Turk. J. Math. Comput. Sci.
7(2017) 16-20
(c) MatDer
http://dergipark.gov.tr/tjmcs
http://tjmes.matder.org.tr
MATDER

# Primes of The Form $4 m+1$ 

Oznur Oztunc Kaymak<br>Balıkesir University, 10145, Balikesir, Turkey.

Received: 05-05-2017 • Accepted: 14-09-2017


#### Abstract

In this paper, a new equation related to the sums of the squares of the first $n k$-Fibonacci numbers has been found. From this equation, the problem of existing infinitely many primes exist $p$ such that $p \equiv 1(\bmod 4)$ of elementary number theory is obtained.


2010 AMS Classification: 11B39, 11B83, 11A41
Keywords: $k$-Fibonacci numbers, prime numbers.

## 1. Introduction

Prime numbers and their applications were studied by the ancient Greek mathematicians. Since then, these numbers have been of great importance in mathematics. Let $k \geq 1$ be any integer number. $k$-Fibonacci numbers are defined recurrently by

$$
\begin{equation*}
F_{k, n+1}=k F_{k, n}+F_{k, n-1} \text { for } n \geq 1 \tag{1.1}
\end{equation*}
$$

with the initial conditions $F_{k, 0}=0$ and $F_{k, 1}=1$. As particular cases, if $k=1$, we obtain the classical Fibonacci sequence $\{0,1,1,2,3,5,8, \ldots\}$ and if $k=2$, the Pell sequence appears $\{0,1,2,5,12,29, \ldots\}$ (see fore more details $[3,4$, $6,7]$ and the references therein). Using matrix methods, some sum formulas for these numbers are obtained in [5].

In number theory, Dirichlet's theorem states that there are infinitely many primes of the form $a m+b$ when $m$ is a natural number. ( $(a, b)=1$ where $a, b$ are natural numbers) At its proof, a difficult technical was used. In 1994, this problem was studied with terrific logic using the properties fundamental of Fibonacci numbers and Fermat numbers by Robbins [8] in the special case $a=4$ and $b=1$. In this study, after finding a sum formula of $k$ - Fibonacci numbers, we use this equation to derive existing infinitely many primes exist $p$ such that $p \equiv 1(\bmod 4)$ of elemantary number theory.

[^0]2. Sums of The Squares of The First $n k$-Fibonacci Numbers

In this section, we consider the sums of the squares of the first $n k$-Fibonacci numbers.
Theorem 2.1. For any integer $n \geq 1$, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} F_{k, i}^{2}=\frac{1}{k} F_{k, n} F_{k, n+1} . \tag{2.1}
\end{equation*}
$$

Proof. We apply the principle of mathematical induction. For $n=1$, we find

$$
\sum_{i=1}^{n} F_{k, i}^{2}=F_{k, 1}^{2}=\frac{1}{k} F_{k, 1} F_{k, 2}=\frac{1}{k} 1 k=1
$$

since we have $F_{k, 1}=1$ and $F_{k, 2}=k$. Now suppose that the equation (2.1) is true for $n$. Then by (1.1) we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} F_{k, i}^{2} & =\sum_{i=1}^{n} F_{k, i}^{2}+F_{k, n+1}^{2}=\frac{1}{k} F_{k, n} F_{k, n+1}+F_{k, n+1}^{2} \\
& =F_{k, n+1}\left(\frac{1}{k} F_{k, n}+F_{k, n+1}\right) \\
& =\frac{1}{k} F_{k, n+1}\left(F_{k, n}+k F_{k, n+1}\right) \\
& =\frac{1}{k} F_{k, n+1} F_{k, n+2} .
\end{aligned}
$$

If $k=1$, we have the classical Fibonacci sequence and the equation (2.1) becomes

$$
\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}
$$

If $k=2$, we get the Pell sequence defined by

$$
P_{0}=0, P_{1}=1 \text { and } P_{n+1}=2 P_{n}+P_{n-1} \text { for } n \geq 1
$$

and the equation (2.1) becomes

$$
\sum_{i=1}^{n} P_{i}^{2}=\frac{1}{2} P_{n} P_{n+1}
$$

Now, we reconfirm Theorem 2.1 using the Euclidean algorithm and the following fact (see [6]): Let $a$ and $b$ be any two positive integers for $a \geq b$ with the equations

$$
\begin{aligned}
a= & q_{0} r_{0}+r_{1}, \\
r_{0}= & q_{1} r_{1}+r_{2}, \\
& \cdots \\
r_{i}= & q_{i} r_{i}+r_{i+1}, \\
& \cdots \\
r_{n-2}= & q_{n-1} r_{n-1}+r_{n}, \\
r_{n-1}= & q_{n} r_{n}+0 .
\end{aligned}
$$

The above equations imply that

$$
\begin{equation*}
a b=\sum_{i=0}^{n} q_{i} r_{i}^{2} \tag{2.2}
\end{equation*}
$$

This last equation is true for any positive integer $n$. In our case, let $a=F_{k, n}$ and $b=F_{k, n+1}$. By the Euclidean algorithm, we have

$$
\begin{aligned}
F_{k, n+1}= & k F_{k, n}+F_{k, n-1} \\
F_{k, n}= & k F_{k, n-1}+F_{k, n-2} \\
& \cdots \\
F_{k, 3}= & k F_{k, 2}+F_{k, 1} \\
F_{k, 2}= & k F_{k, 1}+0 .
\end{aligned}
$$

For $0 \leq i<n$, we obtain $q_{i}=q_{n}=k$. Using (2.2), we get

$$
\begin{equation*}
a b=F_{k, n} F_{k, n+1}=\sum_{i=1}^{n} k F_{k, i}^{2}=k \sum_{i=1}^{n} F_{k, i}^{2} . \tag{2.3}
\end{equation*}
$$

So, if we rearrange the equation (2.3) we obtain

$$
\sum_{i=1}^{n} F_{k, i}^{2}=\frac{1}{k} F_{k, n} F_{k, n+1} .
$$

which is identity (2.1).

## 3. Primes of The Form $4 k+1$

In order to show that there exist infinitely many primes $p$ such that $p \equiv 1(\bmod 4),\left\{U_{n}\right\}$ which is a sequence of natural numbers, is constructed as follows

> (i) $U_{n}>1$ for all $n \geq 1$
> (ii) If $q$ is prime and $q \mid U_{n}$, then $q \equiv 1(\bmod 4)$,
> (iii) $\left(U_{m}, U_{n}\right)=1$ for all $m \neq n$

If $P_{n}$ be least prime divisor of $U_{n}$ for all $n \geq 1$, then an infinite sequence $\left\{P_{n}\right\}$ consisting of distinct primes such that $P_{n} \equiv 1(\bmod 4)$ for all $n \geq 1$ exists. Let $U_{n}=a_{n}^{2}+b_{n}^{2}$ where $a_{n}$ and $b_{n}$ are natural numbers such that $\left(a_{n}, b_{n}\right)=1$ and $a_{n} \not \equiv b_{n}(\bmod 2)$. Then the sequence $\left\{U_{n}\right\}$ satisfies (i) and (ii). If (iii) also holds, then $\left\{U_{n}\right\}$ fulfills all requirements in [8].

In order to see that infinitely many primes exist $p$ such that $p \equiv 1(\bmod 4)$, firstly we shall prove the following lemma.

Lemma 3.1. For any integer number $n \geq 1$, we find

$$
F_{k, 2 n+1}=F_{k, n+1}^{2}+F_{k, n}^{2} .
$$

Proof. Let us consider the equation (2.1) for $n \rightarrow 2 n, 2 n+1$, then we obtain

$$
\begin{equation*}
\sum_{i=1}^{2 n} F_{k, i}^{2}=\frac{1}{k} F_{k, 2 n} F_{k, 2 n+1} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{2 n+1} F_{k, i}^{2}=\frac{1}{k} F_{k, 2 n+1} F_{k, 2 n+2} \tag{3.2}
\end{equation*}
$$

By multiplying the equation (3.2) with ( -1 ) and by adding the equation (3.1) to new equation, we obtain

$$
F_{k, 2 n+1}=-\frac{1}{k}\left(F_{k, 2 n}-F_{k, 2 n+2}\right) .
$$

After some algebra, the desired result is obtained.

Lemma 3.2 ( [1]). For any integer number $m, n>0$, we have

$$
\begin{equation*}
\left(F_{k, m}, F_{k, n}\right)=F_{k(m, n)} . \tag{3.3}
\end{equation*}
$$

Lemma 3.3. If $n \geq 3$, then we have $F_{k, n}>k$.
Proof. From the definition (1.1), we can easily see that $F_{k, n}>k$.
Now, the result finding for Generalized Fibonacci Polynomials in [2] will be adapted to $k$-Fibonacci Numbers with the following theorem.

Lemma 3.4. For any positive real number $k$,

$$
F_{k, 3}=\left(k^{2}+1\right)\left|F_{k, n} \Longleftrightarrow 3\right| n .
$$

Proof. For the first part of theorem, clearly we have

$$
\begin{equation*}
\left(k^{2}+1\right) \mid\left(k^{2}+1\right) . \tag{3.4}
\end{equation*}
$$

For $t \geq 1$, let

$$
\begin{equation*}
F_{k, 3} \mid F_{k, 3 t} \tag{3.5}
\end{equation*}
$$

It is known that

$$
\begin{aligned}
F_{k, 3(t+1)} & =F_{k, 3 t+3} \\
& =F_{k, 3 t} F_{k, 4}+F_{k, 3 t-1} F_{k, 3} .
\end{aligned}
$$

As seen in the equations (3.4) and (3.5), we find that

$$
F_{k, 3} \mid F_{k, 3(t+1)}
$$

Thus if $3 \mid n$, we find that

$$
F_{k, 3}=\left(k^{2}+1\right) \mid F_{k, n} .
$$

As for another part of the theorem, let

$$
F_{k, 3} \mid F_{k, n}
$$

Conversely, $3 \nmid n$. Then there exist integers $q$ and $r$ with $0<r<3$, such that

$$
n=3 q+r
$$

We get

$$
\begin{aligned}
F_{k, n} & =F_{k, 3 q+r} \\
& =F_{k, 3 q+1} F_{k, r}+F_{k, 3 q} F_{k, r-1} .
\end{aligned}
$$

From the fact that $F_{k, 3} \mid F_{k, 3 q}$ where $q \geq 1$ is fixed, this shows that $F_{k, 3} \mid F_{k, 3 q+1} F_{k, r}$. We know that $\left(F_{k, 3 q}, F_{k, 3 q+1}\right)=1$ is true by the Lemma 3.2. This case shows that $F_{k, 3} \mid F_{k, r}$. But, this situation is impossible. Consequently, we can find that $r=0$ and $3 \mid n$.

Let $U_{n}=F_{k, n}$ and $n \geq 5$ be is a prime. By Lemma 3.1, we have

$$
F_{k, n}=F_{k, 1 / 2(n-1)}^{2}+F_{k, 1 / 2(n+1)}^{2} \text { for all } n \geq 1
$$

Since $(1 / 2(n-1), 1 / 2(n+1))=1$ is true, Lemma 3.2 implies

$$
\left(F_{k, 1 / 2(n-1)}, F_{k, 1 / 2(n+1)}\right)=F_{k, 1}=1 .
$$

Since $n>3$ and $n$ is a prime, Lemma 3.4 implies $F_{k, 3}=\left(k^{2}+1\right) \nmid F_{k, n}$ and so

$$
F_{k, 1 / 2(n-1)} \not \equiv F_{k, 1 / 2(n+1)}\left(\bmod k^{2}+1\right)
$$

Consequently, we find that $(m, n)=1$ for all $m \neq n$. Thus, Lemma 3.2 implies $\left(F_{k, m}, F_{k, n}\right)=1$.
To sum up, an infinitude of primes $p$ such that $p \equiv 1(\bmod 4)$ can be obtained by taking into account the least prime divisor of the $k$-Fibonacci numbers $F_{k, n}$, where $n$ is prime and $n \geq 5$.

## References

[1] Bolat, C., Köse, H., On the properties of k-Fibonacci numbers, Int. J. Contemp. Math. Sciences, 5(2010), 1097-1105. 3.2
[2] Hoggat, V., Long, C., Divisibiltiy properties of generalized Fibonacci polynomials, Fibonacci Quarterly 12, 10M05, (1974), 113-120. 3
[3] Falcon, S., On the $k$-Lucas numbers, Int. J. Contemp. Math. Sci., 6(2011), 21-24. 1
[4] Kalman, D., Mena, R., The Fibonacci numbers-exposedMath. Mag. 76, no. 3, (2003), 167-181. 1
[5] Kilic, E., Sums of the squares of terms of sequence $\left\{U_{n}\right\}$, Proc. Indian Acad. Sci. (Math. Sci.) 118, (2008), 27-41. 1
[6] Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley, 2001. 1, 2
[7] Ozgur, N. Y., Kaymak, O. O., On determination of $k$-Fibonacci and $k$-Lucas numbers, Math. Sci. Appl. E-notes, 3(2015), 20-26. 1
[8] Robbins, N., On Fibonacci numbers and primes of the form $4 k+1$, The Fibonacci Quarterly 32(1994), 15-16. 1, 3


[^0]:    Email address: oztunc@balikesir.edu.tr

