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Abstract

For a bounded and smooth enough domain Ω in Rn, with n≥ 2, we consider the problem −∆u =
au−β +λh(.,u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, where λ > 0, 0 < β < 3, a∈ L∞ (Ω) , ess in f (a)>
0, and with h= h(x,s)∈C

(
Ω× [0,∞)

)
positive on Ω×(0,∞) and such that, for any x∈Ω, h(x, .) is

strictly convex on (0,∞), nondecreasing, belongs to C2 (0,∞) , and satisfies, for some p ∈
(
1, n+2

n−2
)
,

that lims→∞
hs(x,s)

sp = 0 and lims→∞
h(x,s)

sp = k (x) , in both limits uniformly respect to x ∈ Ω, and
with k ∈C

(
Ω
)

such that min
Ω

k > 0. Under these assumptions it is known the existence of Σ > 0
such that for λ = 0 and λ = Σ the above problem has exactly a weak solution, whereas for λ ∈ (0,Σ)
it has at least two weak solutions, and no weak solutions exist if λ > Σ. For such a Σ we prove that
for λ ∈ (0,Σ) the considered problem has it has exactly two weak solutions.

1. Introduction

Let n≥ 2, and let Ω be a C2 bounded domain in Rn , let a : Ω→R, and let h : Ω× [0,∞)→R. For λ ≥ 0 and β > 0, consider
the problem:  −∆u = au−β +λh(.,u) in Ω,

u = 0 on ∂Ω

u > 0 in Ω.
(1.1)

Singular problems like the above appear in many applications to physical and chemical process (cf. [1], [2], [3] and their
references). After the pioneers works [4] [1], [3], [5], [6], [7], [2] and [8], singular elliptic problems have received a lot of
interest in the literature, and many articles concern them. Let us recall some of these works:
The case when h = 0 in (1.1) was studied, under different hypothesis on the function a, in [5], [9], [10], and [11]. In particular,
[11] gives, when a is regular enough, accurate asymptotic estimates near the boundary for the solutions. [12] studied (1.1)
when h = 0 and a is a Radon’s measure. Also, [2] studied problem (1.1) when a =−1, but with h(.,u) replaced by a suitable
positive function h ∈ L1 (Ω).
[8] considered the problem −∆u = au−β +h(.,λu) in Ω, u = 0 on ∂Ω, u > 0 in Ω, and proved that if β > 0, a ∈C1

(
Ω
)
,

a > 0 in Ω, h ∈C1
(
Ω× [0,∞)

)
and if, for some positive constant c, h(x,s)> c(1+ s) for all (x,s) ∈ Ω× [0,∞), then there

exists λ ∗ > 0 such that the studied problem has a positive classical solution u ∈C2 (Ω)∩C
(
Ω
)

for any λ ∈ [0,λ ∗), and has no
positive classical solution if λ > λ ∗.
[13] addressed the equation −∆u = au−β +λup in Ω, u = 0 on ∂Ω, u > 0 in Ω, and obtained existence and nonexistence
theorems when a is a regular enough function, with indefinite sign, 0 < β < 1, 0 < p < 1 and λ ≥ 0.
[10] studied existence, nonexistence, uniqueness and stability issues for weak solutions of the problem −∆u = p(x)u−β in Ω,
u = 0 on ∂Ω, u > 0 in Ω, when β > 0 and p(x) behaves like d−γ

Ω
(x) as x→ ∂Ω, with dΩ (x) := dist (x,∂Ω) and 0 < γ < 2.

[14] investigates equations with singular nonlinearities that involve two bifurcation parameters.
[15] gives existence and nonexistence theorems for equations of the form −∆u = g(x,u)+λ f (x,u, |∇u|) in Ω, u = 0 on ∂Ω,
u > 0 in Ω with g(x,s) singular at s = 0 and also at x ∈ ∂Ω, and where f (x,u, |∇u|) involves a power of |∇u|.
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[16] studied the problem

−∆u = a(x)g(u)+λh(u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, (1.2)

where h(s) is nondecreasing, positive on (0,∞), and such that s−1h(s) is nonincreasing; and with g satisfying lims→0+ g(s) =∞

but in such a way that, for some α ∈ (0,1) and ε > 0, sα g(s) is bounded on (0,ε) . There it was introduced the space
E :=

{
v ∈C2 (Ω)∩C1,1−α

(
Ω
)

: ∆v ∈ L1 (Ω)
}

and, among other results, it was proved that if g and h are regular enough on
(0,∞) and [0,∞) respectively, and if a is regular enough on Ω, then:
i) if lims→∞ s−1h(s) = 0, problem (1.2) has a solution in E for any λ ≥ 0.
ii) If lims→∞ s−1h(s) > 0 and λ ≥ λ1

lims→∞ s−1h(s) (where λ1 is the principal eigenvalue for −∆ in Ω with Dirichlet boundary
condition) then (1.2) has no solutions u in E.
iii) If lims→∞ s−1h(s)> 0 and min

Ω
a > 0 then (1.2) has a unique weak solution in E for any λ such that 0≤ λ < λ1

lims→∞ s−1h(s) .

[17] sttudied semilinear elliptic problems with singular nonlocal Neumann boundary conditions, obtaining existence and
uniqueness (up to a constant) results.
In [18] existence results were obtained for a one dimensional problem involving the fractional p−Laplacian with multipoint
boundary conditions.
Concerning multiplicity results [19] studied, for β > 0 and 1 < p≤ 2, the problem −∆pu = g(u)+λh(u) in Ω, u = 0 on ∂Ω,
u > 0 in Ω on a smooth, bounded and strictly convex domain in Rn, , and under suitabe conditions on g and h, there was
proved that for some ε > 0 if 0 < λ < ε then there exist at least two weak solutions.
[20] addressed existence and multiplicity issues for positive weak solutions of a family of (p,q)-Laplacian systems on an
open, bounded, and regular enough domain in Rn. Under suitable assumptions on the problem’s data, there it was proved the
existence of at least two (weak) positive solutions of the system.
[21] proved that if B : Ω→Mn (R) satisfies the standard symmetry, ellipticity, and regularity conditions, and if 0 < β < 1 <
p < n+2

n−2 then, for λ positive and small enough, the problem −div(B(x)∇u) = u−β +λup in Ω, u = 0 on ∂Ω has two positive
weak solutions in H1

0 (Ω) .

[22] addressed the problem −∆pu = λu−β + uq in Ω, u = 0 on ∂Ω, u > 0 in Ω under the assumptions that 0 < β < 1,
1 < p < ∞, q < ∞ and p−1 < q≤ p∗−1, with p∗ given by p∗ := np

n−p if p < n, p∗ = Q with Q > p if p = n, and p∗ = ∞ if
p > n. With these assumptions [22] proved that, for some λ ∗ ∈ (0,∞), the problem has a weak solution if λ = λ ∗, has no weak
solution if λ > λ ∗, and has at least two weak solutions if λ ∈ (0,λ ∗) .
[23] studied problems of the form  −∆u = λ

(
u−δ +uq +ρ (u)

)
in Ω,

u = 0 on ∂Ω,
u > 0 in Ω,

(1.3)

where Ω is a bounded and regular enough domain in Rn with n≥ 3, λ > 0, δ > 0, 0 < q≤ 2∗−1 where 2∗−1 = n+2
n−1 and

ρ ∈C1 ([0,∞)) satisfies:
a) ρ (0) = ρ ′ (0) = 0, ρ (t)+ tq ≥ 0, if q < 2∗−1;
b) There exists β < 2∗−2 such that limt→∞ t−β ρ− (t) = 0 and limt→∞ t−−2∗+1ρ+ (t) = 0 if q = 2∗−1.
Under these assumptions there it was proved, for λ positive and small enough, the existence of at least two positive solutions
of (1.3).
[24] studied problems of the form 

−∆u = λ

(
u−δ +h(u)euα

)
in Ω,

u = 0 on ∂Ω,
u > 0 in Ω,

(1.4)

where λ > 0, 0 < δ < 1, 1 ≤ α < 2, and h ∈C2 [0,∞) satisfies h(0) = 0, s→ s−δ + h(s)esα

is convex, and for any ε > 0,
lims→∞ h(s)e−εsα

= 0 and lims→∞ h(s)eεsα

= ∞. Under these asumptions there were proved several existence, multiplicity,
and bifurcation results for problem (1.4).
[25] studied the problem −∆Nu = λ f (.,u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, where Ω is a bounded and regular domain in
RN , ∆N is the N−Laplacian on Ω, and where f (x,s) is a regular enough function which may be singular at s = 0 and with
exponential growth as s→ ∞. Under suitable additional assumptions on f , there it was proved the existence of Σ > 0 such that:
for 0 < λ < Σ the problem has at least two solutions, one solution if λ = Σ, and no solutions when λ > Σ.
We mention also that the Nehari manifold method, adapted to the presence of singular nonlinearities through the study of the
associated fibering functions, were used to establish multiplicity results for degenerated elliptic singular nonlinear problems
involving either the pLaplacian or the weighted p− q Laplacian in [26], [27], and [28]. For additional works concerning
singular elliptic problems see e.g., [29], [30], [31], [32], [33], [34], [35], [36], [37], [38]; and for a systematic treatment of the
subject of singular problems, we refer the readers to the research books [39] and [40] and their references.
Our aim in this work is to prove an exact multiplicity result for weak solutions of problem (1.1). By a weak sollution we mean,
as usual, the given by following:
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Definition 1.1. If ρ : Ω→ R is a a measurable function such that ρϕ ∈ L1 (Ω) for any ϕ ∈ H1
0 (Ω) , and if u is a function

defined on Ω we say that u is a weak solution of the problem{
−∆u = ρ in Ω,
u = 0 on ∂Ω,

if, and only if, u ∈ H1
0 (Ω) and

∫
Ω
〈∇u,∇ϕ〉=

∫
Ω

ρϕ for all ϕ ∈ H1
0 (Ω) .

Also, for u ∈ H1 (Ω) and ρ as above, we will write −∆u≥ ρ in Ω (respectively −∆u≤ ρ in Ω) to mean that
∫

Ω
〈∇u,∇ϕ〉 ≥∫

Ω
ρϕ (resp.

∫
Ω
〈∇u,∇ϕ〉 ≤

∫
Ω

ρϕ) for any nonnegative ϕ ∈ H1
0 (Ω) .

Since our results depend largely on those of [35], [36], and [37], let us to briefly review them in the next three remarks:

Remark 1.2. In [35] and [36], it was considered, for β ∈ (0,3) , the problem −∆u = au−β + f (λ , .,u) in Ω,
u = 0 on ∂Ω,
u > 0 in Ω,

(1.5)

with (1.5) understood in weak sense.
Under suitable assumptions on a and f , ([35] Theorem 1.1) states that there exists Σ > 0 such that problem (1.5) has (at least)
a weak solution u ∈ H1

0 (Ω)∩L∞ (Ω) , if and only if, λ ∈ [0,Σ]
Let us mention also that ([35] Theorems 1.2) says that, for λ positive and small enough, there exist at least two weak solutions
in H1

0 (Ω)∩L∞ (Ω). In addition, ([35] Theorem 1.1) says also that any solution u in H1
0 (Ω)∩L∞ (Ω) of (1.5) belongs to C

(
Ω
)
.

In [36] all the hypothesis of [35] were assumed, plus an additional one, and in ([36] Theorem 1.2) it was proved that, for
Σ as in [35] and λ ∈ [0,Σ] , problem (1.5) has a solution uλ ∈ H1

0 (Ω)∩C
(
Ω
)

which is minimal in the sense that uλ ≤ v for
all weak solution v ∈ H1

0 (Ω)∩L∞ (Ω) of (1.5). Additionally, ([36] Theorem 1.2) says that λ → uλ is strictly increasing from
[0,Σ] into C

(
Ω
)

; and ([36] Theorem 1.3) asserts that, for each λ ∈ (0,Σ) , problem (1.5) has at least two weak solutions
u ∈ H1

0 (Ω)∩C
(
Ω
)
.

Remark 1.3. Problem (1.5) was again considered in [37], where, with further hypothesis added, in ([37], Theorem 1.3) it was
proved that the map λ → uλ , defined for λ ∈ [0,Σ], with Σ and uλ as in Remark 1.2, is continuous from [0,Σ] into C

(
Ω
)
, and

belongs to C1
(
(0,Σ) ,C

(
Ω
))

.

Remark 1.4. Also, again for Σ as in Remark 1.2, ([37], Lemma 5.7) states, for each λ ∈ [0,Σ] , the existence of a solution
vλ ∈ H1

0 (Ω)∩L∞ (Ω) of problem (1.5) which is maximal respect to the partial order ≤, that is: vλ has the property that if
u ∈ H1

0 (Ω)∩L∞ (Ω) is a weak solution of (1.5) and u≥ vλ a.e. in Ω , then u = vλ . We mention also that ([37], Theorem 1.4)
states that, for λ = Σ, there exists a unique solution in H1

0 (Ω)∩L∞ (Ω) of problem (1.5) (and so, in particular, uΣ = vΣ).

We assume, from now on and without anymore mention, the following conditions H1)-H6) (with the convention that n+2
n−2 = ∞

if n = 2):

H1) β ∈ (0,3) .
H2) a ∈ L∞ (Ω) and ess in f (a)> 0.
H3) h ∈C2

(
Ω× [0,∞)

)
and there exists p ∈

(
1, n+2

n−2

)
such that lims→∞

h(x,s)
sp = k (x) uniformly on x ∈Ω, with k ∈C

(
Ω
)

such
that min

Ω
k > 0.

H4) For all x ∈Ω, the function s→ h(x,s) is positive, nondecreasing, strictly convex, and belongs to C2 (0,∞) .

H5) hs > 0 in Ω× (0,∞) , and lims→∞
hs(x,s)

sp = 0 uniformly on x ∈Ω, where hs denotes the partial derivative of h respect of s.
H6) There exists q ∈ [1,∞) and a nonnegative and nonidentically zero function b ∈ L∞ (Ω) , such that h(.,s)≥ bsq a.e. in Ω,
for any s≥ 0.

It is immediate to check that, if β , a, and h, satisfy H1)-H6) and if f : [0,∞)×Ω× [0,∞)→R is defined by f (λ , .,s) := λh(.,s) ,
then β , a, and f satisfy all the conditions required in [37] (and so also all the conditions imposed in [35] and [36] hold), thus
all the results in [35], [36], and [37] hold for problem (1.1).

Remark 1.5. We fix, from now on, Σ as given by Remark 1.2, but taking there λh(.,s) instead of f (λ , .,s), and for λ ∈ [0,Σ],
uλ and vλ will denote the functions provided by Remarks 1.2 and 1.4, again now with λh(.,s) instead of f (λ , .,s).

Our aim in this work is to prove the following

Theorem 1.6. Let Ω be a C2 and bounded domain in Rn,n≥ 2, and assume the conditions H1)-H6). Let Σ be as in Remark
1.5. Then for λ ∈ (0,Σ) problem (1.1) has exactly two weak solutions.
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.
Let us briefly outline the structure of the article. In Section 2 we recall some results of [11] concerning existence, uniqueness,
and asymptotic properties near the boundary, for classical solutions of problems of the form −∆u = a∗ (x)u−β in Ω, u = 0 on
∂Ω, u > 0 in Ω. Again in Section 2, Lemma 2.10 improves, under the assumptions H1)-H6), the regularity results of [35],
[36], and [37]. In fact, it proves that any weak solution of (1.1) belongs to C1 (Ω)∩C

(
Ω
)
.

The main objective in Section 3 is to prove that the function vλ provided by Remark 1.4 is a maximal solution of (1.1), in
the sense that w≤ vλ for each weak solution of (1.1). After some preliminary lemmas, this is done in Lemma 3.6 by using a
sub-supersolution argument. This property of vλ plays a crucial role in the proof of Theorem 1.6
Section 4 concerns certain principal eigenvalue problems with singular potential needed for the proof of Theorem 1.6.
In Section 5 we prove Theorem 1.6 by a contradiction argument. To do it, we suppose that for some λ ∈ (0,Σ) there exists a
weak solution w of (1.1) such that w 6= uλ and w 6= vλ . We rewrite (1.1) as S (λ ,u) = 0, where

S (λ ,u) := u− (−∆)−1
(

au−β +λh(.,u)
)
,

and where (−∆)−1 denotes the solution operator for the problem −∆u = h in Ω,u = 0 on ∂Ω.
From [37] we know that S : (0,∞)×Uβ → Yβ is a continuously Frechet differentiable operator, where Yβ and Uβ are,
respectively, a suitable Banach’s space and a suitable nonempty open subset of Yβ , with Uβ such that any weak solution u of
(1.1) belongs to Uβ (for the definitions Yβ and Uβ , see Definition 2.8 in Section 2).
In Remark 5.2 we observe that, as in [37], if w≤ vλ and w 6= vλ , then rλ ,w > 1, where rλ ,w denotes the principal eigenvalue
of the operator −∆+βaw−β−1 in Ω, with weight function λhs (.,w), and with homogeneous Dirichlet boundary condition.
(notice that the potential βaw−β−1 is singular at ∂Ω).
We observe also in Remark 5.2, Lemma 5.3, and Lemma 5.4 that the condition rλ ,w > 1 allows, as in [37], the use of the implicit
function theorem to obtain, for some ε > 0, a local continuously differentiable branch ξ : (λ − ε,λ + ε)→Uβ such that
S (σ ,ξ (σ)) = 0 for all σ ∈ (λ − ε,λ + ε) and ξ (λ ) = w. Then we show that ξ can be extended to a continuously differentiable
branch Θ : (0,λ + ε)→Uβ such that S (σ ,Θ(σ)) = 0 for any σ ∈ (0,λ + ε) and limσ→0+ Θ = u0 with convergence in Yβ ,
where u0 is the unique weak solution of (1.1 ) for λ = 0.
Next we repeat the same process, but starting with uλ instead of w, to obtain, for some ε ′ > 0, a continuously differentiable
branch, Φ : (0,λ + ε ′)→ Yβ such that S (σ ,Φ(σ)) = 0 for σ ∈ (0,λ + ε ′) and limσ→0+ Φ = u0 with convergence in Yβ . Our
final step within the proof of Theorem 1.6 will be to obtain, for σ ∈ (0,λ ) , an estimate of the norm ‖Φ(σ)−Θ(σ)‖H1

0 (Ω)

which, by taking the limit as σ → 0+, will give a contradiction.

2. Preliminaries

Let us introduce some notations we will use: δΩ will denote the function defined on Ω by

δΩ (x) := dist (x,∂Ω) . (2.1)

and (−∆)−1 will denote the inverse of the bijection −∆ : H1
0 (Ω)→ H−1 (Ω).

If ξ is a measurable functon defined on Ω we will write ξ ∈ H−1 (Ω) to mean that the map φ →
∫

Ω
ξ φ belongs to H−1 (Ω)

If f and g, are two functions defined a.e. in Ω, we will write f ≈ g to mean that, for some positive constants c1 and c2,
c1 f ≤ g≤ c2 f in Ω, and we will write f / g (respectively f ' g) to mean that for some positive constant c, f ≤ cg in Ω (resp.
f ≥ cg in Ω).
If f and g are functions defined a.e. in Ω, and if no confusion arises, we will write f = g in Ω, f ≤ g in Ω and f ≥ g in Ω to
mean that f = g a.e. in Ω, f ≤ g a.e. in Ω and f ≥ g a.e. in Ω respectively.
We will need the following elementary comparison lemma for singular equations:

Lemma 2.1. i) Let β > 0, and for i = 1,2, let ui ∈ H1
0 (Ω) , and let ai ∈ L∞ (Ω) be such that ess in f (ai)> 0. If a2 ≥ a1 and if

u1 and u2 satisfy, in weak sense, −∆u1 ≤ a1u−β

1 in Ω,
u1 = 0 on ∂Ω

u1 > 0 in Ω

and

 −∆u2 ≥ a2u−β

2 in Ω,
u2 = 0 on ∂Ω

u2 > 0 in Ω,

then u1 ≤ u2 a.e. in Ω.
ii) Let β > 0, let a ∈ L∞ (Ω) be such that ess in f (a)> 0 and, for i = 1,2, let ui ∈ H1

0 (Ω) be such that, in weak sense, −∆u1 ≤ au−β

1 in Ω,
u1 = 0 on ∂Ω

u1 > 0 in Ω

and

 −∆u2 ≥ au−β

2 in Ω,
u2 = 0 on ∂Ω

u2 > 0 in Ω,

then u1 ≤ u2 a.e. in Ω.
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Proof. To see i) observe that, in weak sense,{
−∆(u2−u1)≥ a2u−β

2 −a1u−β

1 ≥ a1

(
u−β

2 −u−β

1

)
in Ω,

u2−u1 = 0 on ∂Ω,

Now we use the test function ϕ :=−(u2−u1)
− to get∫

Ω

∥∥∇
(
(u2−u1)

−)∥∥2 ≤−
∫

Ω

a1

(
u−β

2 −u−β

1

)
(u2−u1)

− ≤ 0.

Thus, by the Poincaré’s inequality, u1 ≤ u2.
The proof of ii) is similar. We have, in weak sense,{

−∆(u2−u1)≥ a
(

u−β

2 −u−β

1

)
in Ω,

u2−u1 = 0 on ∂Ω,

and so, by taking the test function ϕ :=−(u2−u1)
−, we get∫

Ω

∥∥∇
(
(u2−u1)

−)∥∥2 ≤−
∫

Ω

a
(

u−β

2 −u−β

1

)
(u2−u1)

− ≤ 0.

which, as before, by the Poincaré’s inequality implies u1 ≤ u2 a.e. in Ω.

Remark 2.2. For β ∈ (0,3) and for a ∈ L∞ (Ω) such that 0≤ a 6≡ 0 it is well known that there exists one and only one weak
solution of the problem  −∆w = aw−β in Ω,

w = 0 on ∂Ω

w > 0 in Ω

(2.2)

(and, in fact, this follows immediately from Lemma 2.1).
Notice also that, if in addition, a ∈Cη

loc (Ω) for some η ∈ (0,1) and a≈ 1 in Ω then, as a particular case of ([11], Theorem 1),
problem (2.2) has a unique classical solution w ∈C2 (Ω)∩C

(
Ω
)
. Moreover, w≈Ψβ in Ω, with Ψβ : Ω→ R given by the

following definition:

Definition 2.3. For β ∈ (0,3) let Ψβ : Ω→ R be defined by

Ψβ := δΩ if 0 < β < 1,

Ψ1 := δΩ

(
log
(

ω0

δΩ

)) 1
2

in Ω and Ψ1 := 0 on ∂Ω,

Ψβ := δ

2
1+β

Ω
if 1 < β < 3,

with ω0 an arbitrary constant such that ω0 > diam(Ω) .

Notice that, in each case, Ψβ ∈C
(
Ω
)
. The functions Ψβ , as well as the estimates from [11] quoted in Remark 2.2 will play a

relevant role in our work.

Remark 2.4. Direct computations using the definitions of the functions Ψβ show that δΩΨ
−β

β
∈ L2 (Ω) and Ψ

1−β

β
∈ L1 (Ω)

for any β ∈ (0,3) .

Remark 2.5. If a ∈Cη

loc (Ω) for some η ∈ (0,1) , and a≈ 1 in Ω, then the classical solution w of problem 2.2 (given by the
result quoted in Remark 2.2) belongs to H1

0 (Ω) and is a weak solution of (2.2). Indeed, since w≈Ψβ and since, for β = 1,
Ψβ / dγ

Ω
for some γ ∈ (0,1) , the assertion follows from ([36], Lemma 3.2), taking there f (λ , .,u) = λh(.,u) and λ = 0.

We recall also the following lemma from [37] concerning the functions Ψβ :

Lemma 2.6. (See [37], Lemma 2.9) If f ∈ L∞ (Ω) , then Ψ
−β

β
f ∈ H−1 (Ω) and there exists a constant c > 0, independent of

f , such that
∥∥∥(−∆)−1

(
Ψ
−β

β
f
)∥∥∥

H1
0 (Ω)
≤ c‖ f‖

∞
and

∥∥∥Ψ
−1
β

(−∆)−1
(

Ψ
−β

β
f
)∥∥∥

∞

≤ c‖ f‖
∞
.

Lemma 2.7. (−∆)−1
(

Ψ
−β

β

)
≈Ψβ in Ω.
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Proof. By Lemma 2.6 Ψ
−β

β
∈ H−1 (Ω). Let w ∈C2 (Ω)∩C

(
Ω
)

be such that −∆w = w−β in Ω,
w = 0 on ∂Ω,
w > 0 in Ω,

(2.3)

(by Remark 2.2 there exists a unique such a w). Then, By Remark 2.5, w ∈ H1
0 (Ω) and w is a weak solution of (2.3), and by

Remark 2.2, there exist positive constants c1 and c2 such that

c1Ψβ ≤ w≤ c2Ψβ in Ω.

Thus cβ

1 w−β ≤Ψ
−β

β
≤ cβ

2 w−β in Ω, and so cβ

1 (−∆)−1 (w−β
)
≤ (−∆)−1

(
Ψ
−β

β

)
≤ cβ

2 (−∆)−1 (w−β
)
. Since (−∆)−1 (w−β

)
=

w and w≈Ψβ , the lemma follows.

The next definition introduces, for β ∈ (0,3) , a Banach space Yβ and an open set Uβ in Yβ which will play a significant role in
our arguments

Definition 2.8. For β ∈ (0,3) , following [37], we define

Yβ :=
{

u ∈ H1
0 (Ω) : Ψ

−1
β

u ∈ L∞ (Ω)
}
,

‖u‖Yβ
:= ‖∇u‖2 +

∥∥∥Ψ
−1
β

u
∥∥∥

∞

Uβ :=
{

u ∈ Yβ : infΩ Ψ
−1
β

u > 0
}
.

As observed in ([37], Lemma 3.2),
(

Yβ ,‖.‖Yβ

)
is a Banach’s space, and Uβ is a nonempty open set in Yβ .

The next remark recalls a celebrated a-priori estimate for subcritical problems due to Gidas and Spruck. It reads as:

Remark 2.9. (see [41], Theorem 1.1): Let g : Ω× [0,∞) → R be a nonnegative and continuous function such that
lims→∞

g(x,s)
sp = k (x) uniformly on x, with p ∈

(
1, n+2

n−2

)
and with k ∈C

(
Ω
)

such that min
Ω

k > 0. Then there exists M ∈ (0,∞)

such that u≤M for any solution (in the sense of distributions on Ω) u ∈C1 (Ω)∩C
(
Ω
)

of the problem −∆u = g(.,u) in Ω,
u = 0 on ∂Ω,
u > 0 in Ω

Notice that, although the proof of ([41], Theorem 1.1) was written for the case when u ∈C2 (Ω)∩C
(
Ω
)
, the proof can be

adapted for solutions u ∈C1 (Ω)∩C
(
Ω
)

(as said at the comments in [41] after the statement of Theorem 1.1).

Lemma 2.10. If u is a weak solution of (1.1) for some λ ≥ 0, then
i) u≥ ζ , where ζ is the (unique) weak solution of the problem{

−∆ζ = aζ−β in Ω,
ζ = 0 on ∂Ω.

ii) There exists a positive constant c, independent of λ and u, such that u≥ cΨβ in Ω.

iii) u ∈C
(
Ω
)
∩C1 (Ω) .

iv) u ∈Uβ .

Proof. i) follows immediately from the equations satisfied by u and ζ and the comparison Lemma 2.1.
To see ii) consider two positive constants k1 and k2 such that k1 ≤ a≤ k2 in Ω. Since u is a weak solution of (1.1) we have, in
weak sense, {

−∆u = au−β +λh(.,u)≥ k1u−β in Ω,
u = 0 on ∂Ω.

Let u0 ∈C2 (Ω)∩C
(
Ω
)

be the (unique) solution of (2.3) given by Remark 2.2. By Remark 2.5 u0 ∈ H1
0 (Ω) and u0 is a weak

solution of (2.3) and, by Remark 2.2, u0 ≥ cΨβ for some constant c > 0. Now, in weak sense, −∆

(
k

1
1+β

1 u0

)
= k1

(
k

1
1+β

1 u0

)−β

in Ω,

u0 = 0 on ∂Ω.
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Thus, by (2.4), (2.4), and Lemma 2.1, we have u≥ k
1

1+β

1 u0 ≥ ck
1

1+β

1 Ψβ in Ω, and so ii) holds.
Let us prove iii). We have 0≤ a ∈ L∞ (Ω) and, by ii), u≥ cΨβ for some constant c > 0. Therefore, for some constant c′ > 0

we have 0≤ au−β ≤ c′Ψ−β

β
. Thus au−β = gΨ

−β

β
for some g ∈ L∞ (Ω) and then Lemma 2.6 gives that au−β ∈

(
H1

0 (Ω)
)′
. Let

z := (−∆)−1 (au−β
)
. Then, for some constant c′′ > 0,

0≤ z≤ c′ (−∆)−1
(

Ψ
−β

β

)
≤ c′′Ψβ ,

the last inequality by Lemma 2.7. Thus z ∈ L∞ (Ω) . Since 0 ≤ au−β ≤ c′Ψ−β

β
we have also au−β ∈ L∞

loc (Ω) . Thus, by the
inner elliptic estimates (see e.g., [44], Theorem 8.24), z ∈C1 (Ω) , and since 0≤ z≤ c′′Ψβ , we have also that z is continuous at
∂Ω. Thus z ∈C

(
Ω
)
∩C1 (Ω) . Now, {

−∆(u− z) = λh(.,u) in Ω,
u− z = 0 on ∂Ω.

Let w := u− z. Since −∆(u− z) = λh(.,u)≥ 0 in Ω and u− z = 0 on ∂Ω, the weak maximum principle gives that w≥ 0 a.e.
in Ω. Thus u≥ z in Ω. For (x,s) ∈Ω× [0,∞) let h∗ (x,s) := h(x,s+ z(x)) . Then h∗ ∈C

(
Ω× [0,∞)

)
and −∆w = λh∗ (.,w) in Ω,

w = 0 on ∂Ω,
w > 0 in Ω,

(2.4)

Now,

h∗ (x,s)
sp =

h(x,s+ z(x))
sp =

h(x,s)
sp +

h(x,s+ z(x))−h(x,s)
sp , (2.5)

and the mean value theorem gives that, for some θ = θx ∈ (0,1) ,

|h(x,s+ z(x))−h(x,s)|
sp =

hs (x,s+θz(x))z(x)
sp ≤ hs (x,2s)

sp ‖z‖
∞
= 2p hs (x,2s)

(2s)p ‖z‖
∞

for s≥ ‖z‖
∞

and thus

lim
s→∞

|h(x,s+ z(x))−h(x,s)|
sp = 0

uniformly on x ∈ Ω. Let k be as given by H3). Then, by (2.5) lims→∞
h∗(x,s)

sp = k (x) uniformly on x ∈ Ω, and so, by
Remark 2.9 and (2.4), w ∈ L∞ (Ω) . Then λh∗ (.,w) ∈ L∞ (Ω) , and thus, from (2.4), w ∈W 2,q (Ω) for any q ∈ [1,∞) . Then
w ∈C

(
Ω
)
∩C1 (Ω) , and thus, since z ∈C

(
Ω
)
∩C1 (Ω) we get that u ∈C

(
Ω
)
∩C1 (Ω) . Thus iii) holds.

To prove iv) it only remains to see that u ∈ Yβ , i.e., to see that, for some positive constant c, u≤ cΨβ in Ω. By iii), u ∈C
(
Ω
)
,

and then, by our assumptions on h, we have λh(.,u) ∈ L∞ (Ω) . Thus, for some positive constant M, au−β +λh(.,u)≤Mu−β

in Ω. Therefore −∆u≤Mu−β and so −∆

(
M−

1
1+β u

)
≤
(

M−
1

1+β u
)−β

and thus, by Lemma 2.1, M−
1

1+β u≤ u0 with u0 as in

the proof of i). By Remark 2.2 u0 ≤ c′Ψβ for some positive constant c′. Therefore u≤ c′M
1

1+β Ψβ in Ω, which concludes the
proof of iv).

Remark 2.11. Lemma 2.10 says that any weak solution of (1.1) belongs to Uβ , and so it improves ([37], Lemma 3.5) which,
applied to our actual case, only says that any weak solution in L∞ (Ω) belongs also to Uβ .

3. On the maximal solution of problem (1.1)

Let Σ be as in Remark 1.5 and, for each λ ∈ [0,Σ] , let vλ as given there, which, we recall, has the property that if u ∈
H1

0 (Ω)∩L∞ (Ω) is a weak solution of (1.1) and u≥ vλ , then u = vλ .
Notice that uλ 6= vλ for any λ ∈ (0,Σ) . Indeed, if λ ∈ (0,Σ) , ([36], Theorems 1.2 and 1.3) give two weak solutions of (1.1).
Suppose that uλ = vλ , and consider any arbitrary weak solution w of (1.1). Since uλ is minimal we have uλ ≤ w and so we
would have vλ ≤ w, which implies vλ = w. Then w = vλ = uλ , which contradicts existence of two weak solutions of (1.1).
Our main purpose in this section is to prove that u≤ vλ for any weak solution u of problem (1.1). To do it, we will proceed by
contradiction, using a sub-supersolutions argument.

Definition 3.1. Let ζ : Ω→ R be a measurable function such that ζ ϕ ∈ L1 (Ω) for any ϕ ∈ H1
0 (Ω) . As usual, a function

u : Ω→ R is called a weak subsolution of the problem{
−∆u = ζ in Ω,
u = 0 on ∂Ω

(3.1)
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if u ∈ H1 (Ω) , u≤ 0 on ∂Ω, and ∫
Ω

〈∇u,∇ϕ〉 ≤
∫

Ω

ζ ϕ (3.2)

for any nonnegative ϕ ∈ H1
0 (Ω). Weak superolutions are similarly defined by reversing the above inequalties.

Following [46], we say also that u is a subsolution, in the sense of distributions, of the problem

−∆u = ζ in Ω,

if u ∈ L1
loc (Ω) and (3.2 ) holds for any nonnegative ϕ ∈C∞

c (Ω). Supersolutions, in the sense of distributions, are similarly
defined by reversing the inequality (3.2 ).

Proposition 3.2. For β ∈ (0,3) let Uβ be as given in Definition 2.8. If u ∈Uβ and u ∈Uβ are a weak subsolution and a weak
supersolution, respectively, of problem (1.1) such that u≤ u, then problem (1.1) has a weak solution u∗ satisfying u≤ u∗ ≤ u
in Ω.

Proof. Clearly u and u are a subsolution and a supersolution, respectively, in the sense of distributions, of (1.1). Let

k (x) := a(x)u(x)−β +λh(x,u(x))

Let Ψβ be as given by Definition 2.8. Since u−β ≈ Ψ
−β

β
∈ L1

loc (Ω) and u≈Ψβ ∈ L∞ (Ω) then we have k ∈ L1
loc (Ω) . Also,

s→ a(x)s−β is nonincreasing and s→ λh(x,s) is nondecreasing, in both cases for a.e. x ∈Ω, thus for a.e. x ∈Ω it holds that

0≤ a(x)s−β +λh(x,s)≤ k (x) for all s ∈ [u(x) ,u(x)] ,

then, by ([46], Theorem 2.4) (1.1) has a solution z ∈W 1,2
loc (Ω), in the sense of distributions, such that u ≤ u ≤ u a.e. in Ω.

Since 0≤ u≤ u≈Ψβ ∈ L∞ (Ω) we have that u ∈W 1,2
loc (Ω)∩L∞ (Ω) Since u≈Ψβ and u≈Ψβ we have u≈Ψβ . Now:

If 0 < β < 1 we have Ψβ = δΩ and so u≈ δΩ.

If β = 1 then Ψβ = δΩ

(
log
(

ω

δΩ

)) 1
2

and so, for any γ ∈ (0,1) , δΩ / Ψβ / dγ

Ω
which gives δΩ / u / δ

γ

Ω
.

If 1 < β < 2 then Ψβ = δ

2
1+β

Ω
and then u≈ δ

2
1+β

Ω
.

Thus, by ([36], Lemma 3.2), u ∈ H1
0 (Ω) and u is a weak solution of (1.1).

Remark 3.3. (see [42], Proposition 5.9) Let U be a domain in Rn. Let f1, f2 ∈ L1 (U) . If u1, u2 ∈ L1 (U) are such that
∆u1 ≥ f1 and ∆u2 ≥ f2 in the sense of distributions in U, then

∆max{u1,u2} ≥ χ{u1>u2} f1 +χ{u2>u1} f2 +χ{u1=u2}
f1 + f2

2

in the the sense of distributions in U.

Lemma 3.4. If u, v are weak subsolutions (repectively weak supersolutions ) of (1.1) then w := max{u,v} (resp. w :=
min{u,v}) is a weak subsolution (resp. a weak supersolution) of (1.1).

Proof. Suppose that u, v are weak subsolutions of (1.1) and consider an arbitrary ϕ ∈C∞
c (Ω) and an open domain U such that

supp(ϕ)⊂U ⊂U ⊂Ω. Since u,v ∈ H1
0 (Ω) we have u,v ∈ L1 (U) and by Lemma 2.10, there exists a positive constant c such

that u≥ cΨβ and v≥ cΨβ a.e in Ω. Thus au−β and av−β belong to L1 (U) . Also, again by Lemma 2.10, u and v belong to
C
(
Ω
)

and so, since h is nonnegative and s→ h(x,s) is nondecreasing for a.e. x∈Ω, we have 0≤ h(.,u)≤ h(.,‖u‖
∞
)∈ L1 (U)

and thus h(.,u) ∈ L1 (U) . Similarly, h(.,v) ∈ L1 (U) and so au−β + h(.,u) and av−β + h(.,v) belong to L1 (U) . Thus, by
Remark 3.3 i) used with u1 = u, u2 = v, f1 = au−β +h(.,u) and f2 = av−β +h(.,v) , we have∫

U
〈∇w,∇ϕ〉 ≤

∫
U

(
aw−β +h(.,w)

)
ϕ.

Since u, v belong to C
(
Ω
)

we have w ∈C
(
Ω
)
, and so 0≤ h(.,w)≤ h(.,‖w‖

∞
) and thus the mapping ψ →

∫
Ω

h(.,w)ψ is
continuous on H1

0 (Ω) , and since w ∈ H1
0 (Ω) , the mapping ψ →

∫
Ω
〈∇w,∇ψ〉 is also continuous on H1

0 (Ω) . On the other
hand, since w≥ cΨβ a.e in Ω, Lemma 2.6 gives the continuity of ψ →

∫
Ω

aw−β ψ on H1
0 (Ω) . Thus, by density, (3.3) holds

for any ϕ ∈ H1
0 (Ω) and so w is a subsolution of (1.1).

The assertion of the lemma in the case when u, v are supersolutions of (1.1) follows from the previous one and from the fact
that min(u,v) =−max(−u,−v) .
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Lemma 3.5. For any k > 1 the following two statements are equivalent:
i) The problem

−∆u = kau−β +λh(.,u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, (3.3)

has at least a weak solution.
ii) The problem

−∆u = au−β +λh(.,u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, (3.4)

has at least a weak solution.

Proof. Suppose that i) holds and let z be a solution of problem (3.3). Thus z is a supersolution of problem (3.4). Let u0 be the
(unique) solution of the problem  −∆u0 = au−β

0 in Ω,
u0 = 0 on ∂Ω,
u0 > 0 in Ω.

Then u0 is a subsolution of (3.4). Also,

−∆

(
k−

1
1+β z

)
= k−

1
1+β kaz−β + k−

1
1+β h(λ , .,z)≥ a

(
k−

1
1+β z

)−β

and so, by Lemma 2.1, k−
1

1+β z≥ u0 in Ω. Thus u0 ≤ k−
1

1+β z≤ z in Ω. Then, by Proposition 3.2, (3.4) has a solution u such
that u0 ≤ u≤ z a.e in Ω. Thus i) implies ii).
Suppose now that ii) holds, and let u be a solution of (3.4). Then −∆ku = kau−β + kλh(.,u)≥ kau−β +λh(.,u) and so ku is
a supersolution of (3.3). Also, −∆

( 1
2 u
)
= 1

2 au−β + 1
2 λh(.,u)≤ kau−β +λh(.,u) and so 1

2 u is a subsolution of (3.3) which
satisfies 1

2 u≤ ku. Then, by Proposition 3.2, (3.3) has a solution ũ such that 1
2 u≤ ũ≤ ku a.e in Ω. Thus ii) implies i).

Lemma 3.6. Let Σ be as in Remark 1.5 and let λ ∈ (0,Σ) . Then w≤ vλ for any weak solution w of problem (1.1).

Proof. We proceed by the way of contradiction. Suppose that w is a weak solution of problem (1.1) such that

|{x ∈Ω : w(x)> vλ (x)}|> 0.

For k > 1, by Remark 3.5, the problem  −∆u = kau−β +λh(.,u) in Ω,
u = 0 on ∂Ω,
u > 0 in Ω.

has a weak solution z, and by Lemma 2.10, z ∈Uβ . Since k > 1, u := z is a supersolution of problem (1.1). On the other hand,
by Remark 3.3, u := max(vλ ,w) is a subsolution of problem (1.1) and clearly u≥ vλ and u 6= vλ . Observe that, for k large
enough,

u≤ u a.e. in Ω. (3.5)

Indeed,

−∆

(
k−

1
1+β z

)
= k−

1
1+β kaz−β + k−

1
1+β λh(.,z)≥ a

(
k−

1
1+β z

)−β

.

Let u0 be the (unique) solution of the problem {
−∆u0 = au−β

0 in Ω,
u0 = 0 on ∂Ω.

Then, by Lemma 2.1, k−
1

1+β z ≥ u0 in Ω and so z ≥ k
1

1+β u0 in Ω. On the other hand, since (by Lemma 2.10) u0, w and vλ

belong to Uβ , there exist positive constants c0, c1 and c2 such that u0 ≥ c0Ψβ , w≤ c1Ψβ and vλ ≤ c2Ψβ . Thus z≥ k
1

1+β u0 ≥

k
1

1+β c0Ψβ ≥ k
1

1+β c0c−1
1 w and, similarly, z ≥ k

1
1+β c0c−1

2 vλ . Then (3.5) holds for k > max
(

1,
(
c−1

0 c1
)1+β

,
(
c−1

0 c2
)1+β

)
.

Notice that, by the assumptions on h, λh(.,s) ∈ L2 (Ω) for any s > 0. Thus, by Proposition 3.2, problem (1.1) has a solution u∗

such that u≤ u∗ ≤ u, which, since u≥ vλ and u 6= vλ , contradicts the property of vλ stated at the beggining of the section.
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4. Some facts about a class of principal eigenvalue problems

In this brief section we recall some facts concerning a class of principal eigenvalue problems with singular potential and weight
function, which we will need to prove Theorem 1.6.

Definition 4.1. Let B :=
{

b : Ω→ R : δ 2
Ω

b ∈ L∞ (Ω)
}
, and for b ∈B let ‖b‖B :=

∥∥δ 2
Ω

b
∥∥

∞
,

and let B+ := {b ∈B : b≥ 0 in Ω} and P := {m ∈ L∞ (Ω) : m > 0 a.e. in Ω} .

Notice that B provided with the norm ‖.‖B is a Banach space.

Remark 4.2. For b ∈B+ and m ∈ P consider the principal eigenvalue problem −∆z+bz = ρmz in Ω,
z = 0 on ∂Ω,
z > 0 in Ω

(4.1)

where ρ ∈ R and the equation is understood in weak sense, i.e., z ∈ H1
0 (Ω) and∫

Ω

(〈∇z,∇ϕ〉+bzϕ) = ρ

∫
Ω

mzϕ

for any ϕ ∈ H1
0 (Ω) . Notice that, although b may be singular at ∂Ω (for instance δ

−2
Ω
∈ B+), by ([43], Theorem 4.1), the

principal eigenvalue of (4.1) exists, is unique, positive, and simple. In order to emphasize its dependence on m and b, we will
denote such a ρ by ρm,b. Similarly, we will denote by φm,b its positive eigenfunction normalized by

∥∥φm,b
∥∥

2 = 1. In addition,
by ([43], Theorem 4.3), ρm,b is given by the usual Rayleigh’s variational formula

ρm,b = inf
w∈H1

0 (Ω)\{0}

∫
Ω

(
|∇w|2 +bw2

)
∫

Ω
mw2 (4.2)

Remark 4.3. Let P and B+ be as in Definition 4.1, with P provided with the topology inherited from L∞ (Ω) and B+ endowed
with the topology inherited from the Banach space B. Then, by ([43], Theorem 4.5) we have:
i) The map (m,b)→ ρm,b is continuous from P×B+ into R.
ii) The map (m,b)→ φm,b is continuous from P×B+ into H1

0 (Ω) .

Definition 4.4. Let Σ be as in Remark 1.5 and let Uβ be as given by Definition 2.8. For u ∈Uβ , x ∈Ω, and σ ∈ (0,Σ) , let

bu (x) := βa(x)u−β−1 (x)

and let

Nσ ,u (x) := σhs (x,u(x))

where hs (x, t) := ∂h(x,s)
∂ s |s=t .

Remark 4.5. Let Σ be as in Definition 4.4 and for σ ∈ (0,Σ) and u ∈Uβ , consider the principal eigenvalue problem −∆z+βau−β−1z = rσhs (.,u)z in Ω,
z = 0 on ∂Ω,
z > 0 in Ω,

(4.3)

which is, with the above notations, the problem −∆z+buz = rNσ ,uz in Ω,
z = 0 on ∂Ω,
z > 0 in Ω,

(4.4)

Notice that since u ∈Uβ and σ ∈ (0,Σ) then bu ∈B+ and Nσ ,u ∈ P. Indeed, since 0≤ a ∈ L∞ (Ω) and u ∈Uβ there exists a

constant c > 0 such that 0≤ bu ≤ cΨ
−β−1
β

. Thus bu ∈B+. In fact, let Ψβ be as defined by Definition 2.3 and let δΩ be defined
by (2.1). Then (since 0 < a ∈ L∞ (Ω)):

i) If 0 < β < 1 then Ψβ = δΩ and so δ 2
Ω

bu ≤ cδ 2
Ω

Ψ
−β−1
β

= cδ
1−β

Ω
∈ L∞ (Ω) ,

ii) If β = 1 then Ψβ = δΩ

(
log
(

ω0
δΩ

)) 1
2

and so δ 2
Ω

bu ≤ cδ 2
Ω

Ψ
−2
β

= c
(

log
(

ω0
δΩ

))−1
∈ L∞ (Ω),
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iii) If 1 < β < 3 then Ψβ = δ

2
1+β

Ω
and so δ 2

Ω
bu ≤ cδ 2

Ω
Ψ
−β−1
β

= cδ 2
Ω

δ
−−(β+1) 1

1+β

Ω
∈ L∞ (Ω) .

Therefore, for any β ∈ (0,3) and u ∈ Uβ , we have bu ∈ B+. On the other hand, Nσ ,u = σhs (.,u(.)) and so, from the
assumptions on h stated at the introduction, it is clear that Nσ ,u > 0 in Ω and that Nσ ,u ∈ L∞ (Ω) , and so Nσ ,u ∈ P.
Then, by Remark 4.2, problem (4.3) has a unique principal eigenvalue r = ρNσ ,u,bu which is unique, positive, simple, and it is
given by the corresponding Rayleigh’s variational formula.

Remark 4.6. In order to simplify the notation the principal eigenvalue of problem (4.3) will be denoted, from now on, by rσ ,u
(instead of ρNσ ,u,bu ), and its normalized positive principal eigenfunction (normalized by requiring ‖.‖2 = 1) will be denoted by
φσ ,u (instead of φNσ ,u,bu ).

We will need also the following lemma

Lemma 4.7. Let Yβ and Uβ be as given in Definition 2.8 and let u ∈Uβ . Let Σ be as in Remark 1.5 and let σ ∈ (0,Σ). Let{
σ j
}

j∈N and
{

u j
}

j∈N be sequences in (0,Σ) and Uβ respectively, and assume that
{

σ j
}

j∈N converges to σ and that
{

u j
}

j∈N
converges to u in Yβ . Then
i)
{

bu j

}
j∈N converges to bu in B.

ii) {Nσ j ,u j} j∈N converges to Nσ j ,u j in L∞ (Ω) .

iii)
{

rσ j ,u j

}
j∈N converges to rσ ,u in R and

{
φσ j ,u j

}
j∈N converges to φσ ,u in H1

0 (Ω) .

Proof. Let Ψβ be as given by Definition 2.3. Since u ∈Uβ there exists c > 0 such that

u≥ cΨβ in Ω. (4.5)

Let Yβ and ‖.‖Yβ
be as given by Definition 2.8, and let BYβ

(
u, c

2

)
be the open ball in Yβ centered at u and with radius c

2 . Thus

for any z ∈ BYβ

(
u, c

2

)
we have

∥∥∥Ψ
−1
β

(z−u)
∥∥∥

∞

< c
2 and so z > u− c

2 Ψβ ≥
(
c− c

2

)
Ψβ = c

2 Ψβ in Ω. Now,
{

u j
}

j∈N converges

to u in Yβ and so there exists j0 ∈ N such that u j ∈ BYβ

(
u, c

2

)
for any j ≥ j0. Then

u j ≥
c
2

Ψβ in Ω for any j ≥ j0. (4.6)

Let bu j and bu be defined by Definition 4.4. Observe that, for j ∈ N,∣∣δ 2
Ωbu j −δ

2
Ωbu
∣∣= ∣∣∣βaδ

2
Ω

((
u−β−1

j −u−β−1
))∣∣∣≤ c

∣∣∣δ 2
Ω

(
u−β−1

j −u−β−1
)∣∣∣ in Ω, (4.7)

where c = β ‖a‖
∞

is a positive constant independent of j. Now, for x ∈Ω, the mean value theorem gives that

u−β−1
j (x)−u−β−1 (x) =−(β +1)θ

−β−2
j,x (u j (x)−u(x)) (4.8)

for some number θ j,x belonging to the open segment with endpoints u j (x) and u(x) , and so, by (4.5) and (4.6),

θ j,x ≥
c
2

Ψβ (x) in Ω for any x ∈Ω whenever j ≥ j0. (4.9)

Therefore, from (4.7), (4.8), and (4.9), we have, for any j ≥ j0,

∣∣δ 2
Ωbu j −δ

2
Ωbu
∣∣≤ c(β +1)δ 2

Ω

∣∣u j−u
∣∣( c

2 Ψβ

)β+2 = c′
δ 2

Ω
Ψβ

∣∣∣Ψ−1
β

(u j−u)
∣∣∣

Ψ
β+2
β

= c′δ 2
ΩΨ
−β−1
β

∣∣∣Ψ−1
β

(u j−u)
∣∣∣ in Ω, (4.10)

with c′ a positive constant independent of j. Direct computations using the definition of the functinos Ψβ give that

δ
2
ΩΨ
−β−1
β

∈ L∞ (Ω) . (4.11)

Then, by (4.10) and (4.11) we get ∣∣δ 2
Ωbu j −δ

2
Ωbu
∣∣≤ c′′

∣∣∣Ψ−1
β

(u j−u)
∣∣∣ in Ω,

with c′′ a positive constant independent of j, and since
{

u j
}

j∈N converges to u in Yβ we have also that lim j→∞

∥∥∥Ψ
−1
β

(u j−u)
∥∥∥

∞

=

0 and then

lim
j→∞

∥∥δ
2
Ωbu j −δ

2
Ωbu
∥∥

∞
= 0
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which gives that
{

bu j

}
j∈N converges to bu in B. Thus i) holds

Let us see that {Nσ j ,u j} j∈N converges to Nσ ,u in L∞ (Ω) . Since each Ψβ is bounded, lim j→∞

∥∥∥Ψ
−1
β

(u j−u)
∥∥∥

∞

= 0 implies that

lim
j→∞

∥∥u j−u
∥∥

∞
= 0.

Also u ∈ L∞ (Ω) (because Ψ
−1
β

u ∈ L∞ (Ω)). Then
{

u j
}

j∈N is bounded in L∞ (Ω) . Thus there exists M > 0 such that ‖u‖
∞
≤M

and
∥∥u j
∥∥

∞
≤M for all j ∈N. Then for each j there exists E j ⊂Ω such that

∣∣E j
∣∣= 0 and 0≤ u j ≤M in Ω\E j, and there exists

E ⊂Ω such that |E|= 0 and 0≤ u≤M in Ω\E. Let F := E ∪∪ j∈NE j. Then |F |= 0, 0≤ u≤M in Ω\F and 0≤ u j ≤M
in Ω \F for all j ∈ N. Now, by our assumptions on h stated at the introduction, there exists a constant M∗ > 0 such that
|hs (x, t)| ≤M∗ and |hss (x, t)| ≤M∗ for any (x, t) ∈Ω× [0,M] . Then by the triangle inequality and the mean value theorem we
have, for any x ∈Ω\F and for all j ∈ N,

|Nσ j ,u j (x)−Nσ ,u (x)|=
∣∣σ jhs (x,u j (x))−σhs (x,u(x))

∣∣
≤
∣∣(σ j−σ)hs (x,u j (x))

∣∣+ ∣∣σhs (x,u j (x))−σhs (x,u(x))
∣∣

≤
∣∣(σ j−σ)

∣∣ ∣∣hs (x,u j (x))
∣∣+σ

∣∣hss (x,ζ j,x)
∣∣ ∣∣u j (x)−u(x)

∣∣ (4.12)

where ζ j,x is a number belonging to the open segment with endpoints u j (x) and u(x) . Then, for x ∈Ω\F and for all j ∈ N,∣∣hss (x,ζ j,x)
∣∣≤M∗ and so, for such x and j, (4.12) gives

|Nσ j ,u j (x)−Nσ ,u (x)| ≤M∗
∣∣σ j−σ

∣∣+σM∗
∣∣u j (x)−u(x)

∣∣
which, since lim j→∞

∥∥u j−u
∥∥

∞
= 0 and lim j→∞ σ j = σ , implies that {Nσ j ,u j} j∈N converges to Nσ ,um in L∞ (Ω) . Thus ii)

holds. Now, iii) follows from i), ii), and Remark 4.3.

5. Proof of the main results

We fix, for the whole section, Σ as given by Remark 1.5.

Definition 5.1. Let Yβ and Uβ be as in Definition 2.8, and let S : (0,Σ)×Uβ → Yβ be defined by

S (λ ,u) := u− (−∆)−1
(

au−β +λh(.,u)
)
. (5.1)

By ([37], Lemma 3.3) we have au−β +λh(.,u) ∈ H−1 (Ω), and (−∆)−1 (au−β +λh(λ ,u)
)
∈Yβ for any (λ ,u) ∈ (0,Σ)×Uβ ,

therefore S is well defined. Moreover, by ([37], Lemma 3.7), ([37], Corollary 3.8), and ([37], Lemma 3.9) (all of them
applied with f (λ , .,s) := λh(.,s) ) the operator S is continuously Fréchet differentiable in (0,Σ)×Uβ , and its differential at
(λ ,u) ∈ (0,Σ)×Uβ , denoted by DS(λ ,u), is given by

DS(λ ,u) (τ,ψ) = ψ− (−∆)−1
(
−βaψu−β−1 + τh(.,u)+ψλ

∂h
∂ s (.,u)

)
, (5.2)

and its partial derivative D2S(λ ,u) at (λ ,u) (i.e. the Fréchet differential at u, of the mapping v→ S (λ ,v)) is given by

D2S(λ ,u) (ψ) = ψ− (−∆)−1
((
−βau−β−1 +λ

∂h
∂ s

(.,u)
)

ψ

)
(5.3)

We recall that, as said in Remark 4.6, the principal eigenvalue of a problem of the form (4.3) will be denoted by rσ ,u.

Remark 5.2. In ([37], Lemma 5.17) it is proved that if λ ∈ (0,Σ) and if uλ is the minimal solution (as provided by Remark
1.2) of (1.1) then,

rλ ,uλ
> 1.

where rλ ,uλ
denotes the principal eigenvalue of problem 4.3, taking there u = uλ . By using this fact and a maximum principle

with weight function given by ([37], Lemma 4.4), in ([37], Lemma 5.18) it was proved that

D2S(λ ,uλ )
: Yβ → Yβ is bijective.

An inspection of the proofs of lemmas ([37], Lemma 5.17) and ([37], Lemma 5.18) shows that they work also if uλ is replaced
by any weak solution u of (1.1) such that u≤ vλ and u 6= vλ .

Lemma 5.3. Let λ ∈ (0,Σ), and let u be a weak solution of (1.1) such that u 6= vλ , then:
ii) rλ ,u > 1.
ii) D2S(λ ,u) : Yβ → Yβ is bijective.
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Proof. By Lemma 3.6) we actually know that u≤ vλ for any weak solution of (1.1), then the lemma follows from Remark
5.2

Now we can prove the following

Lemma 5.4. Let λ ∈ (0,Σ), and let u be a weak solution of (1.1) such that rλ ,u > 1, then there exist ε > 0 and an open set
V ⊂ Yβ such that u ∈V ⊂Uβ and if J := (λ − ε,λ + ε) then:
i) J ⊂ (0,Σ) and for any σ ∈ J there exists a unique ξ (σ) ∈V such that{

S (σ ,ξ (σ)) = 0,
ξ (λ ) = u.

Moreover, ξ : J→ Yβ is continuously differentiable, and its derivative ξ ′ satisfies, in weak sense, for any σ ∈ J,{
−∆(ξ ′ (σ)) =−βa(ξ (σ))−(1+β )

ξ ′ (σ)+h(.,ξ (σ))+σ
∂h
∂ s (.,ξ (σ))ξ ′ (σ) in Ω,

ξ ′ (σ) = 0 on ∂Ω..
(5.4)

ii) rσ ,ξ (σ) > 1 for any σ ∈ J.
iii) σ → ξ (σ) is nondecreasing on J.
iv) σ → rσ ,ξ (σ) is nonincreasing on J.

Proof. The first assertion of i) follows from Lemma 5.3 and the implicit function theorem and, since S (σ ,ξ (σ)) = 0 for any
σ ∈ J, (5.4) follows from (5.2) and the chain rule.
To see ii), observe that, by i), σ → ξ (σ) is continuous from J into Yβ . Then, by lemma 4.7, σ → rσ ,ξ (σ) is continuous on J.
Thus, since rλ ,u > 1, by diminishing ε if necessary, we get that rσ ,ξ (σ) > 1 for all σ ∈ J. Thus ii) holds.
Let us see iii). We rewrite (5.4) as{

−∆(ξ ′ (σ))+βa(ξ (σ))−β−1
ξ ′ (σ) = Nσ ,ξ (σ)ξ ′ (σ)+h(.,ξ (σ)) in Ω,

ξ ′ (σ) = 0 on ∂Ω.

Then, since h(.,ξ (σ)) ≥ 0 and rσ ,ξ (σ) > 1, the maximum principle with weight stated in ([37] Lemma 4.4 ii)) gives that
ξ ′ (σ)≥ 0 for any σ ∈ J. Thus σ → ξ (σ) is nondecreasing on J, and so iii) holds.
To see iv), observe that for σ , τ ∈ J such that σ ≤ τ we have, by iii), ξ (σ) ≤ ξ (τ) in Ω, and so, by the assumptions on h
stated at the introduction,

Nσ ,ξ (σ) = σ
∂h
∂ s

(.,ξ (σ))≤ σ
∂h
∂ s

(.,ξ (τ))≤ τ
∂h
∂ s

(.,ξ (τ)) = Nτ,ξ (τ) in Ω.

Then

rσ ,ξ (σ) = inf
z∈H1

0 (Ω)\{0}

∫
Ω

[
|∇z|2 +βaξ (σ)−β−1 z2

]
∫

Ω
Nσ ,ξ (σ)z2

≥ inf
z∈H1

0 (Ω)\{0}

∫
Ω

[
|∇z|2 +βaξ (τ)−β−1 z2

]
∫

Ω
Nτ,ξ (τ)z2.

= rτ,ξ (τ),

and thus iv) holds.

Let us recall the Hardy’s inequality (see e.g., [45], p. 313):

sup
06=ϕ∈H1

0 (Ω)

∥∥ϕδ
−1
Ω

∥∥
L2(Ω)

‖∇ϕ‖L2(Ω)

< ∞

Lemma 5.5. Let Σ be as given by Remark 1.5 and let Yβ and Uβ be as given in Definition 2.8. Let λ0 ∈ (0,Σ) and let w0 be a
weak solution of problem (1.1) such that w0 6= vλ0 , where vλ0 is the maximal solution of (1.1) corresponding to λ = λ0. Then
there exists ε > 0 and a function Θ : [0,λ0 + ε)→Uβ such that
i) Θ(λ0) = w0.
ii) Θ ∈C1

(
(0,λ0 + ε) ,Yβ

)
∩C
(
[0,λ0 + ε) ,Yβ

)
.

iii) S (σ ,Θ(σ)) = 0 for any σ ∈ (0,λ0 + ε)
iv) Θ(0) = u0 with convergence in Yβ , where u0 is the (unique) weak solution of (1.1) corresponding to λ = 0.

Proof. Let G be the family of the pairs (J,ξJ) such that:
1) J is an open interval in R, J ⊂ (0,Σ), and λ0 ∈ J.
2) ξJ ∈C1

(
J,Uβ

)
, ξJ (λ0) = w0, and S (σ ,ξJ (σ)) = 0 for all σ ∈ J.

3) rσ ,ξJ(σ) > 1 for any σ ∈ J.
4) σ → ξJ (σ) is nondecreasing on J
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5) σ → rσ ,ξJ(σ) is nonincreasing on J.
By Lemma 5.4, G 6=∅. Notice that, since ξJ ∈C1

(
J,Uβ

)
then, by Lemma 4.7,

σ → rσ ,ξJ(σ) is continuous on J. (5.5)

We claim that:

If (J,ξJ) ∈ G,(J∗,ξJ∗) ∈ G, and J∩ J∗ 6=∅, then ξJ = ξJ∗ in J∩ J∗. (5.6)

Indeed, let F := {σ ∈ J∩ J∗ : ξJ (σ) = ξJ∗ (σ)} Then λ0 ∈ F and so F 6= ∅. Also, since ξJ and ξJ∗ are continuous in their
respective domains, F is closed in J∩ J∗. Moreover, if σ ∈ F then, by the uniqueness assertion of Lemma 5.4 i) (used taking
there λ = σ ), there exists ε > 0 such that (σ − ε,σ + ε)⊂ F, and so F is open in J∩ J∗. Then, since J∩ J∗ is a connected set,
we conclude that F = J∩ J∗, and thus ξJ = ξJ∗ in J∩ J∗.
Let I := ∪J:(J,ξJ)∈GJ. Since I is a union of open intervals contained in (0,Σ), and all of them contain λ0, it follows that

I is an open interval, I ⊂ (0,Σ) , and λ0 ∈ I. (5.7)

Let Θ : I→Uβ be defined by

Θ(σ) := ξJ (σ) if σ ∈ J for some (J,ξJ) ∈ G. (5.8)

By (5.6) Θ is well defined on I and, from 2) and (5.8),

Θ ∈C1 (I,Uβ

)
, and S (σ ,Θ(σ)) = 0 for all σ ∈ I, (5.9)

(Later, within the proof of the lemma, we will define also Θ(λ∗), where λ∗ is the left endpoint of I, and we will show that Θ is
continuous at λ∗. and that λ∗ = 0 ). For σ ∈ I, let (J,ξJ) ∈ G such that σ ∈ J. From (5.8) we have rσ ,Θ(σ) = rσ ,ξJ(σ) and, by
3), rσ ,ξJ(σ) > 1. Then,

rσ ,Θ(σ) > 1 for any σ ∈ J. (5.10)

Suppose that t ∈ I, s ∈ I, and t ≤ s≤ λ0, and let (J,ξJ) ∈ G such that t ∈ J. Then s ∈ J, and so, since by 4) ξJ is nondecreasing
on J, and taking into account the definition (5.8) of Θ we have Θ(t)≤Θ(s). Then

Θ is nondecreasing on I. (5.11)

For σ ∈ I, let Nσ ,Θ(σ) be defined as in Definition 4.4, that is,

Nσ ,Θ(σ) (x) = σhs (x,Θ(σ)(x)) for any x ∈Ω.

Now, Θ is nondecreasing on I and, by the assumptions on h stated at the introduction, for any x ∈Ω, the mapping s→ hs (x,s)
is nondecreasing , then, for any x ∈Ω,

σ → Nσ ,Θ(σ) (x) is nondecreasing on I. (5.12)

On the other hand, by the Rayleigh’s variational formula for principal eigenvalues we have, for σ ∈ I,

rσ ,Θ(σ) = inf
z∈H1

0 (Ω)\{0}

∫
Ω

[
|∇z|2 +βaΘ(σ)−β−1 z2

]
∫

Ω
Nσ ,Θ(σ)z2

. (5.13)

From this expression, and taking into account (5.11), (5.12), and that Nσ ,Θ(σ) is nonnegative for any σ ∈ I, it follows that

the mapping σ → rσ ,Θ(σ) is nonincreasing on I. (5.14)

Notice that, from (5.7), (5.9), (5.10), (5.11), and (5.14) it follows that

(I,Θ) ∈ G (5.15)

Notice also that, since Θ : I→Uβ is continuous then, by Lemma 4.7,

σ → rσ ,Θ(σ) is continuous from I into R (5.16)

In addition, since Θ ∈C1
(
I,Uβ

)
and S (σ ,Θ(σ)) = 0 for all σ ∈ I, then from (5.2) and the chain rule we have, for any σ ∈ I,{

−∆(Θ′ (σ)) =−βa(Θ(σ))−(1+β )
Θ′ (σ)+h(.,Θ(σ))+σ

∂h
∂ s (.,Θ(σ))Θ′ (σ) in Ω,

Θ′ (σ) = 0 on ∂Ω..
(5.17)
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Since for any σ ∈ I, Θ(σ) is a weak solution of (1.1) (taking there λ = σ ) we have, in weak sense, −∆(Θ(σ)) = a(Θ(σ))−β +σh(.,Θ(σ))≥ a(Θ(σ))−β in Ω,
Θ(σ) = 0 on ∂Ω

Θ(σ)> 0 in Ω.

(5.18)

On the other hand, the (unique) weak solution u0 of (1.1) corresponding to λ = 0 satisfies −∆u0 = a(u0)
−β in Ω,

u0 = 0 on ∂Ω

u0 > 0 in Ω.

(5.19)

Then, by Lemma 2.1 ii), Θ(σ) ≥ u0 for any σ ∈ I and, by Lemma 2.10 iv), there exists a positive constant c∗ such that
u0 ≥ c∗Ψβ (with Ψβ given by Definition 2.3). Then, for any σ ∈ I,

Θ(σ)≥ c∗Ψβ in Ω. (5.20)

Let λ∗ and λ ∗ be such that I = (λ∗,λ
∗) . By (5.11), σ → Θ(σ) is nondecreasing on I, and clearly Θ(σ)≥ 0 in Ω (because

Θ(σ) ∈Uβ ). Then there exists the pointwise limit limσ→λ∗Θ(σ). Define, for x ∈Ω

Θ(λ∗)(x) := lim
σ→λ∗

Θ(σ)(x) . (5.21)

We are going to show the following three facts:
A) Θ(λ∗) ∈Uβ .
B) limσ→λ∗Θ(σ) = Θ(λ∗) with convergence in Yβ .
C) Θ(λ∗) is a weak solution of (1.1) corresponding to λ = λ∗.
From (5.20),

Θ(λ∗)≥ c∗Ψβ in Ω. (5.22)

Also, Θ(σ) ≤ Θ(λ0) for any σ ∈ (λ∗,λ0) and, since Θ(λ0) ∈Uβ we have Θ(λ0) ≤ c∗∗Ψβ for some positive constant c∗∗,
then

Θ(λ∗)≤ c∗∗Ψβ in Ω. (5.23)

Now, for any σ ∈ I, {
−∆(Θ(σ)) = a(Θ(σ))−β +σh(.,Θ(σ)) in Ω,
Θ(σ) = 0 on ∂Ω,

(5.24)

and so, for λ∗ < σ < τ < λ0 we have, in weak sense,{
−∆(Θ(τ)−Θ(σ)) = a

(
Θ−β (τ)−Θ−β (σ)

)
+ τh(.,Θ(τ))−σh(.,Θ(σ)) in Ω,

Θ(τ)−Θ(σ) = 0 on ∂Ω.

Then, by taking Θ(τ)−Θ(σ) as a test function in the above equation we get∫
Ω

|∇(Θ(τ)−Θ(σ))|2 =
∫

Ω

a
(

Θ
−β (τ)−Θ

−β (σ)
)
(Θ(τ)−Θ(σ))+

∫
Ω

(Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ)))

≤
∫

Ω

(Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ))) (5.25)

where, in the last inequality, we have used that Θ(σ)≤Θ(τ). Now, 0≤Θ(σ)≤Θ(τ)≤Θ(λ0) then, by our assumptions on
h,

0≤ τh(.,Θ(τ))−σh(.,Θ(σ))≤ λ0h(.,Θ(λ0)) ∈ L∞ (Ω) ,

and thus, since there exists the (finite) pointwise limit limσ→λ∗Θ(σ) , we have

lim
σ ,τ→λ∗

(Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ))) = 0 a.e. in Ω.

Also,

0≤ (Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ)))≤Θ(λ )λh(.,Θ(λ )) a.e. in Ω,
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and, by our assumptions on h stated at the introduction and by Lemma 2.10, Θ(λ )λh(.,Θ(λ )) ∈ L1 (Ω) . Then, by the
L:ebesgue’s dominated convergence theorem,

lim
σ ,τ→λ∗

∫
Ω

(Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ))) = 0

Thus, by (5.25), limσ ,τ→λ∗ ‖Θ(τ)−Θ(σ)‖H1
0 (Ω) = 0 and so, by the Cauchy criterion, there exists ζ ∈ H1

0 (Ω) such that

lim
σ→λ

+
∗

Θ(σ) = ζ with convergence in H1
0 (Ω) . Since lim

σ→λ
+
∗

Θ(σ) = Θ(λ∗) with pointwise convergence in Ω, we have
ζ = Θ(λ∗) . Then

Θ(λ∗) ∈ H1
0 (Ω) and lim

σ→λ
+
∗

Θ(σ) = Θ(λ∗) with convergence in H1
0 (Ω) . (5.26)

Moreover, from (5.22), (5.23) and (5.26), we have

Θ(λ∗) ∈Uβ .

Let us show that, in weak sense,{
−∆(Θ(λ∗)) = a(Θ(λ∗))

−β +λ∗h(.,Θ(λ∗)) in Ω,
Θ(λ∗) = 0 on ∂Ω.

(5.27)

Indeed, let ϕ ∈ H1
0 (Ω) . Since lim

σ→λ
+
∗

Θ(σ) = Θ(λ∗) with convergence in H1
0 (Ω) , we have

lim
σ→λ

+
∗

∫
Ω

〈∇Θ(σ) ,∇ϕ〉=
∫

Ω

〈∇Θ(λ∗) ,∇ϕ〉 .

Also,

lim
σ→λ

+
∗

a(Θ(λ∗))
−β

ϕ = a(Θ(λ∗))
−β

ϕ a.e. in Ω

and, since a ∈ L∞ (Ω) and Θ(λ∗)≥ c′Ψβ with c′ a positive constant, we have, for σ ∈ (λ∗,λ ) ,∣∣∣a(Θ(λ∗))
−β

ϕ

∣∣∣≤ ∣∣∣a(Θ(λ∗))
−β

ϕ

∣∣∣≤ cΨ
−β

β
|ϕ|= cδΩΨ

−β

β

∣∣∣∣ ϕ

δΩ

∣∣∣∣ a.e. in Ω,

with c a positive constant independent of σ . By Remark 2.4 we have δΩΨ
−β

β
∈ L2 (Ω) , and then, by the Hölder’s and the

Hardy’s inequalities, ∫
Ω

δΩΨ
−β

β

∣∣∣∣ ϕ

δΩ

∣∣∣∣≤ ∥∥∥δΩΨ
−β

β

∥∥∥
2

∥∥∥∥ ϕ

δΩ

∥∥∥∥
2
≤ c′

∥∥∥δΩΨ
−β

β

∥∥∥
2
‖ϕ‖H1

0 (Ω) < ∞

and so δΩΨ
−β

β

∣∣∣ ϕ

δΩ

∣∣∣ ∈ L1 (Ω) . Thus, by the Lebesgue’s dominated convergence theorem,
∫

Ω
a(Θ(λ∗))

−β
ϕ ∈ L1 (Ω) and

lim
σ→λ

+
∗

∫
Ω

aΘ
−β (σ)ϕ =

∫
Ω

aΘ
−β (λ∗)ϕ. (5.28)

Also, by the assumptions on h stated at the introduction, and since lim
σ→λ

+
∗

Θ(σ) = Θ(λ∗) pointwise in Ω, we have

lim
σ→λ

+
∗

σh(.,Θ(σ))ϕ = λ∗h(.,Θ(λ∗))ϕ a.e. in Ω. (5.29)

In addition, for λ∗ < σ < λ0, we have |σh(.,Θ(σ))ϕ| ≤ λ0h(.,Θ(λ0)) |ϕ| . By Lemma 2.10, Θ(λ0) ∈C
(
Ω
)

and then, by
our assumptions on h, λ0h(.,Θ(λ0)) ∈C

(
Ω
)
. Therefore λ0h(.,Θ(λ0)) |ϕ| ∈ L1 (Ω) and thus, by the Lebesgue’s dominated

convergence theorem, λ∗h(.,Θ(λ∗))ϕ ∈ L1 (Ω) and

lim
σ→λ

+
∗

∫
Ω

σh(.,Θ(σ))ϕ =
∫

Ω

λ∗h(.,Θ(λ∗))ϕ. (5.30)

By (5.24) we have, for any σ ∈ I∫
Ω

〈∇Θ(σ) ,∇ϕ〉=
∫

Ω

aΘ
−β (σ)ϕ +

∫
Ω

σh(.,Θ(σ))ϕ
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and then, from (5.28), (5.29), and (5.30), by taking the limit as σ → λ+
∗ we get∫

Ω

〈∇Θ(λ∗) ,∇ϕ〉=
∫

Ω

aΘ
−β (λ∗)ϕ +

∫
Ω

λ∗h(.,Θ(λ∗))ϕ.

Thus Θ(λ∗) is a weak solution of (5.27).
Now we show that lim

σ→λ
+
∗

Θ(σ) = Θ(λ∗) with convergence in Yβ . To do it, it is enough to see that

sup
σ∈(λ∗,λ )

∥∥Θ
′ (σ)

∥∥
Yβ

< ∞. (5.31)

Indeed, if (5.31) holds, then, for λ∗ < σ < τ < λ ,

‖Θ(τ)−Θ(σ)‖Yβ
=

∥∥∥∥∫ τ

σ

Θ
′ (s)ds

∥∥∥∥
Yβ

≤
∫

τ

σ

∥∥Θ
′ (s)
∥∥

Yβ

ds≤ |τ−σ | sup
σ∈(λ∗,λ )

∥∥Θ
′ (σ)

∥∥
Yβ

,

and so by (5.31) and the Cauchy’s criterion, there exists ξ ∈ Yβ such that lim
σ→λ

+
∗

Θ(σ) = ξ with convergence in Yβ , and
since Θ(σ) converges pointwise to Θ(λ∗) we have ξ = Θ(λ∗) and so lim

σ→λ
+
∗

Θ(σ) = Θ(λ∗) with convergence in Yβ .

To prove (5.31) observe that, for σ ∈ (λ∗,λ ) , Θ′ (σ) satisfies, in weak sense,{
−∆Θ′ (σ)+βaΘ−β−1 (σ)Θ′ (σ)−σ

∂h
∂ s (.,Θ(σ))Θ′ (σ) = h(.,Θ(σ)) in Ω,

Θ′ (σ) = 0 on ∂Ω.
(5.32)

Since Θ(σ)≤Θ(λ0) , σ
∂h
∂ s (.,Θ(σ))≤ λ0

∂h
∂ s (.,Θ(λ0)) , and h(.,Θ(σ))≤ h(.,Θ(λ0)) , (5.32) gives that, in weak sense,{

−∆Θ′ (σ)+βaΘ−β−1 (λ0)Θ′ (σ)−λ0
∂h
∂ s (.,Θ(λ0))Θ′ (σ)≤ h(.,Θ(λ0)) in Ω,

Θ′ (σ) = 0 on ∂Ω.
(5.33)

Also, {
−∆Θ′ (λ0)+βaΘ−β−1 (λ0)Θ′ (λ0)−λ0

∂h
∂ s (.,Θ(λ0))Θ′ (λ0) = h(.,Θ(λ0)) in Ω,

Θ′ (λ0) = 0 on ∂Ω,
(5.34)

and so, since Nλ0,Θ(λ0) = λ0h(.,Θ(λ0)) and ρ
Nλ0 ,Θ(λ0),Θ(λ0)

> 1, from (5.33), (5.34) and the maximum principle of ([37] Lemma

4.4 ii)) it follows that Θ′ (σ) ≤ Θ′ (λ0) a.e in Ω. We have also Θ′ (σ) ≥ 0 a.e in Ω (because σ → Θ(σ) is nondecreasing).
Therefore ∥∥∥Ψ

−1
β

Θ
′ (σ)

∥∥∥
∞

≤ c for any σ ∈ (λ∗,λ0) (5.35)

where c :=
∥∥∥Ψ
−1
β

Θ′ (λ0)
∥∥∥

∞

(note that c is finite because Θ′ (λ0) ∈Yβ ). In particular, (5.35) gives that for some constant c′ > 0,∥∥Θ
′ (σ)

∥∥
∞
≤ c′ for any σ ∈ (λ∗,λ0) . (5.36)

From (5.32) we have also∫
Ω

∣∣∇Θ
′ (σ)

∣∣2 =−∫
Ω

βaΘ
−β−1 (σ)

(
Θ
′ (σ)

)2
+
∫

Ω

σ
∂h
∂ s

(.,Θ(σ))
(
Θ
′ (σ)

)2
+
∫

Ω

h(.,Θ(σ))Θ
′ (σ)

≤
∫

Ω

λ0
∂h
∂ s

(.,Θ(λ0))
(
Θ
′ (σ)

)2
+
∫

Ω

h(.,Θ(λ0))Θ
′ (σ)

≤M
∫

Ω

(
Θ
′ (σ)

)2
+M

∫
Ω

Θ
′ (σ)

where M;=
∥∥∥λ0

∂h
∂ s (.,Θ(λ0))

∥∥∥
∞

+ ‖h(.,Θ(λ0))‖∞
. Then, taking into account (5.36), we conclude that for some constant

c′′ > 0, ∥∥Θ
′ (σ)

∥∥
H1

0 (Ω)
≤ c′′ for any σ ∈ (λ∗,λ0) .

which jointly with (5.35) gives (5.31).
Now we show that λ∗ = 0. We proceed by the way of contradiction. Suppose λ ∗ > 0. Then, since rλ0,Θ(λ0) > 1 and since,
by 5’), σ → rσ ,Θ(σ) is nonincreasing on I, we have rλ∗,Θ(λ∗) > 1. Thus, by Lemma 5.4 there exists ε > 0 such that Θ has an
extension (still denoted by Θ) to Iε := (λ∗− ε, λ ∗) such that (Iε ,Θ) ∈ G, which contradicts the definition of λ∗.
Then λ∗ = 0, and so, by (5.27), Θ(λ∗) = u0 (where u0 is the unique solution of (1.1) for λ = 0).
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Proof of Theorem 1.6. We proceed by the way of contradiction. Let Σ be as given by Remark 1.5. Let λ0 ∈ (0,Σ) and let uλ0
and vλ0 be the minimal weak solution and the maximal weak solution, respectively, of problem (1.1) corresponding to λ = λ0.
Then uλ0 6= vλ0 . Suppose, by contradiction, that there exists a weak solution w of (1.1, corresponding to λ = λ0 such that
uλ 6= w 6= vλ . By Lemma 5.5, applied with w0 = w , there exists a function Θ∈C1

(
(0,λ0 + ε) ,Uβ

)
∩C
(
[0,λ0 + ε) ,Uβ

)
such

that Θ(λ0) = w, Θ(0) = u0 (where u0 is the unique weak solution of (1.1) corresponding to λ = 0), and such that rσ ,Θ(σ) > 1
for any σ ∈ (0,λ0), and with Θ satisfying, in weak sense and for any σ ∈ (0,λ0), −∆(Θ(σ)) = aΘ−β (σ)+σh(.,Θ(σ)) in Ω,

Θ(σ) = 0 on ∂Ω,
Θ(σ)> 0 in ∂Ω.

Again by Lemma 5.5, but applied now with w0 = uλ0 , we have that, for some ε ′ > 0, there exists a function Φ ∈
C1
(
(0,λ0 + ε ′) ,Uβ

)
∩C
(
[0,λ0 + ε ′) ,Uβ

)
such that Φ(λ0) = uλ0 ,

Φ(0) = u0 where, as above, u0 is the weak solution of (1.1) for λ = 0, and such that rσ ,Φ(σ) > 1 for any σ ∈ (0,λ0), and
satisfying, in weak sense and for any σ ∈ (0,λ ), −∆(Φ(σ)) = aΦ−β (σ)+σh(.,Φ(σ)) in Ω,

Φ(σ) = 0 on ∂Ω,
Φ(σ)> 0 in ∂Ω.

Observe that, since w 6= uλ0 , then

Θ(σ) 6= Φ(σ) for any σ ∈ (0,λ0) . (5.37)

Indeed, let

λ∗∗ := sup{η ∈ [0,λ0] : Θ(η) = Φ(η)} . (5.38)

We claim that λ∗∗ = 0. In fact, since Θ(λ0) = w 6= uλ0 = Φ(λ0) , and since Θ and Φ are continuous at λ0 we have, necessarily,
λ∗∗ < λ0. If λ∗∗ > 0 then λ∗∗ ∈ (0,λ0) and so rλ∗∗,Θ(λ∗∗) > 1. Thus Lemma 5.4 can be applied taking there λ = λ∗∗ and
u=Θ(λ∗∗) to obtain a number ε > 0 and an open neighborhood V of Θ(λ∗∗) in Yβ such that for any σ ∈ (λ∗∗− ε,λ∗∗+ ε) there
exists a unique ξ (σ) ∈V such that S (σ ,ξ (σ)) = 0. By diminishing ε if necessary, we can assume that (λ∗∗− ε,λ∗∗+ ε)⊂
(0,λ0) . From the continuity of Θ and Φ at λ∗∗ and from (5.38), we have that Θ(λ∗∗) = Φ(λ∗∗)∈V and so, δ positive and small
enough, we have that if λ∗∗ < σ < λ∗∗+δ then Θ(σ) 6= Φ(σ) and also S (σ ,Θ(σ)) = S (σ ,Φ(σ)) = 0, which contradicts
the uniqueness assertion of Lemma 5.4. Thus λ∗∗ = 0 and so (5.37) holds.
Now, for σ ∈ (0,λ0) ,{

−∆(Θ(σ)−Φ(σ)) = a
(
(Θ(σ))−β − (Φ(σ))−β

)
+σ (h(.,Θ(σ))−h(.,Φ(σ))) in Ω,

Θ(σ)−Φ(σ) = 0 on ∂Ω,
(5.39)

and, by the mean value theorem, σ (h(.,Θ(σ))−h(.,Φ(σ))) = σ
∂h
∂ s (.,ησ )(Θ(σ)−Φ(σ)) for some function ησ such that,

for x ∈Ω, ησ (x) belongs to the open segment with endpoints Φ(σ)(x) and Θ(σ)(x) .
Since 0 ≤ Θ(σ) ≤ Θ(λ0) and 0 ≤ Φ(σ) ≤ Φ(λ0), and since Θ(λ0) and Φ(λ0) belong to L∞ (Ω) (because they belong to
Yβ ) then there exists a positive constant M1 such that 0≤ ησ ≤M1 for any σ ∈ (0,λ0). Then, from our assumptions on h, it

follows that there exists a constant M such that
∣∣∣ ∂h

∂ s (.,ησ )
∣∣∣≤M for any σ ∈ (0,λ0). Then, for such σ ,

Now we take the test function ϕ = Θ(σ)−Φ(σ) in (5.39) to obtain

‖Θ(σ)−Φ(σ)‖2
H1

0 (Ω) =
∫

Ω

(
(Θ(σ))−β − (Φ(σ))−β

)
(Θ(σ)−Φ(σ))+

∫
Ω

σ (h(.,Θ(σ))−h(.,Φ(σ)))(Θ(σ)−Φ(σ))

≤
∫

Ω

σ |h(.,Θ(σ))−h(.,Φ(σ))| |Θ(σ)−Φ(σ)|

≤ σM
∫

Ω

(Θ(σ)−Φ(σ))2

≤ σMc2
P ‖Θ(σ)−Φ(σ)‖2

H1
0 (Ω)

where cP is the constant of the Poincaré’s inequality in Ω, and where in the first inequality we used that s→ as−β is
nonincreasing and, in the second one, the Poincaré’s inequality was used. Then, since Θ(σ) 6= Φ(σ) for any σ ∈ (0,λ0) we
conclude that 1≤ σMc2

P which, by taking limσ→0+ , gives a contradiction that completes the proof of the theorem.

Remark 5.6. An inspection of the proof given for Theorem 1.6 shows that, if w is a weak solution of (1.1) then, in order to
construct the function Θ (and to prove its properties), the assumption w 6= vλ was used only to guarantee that ρNλ ,w,w > 1 .
From this fact one gets that if for some λ ∈ (0,Σ), rλ ,vλ

> 1 then, proceeding as in the proof of Theorem 1.6, a contradiction is
reached. Therefore necessarily rλ ,vλ

≤ 1 for any λ ∈ (0,Σ).
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6. Conclusion

For a C2 and bounded domain Ω in Rn, n≥ 2, we considered the problem

−∆u = au−β +λh(.,u) in Ω,u = 0 on ∂Ω,u > 0 in Ω, (6.1)

where λ is a nonnegative parameter and the solutions are understood in weak sense. Under the assumptions H1)-H6) stated
at the introduction our main result can be readed as follows. If for some λ ≥ 0 the above problem has at least two weak
solutions, then it has exactly two weak solutions (which belong to H1

0 (Ω)∩C1 (Ω)∩C
(
Ω
)
), namely, a minimal solution uλ

and a maximal solution vλ , such that uλ 6= vλ and uλ ≤ vλ in Ω. This fact, combined with known previous results leads to the
following statement: There exists Σ > 0 such that:
For λ = 0 and λ = Σ there exists exactly one weak solution,
For 0 < λ < Σ there exists exactly two weak solutions in H1

0 (Ω),
For λ > Σ no weak solutions exist.
Let us stress that although there are many results concerning existence and multiplicity for solutions of singular elliptic
problems, exact multiplicity results are far less abundant in the literature .
Our result complements known multiplicity results for these kind of singular problems. As an example, it applies, for instance,
when n ≥ 2, a ∈ C

(
Ω
)

is strictly positive in Ω and h(x,s) = ∑
m
j=1 b j (x)sp j with b j ∈ C

(
Ω
)
, such that b j > 0 in Ω, and

1 < p1 < p2 < .... < pm < n+2
n−2 (with the convention that n+2

n−2 = ∞ if n = 2).
Some possible future directions of research include:
i) Study problem (6.1) in cases where the coefficient a of the singular term of the equation is singular at ∂ (Ω) in order to
obtain, again in some of these situations, exact multiplicity results.
ii) For β > 0 arbitrary search for exact multiplicity results for solutions u ∈C2 (Ω)∩C

(
Ω
)

of problem (6.1).
iii) Investigate the situation when, under suitable assumptions, the Laplacian is replaced by the q−Laplacian in (6.1) for some
1 < q < ∞.
Other interesting questions remain. For instance:
By ([36], Theorem 1.2) λ → uλ is nondecreasing on [0,Σ] , and by ([35], Theorem 1.2), λ = 0 is a bifurcation point
from ∞ for problem (6.1). Then, since for λ ∈ (0,λ ) uλ and vλ are the unique solutions of (6.1), one could suspect that
limλ→0+ ‖vλ‖C(Ω) = ∞, and that the map λ → vλ is non increasing on (0,Σ] . It would interestig to prove these fact (if true).
It would be also interesting to investigate the regularity properties (if any) of the mapping λ → vλ .
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