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ABSTRACT. Let S be a I'-semigroup with zero. We define the S E subset of S as S g ={aeS |al'STa = (0)}.
This set is called the source of I'-semiprimeness of S. In this study, we examined some properties of ST set and
defined |S El—idempotent, IS El—regular and |S gl—reduced I'-semigroups. We then obtained some results for these
newly defined semigroups.
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1. INTRODUCTION

The literature contains numerous pioneering studies on I'-semigroups, and the fundamental definitions have been
provided based on these seminal works [2—6]. In this study, novel I'-semigroup structures were defined, and several of
their properties were presented. Let S and I' be two nonempty sets. In [5], S is called a I'-semigroup, for all @, € T’
and for all a,b,c € S if

aab € S

and
(aab)Bc = aa(bBc).

A semigroup can be considered a I'-semigroup when the following conditions are met. Let S be an arbitrary semigroup.
Let 1 be a symbol that is not an element of the semigroup S. Let us extend the binary operation defined on § to S U {1}
by defining 1-1 =1and1-a =a-1,foralla € S. The set S U {1} is a semigroup with an identity element 1. For
I'={1},ifa-b=a-1-b, then semigroup S becomes a I'-semigroup.

Since every semigroup is a I'-semigroup, the concept of a I'-semigroup was defined as a generalization of a semi-
group. Many properties of semigroups are generalized to the I'-semigroup. In line with these studies, we can generalize
the theorems of [1]. The aim of this study is to generalize the study further and to obtain new results by using the defi-
nition of semiprimeness in I'-semigroups in the sense of the study done in the [1].
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2. PRELIMINARIES
This section provides the definitions needed in this study.

Definition 2.1 ( [6]). A nonempty subset A of I'-semigroup S is called a I'-subsemigroup of S if ayb € A, for all
a,beAandforally erl.

Definition 2.2 ( [4]). The I'-semigroup S is called a commutative I'-semigroup if ayb = bya, for all a,b € S and for
allyeTl.

Definition 2.3 ( [5]). Let S be a I'-semigroup. If there exists 1 € S such that 1ys = s (left identity) and syl = s (right
identity), for all s € § and y € T, then S is called a [-monoid.

Definition 2.4 ( [4]). The element 0 of I'-semigroup S is called a zero element if Oars = O (left zero) and sa0 = 0 (right
zero), forall s € § and forall @ € T.

Remark 2.5. Throughout this study, S will be taken as a I'-semigroup with zero elements.

Definition 2.6 ( [4]). Let S be a I'-semigroup and e € S. If eae = e, for @ € T, then the element e € S is called
an a-idempotent element. If all the elements of S are @-idempotent, for some a € I, then S is called an idempotent
I'-semigroup.

Definition 2.7 ( [4]). The element x € § is called a regular element if x = xaafx, for some a € § and @,8 €T, i.e
x € xI'STx. If all elements of § are regular, then S is called a regular I'-semigroup.

Definition 2.8 ( [2]). The element a € S is called a nilpotent element if, for any y € I and for some n € Z*, n = n(y, a)
> (ay)"'a = 0. A T-semigroup S is called reduced if it has no nonzero nilpotent elements.

Definition 2.9 ( [4]). Let A be a nonempty subset of S. Then, A is called a I'-ideal if saa € A (left I-ideal) and aas € A
(right T'-ideal), for se S,a€ Aand a €T.
Equivalent to this definition; if STA C A (left I'-ideal) and AT'S C A (right I'-ideal), then A is called a I'-ideal.

Definition 2.10 ( [6]). Let / be aI'-ideal of S. Forany a € S, if al'a C I implies a € I, then I is called a semiprime
I'-ideal of §'.
Equivalent to this definition; for any I'-ideal A of S, if AT'A C I implies A C I, then [ is called a semiprime I'-ideal.

Definition 2.11 ( [6]). The I ideal of S is called the s-semiprime I'-ideal if aya € I implies a € I, for any a € S and
yel.

Definition 2.12 ( [4]). A right I'-ideal A of S is called a principal right I'-ideal generated by a if A is a right I'-ideal
generated by {a}, for some a € S. It is denoted (a) = al'S U {a}.

Remark 2.13 ( [4]). In T-semigroup S, the product of A and B sets is
ATB={ayblac A, beB, yeTl}.
The Definition 2.14 is adapted from [3].
Definition 2.14. If al'STa = (0) with a € S implies a = 0, then S is called a semiprime I'-semigroup.

3. PROPERTIES OF THE |S EI -SEMIGROUP
Definition 3.1. Let S be a I'-semigroup with zero and @ # A C S. The subset of S,
SL(A)=1{a €S | al'Ala = (0)}

is called the source of I'-semiprimeness of A in §. S g will be used instead of SE(S ). In that case, the source set of
I'-semiprimeness of S is denoted by
Sy ={a €S |alSTa = (0)}.

Some of some properties of aforesaid set as follows:

Remark 3.2. Let A be a ['-subsemigroup of S.
(1) Letx e S};. Then, xI'AI'x = (0), forx € A. Since AC S, x € SE(A). So, ST ¢ SE(A).
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(2) Since 0 € SL(A), SL(A) # @.
(3) Let AC B,foro #A,BC S and x € SE(B). Then, xI'BI'x = (0), for x € S. Since A C B, xI'AI'x = (0), for
x € S. Therefore, x € S{(A). Thus, SL(B) C S{(A).

Proposition 3.3. S is a I'-semiprime semigroup if and only if S g = {0}

Proof. =: Let S be a I'-semiprime semigroup and a € § g Then, al'STa = (0), for a € S. From the hypothesis a = 0
is satisfied. Therefore, S§ = {0}.

<: Let Sg = {0}. Suppose that al'STa = (0), for a € S. Then, a € Sg and a = 0 is satisfied. Namely, S is a
I'-semiprime semigroup. O

Lemma 3.4. Let S be a I'-semigroup. Then, the following are provided.:
(1) eI'S§ c Shg, foreesS.

(2) If S is an idempotent T'-semigroup, then S g = {0}.

(3) IfS is a regular I'-semigroup, then Sg = {0}.

(4) Ifa € ST, then a is a nilpotent element.

Proof. (1) Letel'a C eI'SE, fora € SL. Since a € S, al'STa = (0), for a € S. From here
el'al'(el'S)l'el'a C eI'(al'STa) = eI'(0) = (0).

This gives el'a € ST. So, eI'Sy € ST ..

(2) Ifa € SE, then aI'STa = (0). Thus, acaaa = (0), fora € S and a € T'. Since a is an a-idempotent element,

(0) = avaaa = aaa = a

is satisfied. Accordingly, S§ = {0}.

(3) Let S be a regular I'-semigroup and a € S g Then, al'STa = (0), for a € S. Therefore, aaxBa = 0, for x € S
and «a, B € T'. Since a is a regular element, a = 0. Then, Sg = {0}

(4) Leta € S§. Then, al'al'a = (0), for a € S. Hence, 0 = ayaya = (ay)*a, for y € I. Thus, a is a nilpotent

element.
|

From Lemma 3.4, the following results are obtained.

Corollary 3.5. Let S be a I'-semigroup. Then, the following are provided:
(1) There are no nonzero a-idempotent elements in the set S g
(2) There are no nonzero regular elements in the set S E
(3) Every element of S g is a nilpotent element.

Definition 3.6. Let S be a I'-semigroup with zero and § # S g . Then,
(1) If every element of § — Sg is an a-idempotent element, for some a € I, then S is called a |S gl-idempotent
I'-semigroup.
(2) If every element of § — S g is a regular element, then S is called a |S g |-regular I'-semigroup.
B IS -8 g has no nilpotent elements, then S is called a |S g |-reduced I'-semigroup.

Remark 3.7. The following can be obtained from Definition 3.6.
(1) If § = {0}, then SE = {0} = §. Since § — Sg = @, this is meaningless for the I'-semigroup S with zero.
Similarly, in the case of S = SE, S - Sg = Q.
(2) (a) Ifais apB-idempotent element, then afa = a, for § € I'. Since af(afa) = afa = a, a is a regular element.
(b) Leta € S be a nilpotent element and assume that a is a y-idempotent element. Then aya = a, fory € I'.
Since a is a nilpotent element, (ay)"'a = 0. From here,

0 = (ay)"'a = (ay)"*(aya) = (ay)"*a

is obtained. This contradicts the fact that (ay)"~2a # 0. Accordingly, a is not a y-idempotent element.
Based on the obtained properties, the following results have been achieved.

IfSisa |S£| — idempotent I' — semigroup, then S is a |S£| — regular I' — semigroup.
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IfSisalS EI — idempotent I' — semigroup, then S is a |S EI — reduced I' — semigroup.

(3) If S isaTl-idempotent (regular, reduced) semigroup, then S isa |S E |-idempotent (regular, reduced) I'-semigroup.

Proposition 3.8. Let A be a I'-subsemigroup of S.
IfSisalS g |-idempotent (regular, reduced) I'-semigroup, then A is a |S gl—idempotent (regular, reduced) I'-semigroup.

Proof. Let S be a |S§|-idempotent (regular, reduced) I'-semigroup and a € A — S%. Then, a € A and a ¢ S',. Thus,
al'(AT'a) # (0). Since A C S, al'(STa) # (0). This means a ¢ S g Namely, a is a y-idempotent element, for some
v € I'. Therefore, A is a|S £|-idemp0tent (regular, reduced) I'-semigroup. O

Proposition 3.9. If S is a commutative |S gl-idempotent I'-semigroup, then S — S g is a T'-subsemigroup.

Proof. Let S be a commutative |S g|-idemp0tent I'-semigroup. In a commutative I'-semigroup, the product of y-
idempotent elements, for some y € T is a y-idempotent element. So, for a,b € S — ST, ayb € S is a y-idempotent
element. It is also seen that ayb ¢ S%. Thus, ayb € S — S Therefore, S — S is a I'-subsemigroup. m]

Lemma 3.10. Let S be a |S El—reduced I"-semigroup. Then, the following are valid.
(1) Sg ={a €S | (al)*a = (0)}.
(2) If S is a I'-monoid, then Sg =f{aeS|aya=0, VyeTl}

Proof. LetS bealS g |-reduced I'-semigroup.
(1) Let A =f{a €S | (al)*a = (0)}. If a € S§, then al'al'a = (0), for a € S. This means (aI')*a = (0), fora € §
and so a € A. Hence, S§ C A.
On the other hand, if a € A, then (ay)za = (0), for a € S and y € T". Therefore, a is a nilpotent element.

Thus,a € S g
2) LetB={aeS |aya=0, Vyeltandace Sg. Then, al’'STa = (0), fora € S. Since § is a ['-monoid,
0 = ay(1Ba) = aya
for 1 €S andy,B € I'. Namely, S§ C B.
Conversely, if a € B, then aya = 0, for a € S. From here a is a nilpotent element. Thus, a € S g

Lemma 3.11. Let I and J be two T-ideals of S. Then, the following are satisfied:
() S;nshcsi,.

(2) IfIis aleft (right) '-ideal of S, then SE(I) is a right (left) I-ideal of S .

(3) IflisaT-ideal of S, then S? is aT-ideal of S. Specially, Sg is aT-ideal of S.

(4) If 1 and J are T-ideals of S, then S (DTS5 (J) € SLUTJ).

(5) If I and J are T-ideals of S, then S;FSr c S?FJ.

Proof. Let I and J be aI'-ideals of §.
(1) IfaeS; NS, thena e S} anda € SY. Then, al'lTa = (0) and al'JTa = (0). Since INJ C I,
all(nJ)l'a € al'lTa = (0)

r
Thus,a € §,.,.

(2) Let I be aleft I'-ideal of S. Then, STT C I. If we take x € Sg(]), then xI'IT'x = (0), for x € §. From here,
xISTITXIS C xI'(UTX'S) = (XTCITX)I'S = (0)I'S = (0)

is found. It means xI'S C S§ (1) and so SL(DI'S C S§(J). Therefore, S§ (/) is a right I'-ideal of ..
(3) If I is aT-ideal of S, then IT'S C I and STI C I. Ifa € S', then al'ITa = (0), for a € I. So, we obtain
al'STITal’'S C al'(ITal’'S) = (al'[Ta)I'S = (0)I'S = (0)
and
STal'IT'STa C ST(al'lTa) = ST(0) = (0).
Hereby, STa C S; and al'S C S}-. Since S is a I'-ideal of S, Sg is a ['-ideal of S.
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(4) Letayb € SE(I)FS?(J), fory €T Sincea € SE(I) and b € SE(J), al'lTa = (0) and bI'JT'h = (0), fora,b € S.
Thus,
aybU'IT'JTayb C (al'bI'ITa)I'b C (al'lTa)T'b = (0)I'b = (0)
is obtained by using that / and J are I'-ideals. So, ayb € § E(IFJ).
(5) Ifayb € S|ISY, fory €T, a € S} and b € S becomes. Then, al'lTa = (0) and bI'JT'b = (0), for a € I and
b € J. In this case,

aybUITJTayb C (aTbTITa)Th C (aTITa)l'h = (0)T'b = (0)

is obtained by using that I and J are ['-ideals. Thence, ayb € SIFr ;-
|
Theorem 3.12. IfS is a commutative |S g |-regular T'-semigroup, then S is a |S gl-reduced I'-semigroup.
Proof. Let S be a commutative |S gl—regular I'-semigroupanda e S - § E be a nilpotent element. In this case,
(ay)"‘la =0, for n € Z*. Since a is a regular element and S is commutative,
0 = (ay)'"'a = (ay)'"aya = (ay)"*ayapb = (ay)"a.
This is a contradiction. Hence, inset S — § g has no nilpotent elements. Thus, S is a |S gl—reduced I'-semigroup. O
Definition 3.13. Let S be aI'-semigroup anda € S. If
al'STa C S§ implies that a € S,
then S is called a |S g |-semiprime I'-semigroup.
Lemma 3.14. The set S g of the source of T'-semiprimeness is contained by every semiprime I'-ideal of S.
Proof. Let A be a semiprime I'-ideal of S and a € Sg. Then, al'STa = (0) C A. Hence, a € A. Thus, Sg CA. O

Proposition 3.15. Ler S g be a semiprime I'-ideal of S. Then, the intersection of all semiprime T'-ideals of S is equal

toS g

Proof. Since the set S g is contained by every semiprime I'-ideal, S C () A; where A; are semiprime I'-ideals of S.
Conversely, since the set S is a semiprime I-ideal, M A; C S§. Hence, S§ = N A;. o

Theorem 3.16. S isa ISgl-semiprime I-semigroup if and only if for any T'-ideal A of S, ATA C Sg implies that A C Sg.

Proof. LetS be alS gl-semiprime I'-semigroup. Suppose that ATA C ST, for a I-ideal A. Then, ATATSTATA = (0).
Since
(AT'STA)'ST(AI'STA) € ATAT'STAT'A = (0),

ATSTA C SY is satisfied. From the hypothesis, we have A C S¥.
Conversely, let ATA C S g implies that A C S, for any I'-ideal A. If al'STa C S, fora € S, then

ST(al'STa)I'S € STSSI'S C S§
because of S g is a I'-ideal of S. Then we obtain,
(STal'S)I(STal'S) C ST(al'STa)'S C S%
and from the hypothesis, STal'S € S g is provided. Now, consider the principal right I'-ideal (a) = aI'S U {a}. Since
(a)® = (@T(a)[(a) C STal'S C S§

when

(@T(@)* € (a)’T(a) € S,
(@)* = (@l(a) € S§. From the hypothesis, () C S§ and a € ST is obtained. Then, S is a [S§|-semiprime I'-
semigroup. O

Corollary 3.17. IfS g is a s-semiprime I'-ideal, then S is a |S gl-semiprime I-semigroup.

Definition 3.18. For |S g |-semiprime I'-semigroup S the following definitions are equivalent:
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1 Ifs g is a semiprime I'-ideal of S, then S is called a |S gl—semiprime I'-semigroup.
(2) For any I'-ideal A of S, if ATA C S implies that A C S, then S is called a |S §|-semiprime I'-semigroup.
3) If Sg is a s-semiprime I'-ideal of S, then § is called a ISgI-semiprime I'-semigroup.

Theorem 3.19. If S is a regular I'-semigroup, then S is a |S gl—semiprime I"-semigroup.

Proof. Let S be a regular I'-semigroup and al'STa € SL, fora € S. Since a € al'STa C § g aes g is provided. Thus,
SisalS g [-semiprime ['-semigroup. O

Corollary 3.20. IfS is an idempotent I'-semigroup, then S is a |S gl—semiprime I'-semigroup.

Proof. If S is an idempotent I'-semigroup, then S is a regular I'-semigroup. In this way S is a [S g|-semiprime I-
semigroup. O

Example 3.21. Define a mapping S XI' X S — § such that ayb = ab, foralla,b € S andy €T

.10 a b c

0/0 0 0 O

al0 a b 0

b0 b b O

c|/0 0 0 O
Then, S is a I'-semigroup. From the table,

S¥ =1{0,c}

and

S -8 ={a,b).

Since aya = aand byb = b, S is a |S£|—idempotent I'-semigroup. Besides, a = ayaya and b = bybyb are regular
elements. Accordingly, S is a ISEI— regular I'-semigroup. Otherwise, a and b are not nilpotent elements. Thus, S is a
IS g |- reduced I'-semigroup.

Example 3.22. Define a mapping S XI' X S — S such that ayb = ab, foralla,be S andy €T.

01 a b c
0/0 0 0 0 O
110 1 a b ¢
al0 a a 0 0
b0 b 0 0 O
c|0 ¢ 0 0 O
With the binary operation defined, S is a I'-monoid. Using the table,
S =1{0,b,c}
and
S-S5 =1a1)}.

Since aya =aand 1yl = 1,8 isalS gl—idempotent I'-semigroup. Moreover, since a = ayaya and 1 = lylyl, S isa
IS g |-regular I'-semigroup. Here a and 1 are not nilpotent elements. Thus, S is a S g |- reduced I'-semigroup.
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