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Abstract. Let S be a Γ-semigroup with zero. We define the S ΓS subset of S as S ΓS = {a ∈ S | aΓSΓa = (0)}.
This set is called the source of Γ-semiprimeness of S . In this study, we examined some properties of S ΓS set and
defined |S ΓS |-idempotent, |S ΓS |-regular and |S ΓS |-reduced Γ-semigroups. We then obtained some results for these
newly defined semigroups.
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1. Introduction

The literature contains numerous pioneering studies on Γ-semigroups, and the fundamental definitions have been
provided based on these seminal works [2–6]. In this study, novel Γ-semigroup structures were defined, and several of
their properties were presented. Let S and Γ be two nonempty sets. In [5], S is called a Γ-semigroup, for all α, β ∈ Γ
and for all a, b, c ∈ S if

aαb ∈ S

and
(aαb)βc = aα(bβc).

A semigroup can be considered a Γ-semigroup when the following conditions are met. Let S be an arbitrary semigroup.
Let 1 be a symbol that is not an element of the semigroup S . Let us extend the binary operation defined on S to S ∪ {1}
by defining 1 · 1 = 1 and 1 · a = a · 1, for all a ∈ S . The set S ∪ {1} is a semigroup with an identity element 1. For
Γ = {1}, if a · b = a · 1 · b, then semigroup S becomes a Γ-semigroup.

Since every semigroup is a Γ-semigroup, the concept of a Γ-semigroup was defined as a generalization of a semi-
group. Many properties of semigroups are generalized to the Γ-semigroup. In line with these studies, we can generalize
the theorems of [1]. The aim of this study is to generalize the study further and to obtain new results by using the defi-
nition of semiprimeness in Γ-semigroups in the sense of the study done in the [1].
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2. Preliminaries

This section provides the definitions needed in this study.

Definition 2.1 ( [6]). A nonempty subset A of Γ-semigroup S is called a Γ-subsemigroup of S if aγb ∈ A, for all
a, b ∈ A and for all γ ∈ Γ.

Definition 2.2 ( [4]). The Γ-semigroup S is called a commutative Γ-semigroup if aγb = bγa, for all a, b ∈ S and for
all γ ∈ Γ.

Definition 2.3 ( [5]). Let S be a Γ-semigroup. If there exists 1 ∈ S such that 1γs = s (left identity) and sγ1 = s (right
identity), for all s ∈ S and γ ∈ Γ, then S is called a Γ-monoid.

Definition 2.4 ( [4]). The element 0 of Γ-semigroup S is called a zero element if 0αs = 0 (left zero) and sα0 = 0 (right
zero), for all s ∈ S and for all α ∈ Γ.

Remark 2.5. Throughout this study, S will be taken as a Γ-semigroup with zero elements.

Definition 2.6 ( [4]). Let S be a Γ-semigroup and e ∈ S . If eαe = e, for α ∈ Γ, then the element e ∈ S is called
an α-idempotent element. If all the elements of S are α-idempotent, for some α ∈ Γ, then S is called an idempotent
Γ-semigroup.

Definition 2.7 ( [4]). The element x ∈ S is called a regular element if x = xαaβx, for some a ∈ S and α, β ∈ Γ, i.e
x ∈ xΓSΓx. If all elements of S are regular, then S is called a regular Γ-semigroup.

Definition 2.8 ( [2]). The element a ∈ S is called a nilpotent element if, for any γ ∈ Γ and for some n ∈ Z+, n = n(γ, a)
∋ (aγ)n−1a = 0. A Γ-semigroup S is called reduced if it has no nonzero nilpotent elements.

Definition 2.9 ( [4]). Let A be a nonempty subset of S . Then, A is called a Γ-ideal if sαa ∈ A (left Γ-ideal) and aαs ∈ A
(right Γ-ideal), for s ∈ S , a ∈ A and α ∈ Γ.

Equivalent to this definition; if SΓA ⊆ A (left Γ-ideal) and AΓS ⊆ A (right Γ-ideal), then A is called a Γ-ideal.

Definition 2.10 ( [6]). Let I be a Γ-ideal of S . For any a ∈ S , if aΓa ⊆ I implies a ∈ I, then I is called a semiprime
Γ-ideal of S .

Equivalent to this definition; for any Γ-ideal A of S , if AΓA ⊆ I implies A ⊆ I, then I is called a semiprime Γ-ideal.

Definition 2.11 ( [6]). The I ideal of S is called the s-semiprime Γ-ideal if aγa ∈ I implies a ∈ I, for any a ∈ S and
γ ∈ Γ.

Definition 2.12 ( [4]). A right Γ-ideal A of S is called a principal right Γ-ideal generated by a if A is a right Γ-ideal
generated by {a}, for some a ∈ S . It is denoted (a) = aΓS ∪ {a}.

Remark 2.13 ( [4]). In Γ-semigroup S , the product of A and B sets is

AΓB = {aγb | a ∈ A, b ∈ B, γ ∈ Γ}.

The Definition 2.14 is adapted from [3].

Definition 2.14. If aΓSΓa = (0) with a ∈ S implies a = 0, then S is called a semiprime Γ-semigroup.

3. Properties of the |S ΓS | -semigroup

Definition 3.1. Let S be a Γ-semigroup with zero and ∅ , A ⊆ S . The subset of S ,

S ΓS (A) = {a ∈ S | aΓAΓa = (0)}

is called the source of Γ-semiprimeness of A in S . S ΓS will be used instead of S ΓS (S ). In that case, the source set of
Γ-semiprimeness of S is denoted by

S ΓS = {a ∈ S | aΓSΓa = (0)}.

Some of some properties of aforesaid set as follows:

Remark 3.2. Let A be a Γ-subsemigroup of S .
(1) Let x ∈ S ΓA. Then, xΓAΓx = (0), for x ∈ A. Since A ⊆ S , x ∈ S ΓS (A). So, S ΓA ⊆ S ΓS (A).



The Source of Γ-semiprimeness on Γ-semigroups 12

(2) Since 0 ∈ S ΓS (A), S ΓS (A) , ∅.
(3) Let A ⊆ B, for ∅ , A, B ⊆ S and x ∈ S ΓS (B). Then, xΓBΓx = (0), for x ∈ S . Since A ⊆ B, xΓAΓx = (0), for

x ∈ S . Therefore, x ∈ S ΓS (A). Thus, S ΓS (B) ⊆ S ΓS (A).

Proposition 3.3. S is a Γ-semiprime semigroup if and only if S ΓS = {0}.

Proof. ⇒: Let S be a Γ-semiprime semigroup and a ∈ S ΓS . Then, aΓSΓa = (0), for a ∈ S . From the hypothesis a = 0
is satisfied. Therefore, S ΓS = {0}.
⇐: Let S ΓS = {0}. Suppose that aΓSΓa = (0), for a ∈ S . Then, a ∈ S ΓS and a = 0 is satisfied. Namely, S is a

Γ-semiprime semigroup. □

Lemma 3.4. Let S be a Γ-semigroup. Then, the following are provided:
(1) eΓS ΓS ⊆ S ΓeΓS , for e ∈ S .
(2) If S is an idempotent Γ-semigroup, then S ΓS = {0}.
(3) If S is a regular Γ-semigroup, then S ΓS = {0}.
(4) If a ∈ S ΓS , then a is a nilpotent element.

Proof. (1) Let eΓa ⊆ eΓS ΓS , for a ∈ S ΓS . Since a ∈ S ΓS , aΓSΓa = (0), for a ∈ S . From here

eΓaΓ(eΓS )ΓeΓa ⊆ eΓ(aΓSΓa) = eΓ(0) = (0).

This gives eΓa ⊆ S ΓeΓS . So, eΓS ΓS ⊆ S ΓeΓS .
(2) If a ∈ S ΓS , then aΓSΓa = (0). Thus, aαaαa = (0), for a ∈ S and α ∈ Γ. Since a is an α-idempotent element,

(0) = aαaαa = aαa = a

is satisfied. Accordingly, S ΓS = {0}.
(3) Let S be a regular Γ-semigroup and a ∈ S ΓS . Then, aΓSΓa = (0), for a ∈ S . Therefore, aαxβa = 0, for x ∈ S

and α, β ∈ Γ. Since a is a regular element, a = 0. Then, S ΓS = {0}.
(4) Let a ∈ S ΓS . Then, aΓaΓa = (0), for a ∈ S . Hence, 0 = aγaγa = (aγ)2a, for γ ∈ Γ. Thus, a is a nilpotent

element.
□

From Lemma 3.4, the following results are obtained.

Corollary 3.5. Let S be a Γ-semigroup. Then, the following are provided:
(1) There are no nonzero α-idempotent elements in the set S ΓS .
(2) There are no nonzero regular elements in the set S ΓS .
(3) Every element of S ΓS is a nilpotent element.

Definition 3.6. Let S be a Γ-semigroup with zero and S , S ΓS . Then,
(1) If every element of S − S ΓS is an α-idempotent element, for some α ∈ Γ, then S is called a |S ΓS |-idempotent
Γ-semigroup.

(2) If every element of S − S ΓS is a regular element, then S is called a |S ΓS |-regular Γ-semigroup.
(3) If S − S ΓS has no nilpotent elements, then S is called a |S ΓS |-reduced Γ-semigroup.

Remark 3.7. The following can be obtained from Definition 3.6.
(1) If S = {0}, then S ΓS = {0} = S . Since S − S ΓS = ∅, this is meaningless for the Γ-semigroup S with zero.

Similarly, in the case of S = S ΓS , S − S ΓS = ∅.
(2) (a) If a is a β-idempotent element, then aβa = a, for β ∈ Γ. Since aβ(aβa) = aβa = a, a is a regular element.

(b) Let a ∈ S be a nilpotent element and assume that a is a γ-idempotent element. Then aγa = a, for γ ∈ Γ.
Since a is a nilpotent element, (aγ)n−1a = 0. From here,

0 = (aγ)n−1a = (aγ)n−2(aγa) = (aγ)n−2a

is obtained. This contradicts the fact that (aγ)n−2a , 0. Accordingly, a is not a γ-idempotent element.
Based on the obtained properties, the following results have been achieved.

If S is a |S ΓS | − idempotent Γ − semigroup, then S is a |S ΓS | − regular Γ − semigroup.
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If S is a |S ΓS | − idempotent Γ − semigroup, then S is a |S ΓS | − reduced Γ − semigroup.
(3) If S is a Γ-idempotent (regular, reduced) semigroup, then S is a |S ΓS |-idempotent (regular, reduced) Γ-semigroup.

Proposition 3.8. Let A be a Γ-subsemigroup of S .
If S is a |S ΓS |-idempotent (regular, reduced) Γ-semigroup, then A is a |S ΓA|-idempotent (regular, reduced) Γ-semigroup.

Proof. Let S be a |S ΓS |-idempotent (regular, reduced) Γ-semigroup and a ∈ A − S ΓA. Then, a ∈ A and a < S ΓA. Thus,
aΓ(AΓa) , (0). Since A ⊆ S , aΓ(SΓa) , (0). This means a < S ΓS . Namely, a is a γ-idempotent element, for some
γ ∈ Γ. Therefore, A is a |S ΓA|-idempotent (regular, reduced) Γ-semigroup. □

Proposition 3.9. If S is a commutative |S ΓS |-idempotent Γ-semigroup, then S − S ΓS is a Γ-subsemigroup.

Proof. Let S be a commutative |S ΓS |-idempotent Γ-semigroup. In a commutative Γ-semigroup, the product of γ-
idempotent elements, for some γ ∈ Γ is a γ-idempotent element. So, for a, b ∈ S − S ΓS , aγb ∈ S is a γ-idempotent
element. It is also seen that aγb < S ΓS . Thus, aγb ∈ S − S ΓS . Therefore, S − S ΓS is a Γ-subsemigroup. □

Lemma 3.10. Let S be a |S ΓS |-reduced Γ-semigroup. Then, the following are valid.

(1) S ΓS = {a ∈ S | (aΓ)2a = (0)}.
(2) If S is a Γ-monoid, then S ΓS = {a ∈ S | aγa = 0, ∀ γ ∈ Γ}.

Proof. Let S be a |S ΓS |-reduced Γ-semigroup.
(1) Let A = {a ∈ S | (aΓ)2a = (0)}. If a ∈ S ΓS , then aΓaΓa = (0), for a ∈ S . This means (aΓ)2a = (0), for a ∈ S

and so a ∈ A. Hence, S ΓS ⊆ A.
On the other hand, if a ∈ A, then (aγ)2a = (0), for a ∈ S and γ ∈ Γ. Therefore, a is a nilpotent element.

Thus, a ∈ S ΓS .
(2) Let B = {a ∈ S | aγa = 0, ∀ γ ∈ Γ} and a ∈ S ΓS . Then, aΓSΓa = (0), for a ∈ S . Since S is a Γ-monoid,

0 = aγ(1βa) = aγa

for 1 ∈ S and γ, β ∈ Γ. Namely, S ΓS ⊆ B.
Conversely, if a ∈ B, then aγa = 0, for a ∈ S . From here a is a nilpotent element. Thus, a ∈ S ΓS .

□

Lemma 3.11. Let I and J be two Γ-ideals of S . Then, the following are satisfied:
(1) S ΓI ∩ S ΓJ ⊆ S ΓI∩J .

(2) If I is a left (right) Γ-ideal of S , then S ΓS (I) is a right (left) Γ-ideal of S .
(3) If I is a Γ-ideal of S , then S ΓI is a Γ-ideal of S . Specially, S ΓS is a Γ-ideal of S .
(4) If I and J are Γ-ideals of S , then S ΓS (I)ΓS ΓS (J) ⊆ S ΓS (IΓJ).
(5) If I and J are Γ-ideals of S , then S ΓI ΓS

Γ
J ⊆ S ΓIΓJ .

Proof. Let I and J be a Γ-ideals of S .
(1) If a ∈ S ΓI ∩ S ΓJ , then a ∈ S ΓI and a ∈ S ΓJ . Then, aΓIΓa = (0) and aΓJΓa = (0). Since I ∩ J ⊆ I,

aΓ(I ∩ J)Γa ⊆ aΓIΓa = (0)

Thus, a ∈ S ΓI∩J .

(2) Let I be a left Γ-ideal of S . Then, SΓI ⊆ I. If we take x ∈ S ΓS (I), then xΓIΓx = (0), for x ∈ S . From here,

xΓSΓIΓxΓS ⊆ xΓ(IΓxΓS ) = (xΓIΓx)ΓS = (0)ΓS = (0)

is found. It means xΓS ⊆ S ΓS (I) and so S ΓS (I)ΓS ⊆ S ΓS (I). Therefore, S ΓS (I) is a right Γ-ideal of S .
(3) If I is a Γ-ideal of S , then IΓS ⊆ I and SΓI ⊆ I. If a ∈ S ΓI , then aΓIΓa = (0), for a ∈ I. So, we obtain

aΓSΓIΓaΓS ⊆ aΓ(IΓaΓS ) = (aΓIΓa)ΓS = (0)ΓS = (0)

and
SΓaΓIΓSΓa ⊆ SΓ(aΓIΓa) = SΓ(0) = (0).

Hereby, SΓa ⊆ S ΓI and aΓS ⊆ S ΓI . Since S is a Γ-ideal of S , S ΓS is a Γ-ideal of S .
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(4) Let aγb ∈ S ΓS (I)ΓS ΓS (J), for γ ∈ Γ. Since a ∈ S ΓS (I) and b ∈ S ΓS (J), aΓIΓa = (0) and bΓJΓb = (0), for a, b ∈ S .
Thus,

aγbΓIΓJΓaγb ⊆ (aΓbΓIΓa)Γb ⊆ (aΓIΓa)Γb = (0)Γb = (0)
is obtained by using that I and J are Γ-ideals. So, aγb ∈ S ΓS (IΓJ).

(5) If aγb ∈ S ΓI ΓS
Γ
J , for γ ∈ Γ, a ∈ S ΓI and b ∈ S ΓJ becomes. Then, aΓIΓa = (0) and bΓJΓb = (0), for a ∈ I and

b ∈ J. In this case,

aγbΓIΓJΓaγb ⊆ (aΓbΓIΓa)Γb ⊆ (aΓIΓa)Γb = (0)Γb = (0)

is obtained by using that I and J are Γ-ideals. Thence, aγb ∈ S ΓIΓJ .
□

Theorem 3.12. If S is a commutative |S ΓS |-regular Γ-semigroup, then S is a |S ΓS |-reduced Γ-semigroup.

Proof. Let S be a commutative |S ΓS |-regular Γ-semigroup and a ∈ S − S ΓS be a nilpotent element. In this case,
(aγ)n−1a = 0, for n ∈ Z+. Since a is a regular element and S is commutative,

0 = (aγ)n−1a = (aγ)n−2aγa = (aγ)n−2aγaβb = (aγ)n−2a.

This is a contradiction. Hence, in set S − S ΓS has no nilpotent elements. Thus, S is a |S ΓS |-reduced Γ-semigroup. □

Definition 3.13. Let S be a Γ-semigroup and a ∈ S . If

aΓSΓa ⊆ S ΓS implies that a ∈ S ΓS ,

then S is called a |S ΓS |-semiprime Γ-semigroup.

Lemma 3.14. The set S ΓS of the source of Γ-semiprimeness is contained by every semiprime Γ-ideal of S .

Proof. Let A be a semiprime Γ-ideal of S and a ∈ S ΓS . Then, aΓSΓa = (0) ⊆ A. Hence, a ∈ A. Thus, S ΓS ⊆ A. □

Proposition 3.15. Let S ΓS be a semiprime Γ-ideal of S . Then, the intersection of all semiprime Γ-ideals of S is equal
to S ΓS .

Proof. Since the set S ΓS is contained by every semiprime Γ-ideal, S ΓS ⊆
⋂

Ai where Ai are semiprime Γ-ideals of S .
Conversely, since the set S ΓS is a semiprime Γ-ideal,

⋂
Ai ⊆ S ΓS . Hence, S ΓS =

⋂
Ai. □

Theorem 3.16. S is a |S ΓS |-semiprime Γ-semigroup if and only if for any Γ-ideal A of S , AΓA ⊆ S ΓS implies that A ⊆ S ΓS .

Proof. Let S be a |S ΓS |-semiprime Γ-semigroup. Suppose that AΓA ⊆ S ΓS , for a Γ-ideal A. Then, AΓAΓSΓAΓA = (0).
Since

(AΓSΓA)ΓSΓ(AΓSΓA) ⊆ AΓAΓSΓAΓA = (0),
AΓSΓA ⊆ S ΓS is satisfied. From the hypothesis, we have A ⊆ S ΓS .

Conversely, let AΓA ⊆ S ΓS implies that A ⊆ S ΓS , for any Γ-ideal A. If aΓSΓa ⊆ S ΓS , for a ∈ S , then

SΓ(aΓSΓa)ΓS ⊆ SΓS ΓSΓS ⊆ S ΓS
because of S ΓS is a Γ-ideal of S . Then we obtain,

(SΓaΓS )Γ(SΓaΓS ) ⊆ SΓ(aΓSΓa)ΓS ⊆ S ΓS
and from the hypothesis, SΓaΓS ⊆ S ΓS is provided. Now, consider the principal right Γ-ideal (a) = aΓS ∪ {a}. Since

(a)3 = (a)Γ(a)Γ(a) ⊆ SΓaΓS ⊆ S ΓS
when

((a)Γ(a))2 ⊆ (a)3Γ(a) ⊆ S ΓS ,
(a)2 = (a)Γ(a) ⊆ S ΓS . From the hypothesis, (a) ⊆ S ΓS and a ∈ S ΓS is obtained. Then, S is a |S ΓS |-semiprime Γ-
semigroup. □

Corollary 3.17. If S ΓS is a s-semiprime Γ-ideal, then S is a |S ΓS |-semiprime Γ-semigroup.

Definition 3.18. For |S ΓS |-semiprime Γ-semigroup S the following definitions are equivalent:
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(1) If S ΓS is a semiprime Γ-ideal of S , then S is called a |S ΓS |-semiprime Γ-semigroup.
(2) For any Γ-ideal A of S , if AΓA ⊆ S ΓS implies that A ⊆ S ΓS , then S is called a |S ΓS |-semiprime Γ-semigroup.
(3) If S ΓS is a s-semiprime Γ-ideal of S , then S is called a |S ΓS |-semiprime Γ-semigroup.

Theorem 3.19. If S is a regular Γ-semigroup, then S is a |S ΓS |-semiprime Γ-semigroup.

Proof. Let S be a regular Γ-semigroup and aΓSΓa ⊆ S ΓS , for a ∈ S . Since a ∈ aΓSΓa ⊆ S ΓS , a ∈ S ΓS is provided. Thus,
S is a |S ΓS |-semiprime Γ-semigroup. □

Corollary 3.20. If S is an idempotent Γ-semigroup, then S is a |S ΓS |-semiprime Γ-semigroup.

Proof. If S is an idempotent Γ-semigroup, then S is a regular Γ-semigroup. In this way S is a |S ΓS |-semiprime Γ-
semigroup. □

Example 3.21. Define a mapping S × Γ × S → S such that aγb = ab, for all a, b ∈ S and γ ∈ Γ.

. 0 a b c
0 0 0 0 0
a 0 a b 0
b 0 b b 0
c 0 0 0 0

Then, S is a Γ-semigroup. From the table,
S ΓS = {0, c}

and
S − S ΓS = {a, b}.

Since aγa = a and bγb = b, S is a |S ΓS |–idempotent Γ-semigroup. Besides, a = aγaγa and b = bγbγb are regular
elements. Accordingly, S is a |S ΓS |– regular Γ-semigroup. Otherwise, a and b are not nilpotent elements. Thus, S is a
|S ΓS |– reduced Γ-semigroup.

Example 3.22. Define a mapping S × Γ × S → S such that aγb = ab, for all a, b ∈ S and γ ∈ Γ.

. 0 1 a b c
0 0 0 0 0 0
1 0 1 a b c
a 0 a a 0 0
b 0 b 0 0 0
c 0 c 0 0 0

With the binary operation defined, S is a Γ-monoid. Using the table,

S ΓS = {0, b, c}

and
S − S ΓS = {a, 1}.

Since aγa = a and 1γ1 = 1, S is a |S ΓS |–idempotent Γ-semigroup. Moreover, since a = aγaγa and 1 = 1γ1γ1, S is a
|S ΓS |–regular Γ-semigroup. Here a and 1 are not nilpotent elements. Thus, S is a |S ΓS |– reduced Γ-semigroup.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Authors Contribution Statement
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various adjustments were made. In other words, Camcı 20%, Mekera 35%, and Yeşil 45% contributed to this study.
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