1)) = 1 is true, Lemma 3.2 implies
(Fr120-1)> Fripomeny) = Fra = 1.
Since n > 3 and n is a prime, Lemma 3.4 implies Fy3 = &+t F . and so
Fi1/20-1) & Fr1/2(0+1) (mod K+ 1).

Consequently, we find that (m,n) = 1 for all m # n. Thus, Lemma 3.2 implies (Fu, Fin) = 1.
To sum up, an infinitude of primes p such that p = 1(mod 4) can be obtained by taking into account the least prime
divisor of the k-Fibonacci numbers Fy ,, where n is prime and n > 5.
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