UJMA

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: https://doi.org/10.32323/ujma.1378917

The New Class $L_{p,\Phi}$ of *s*-Type Operators

Pinar Zengin Alp

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Türkiye

Article Info

Abstract

Keywords: Euler-totient matrix, Operator ideal, s-numbers 2010 AMS: 47B06, 47B37, 47L20 Received: 20 October 2023 Accepted: 10 December 2023 Available online: 11 December 2023 In this study, the class of *s*-type $\ell_p(\Phi)$ operators is introduced and it is shown that $L_{p,\Phi}$ is a quasi-Banach operator ideal. Also, some other classes are defined by using approximation, Gelfand, Kolmogorov, Weyl, Chang, and Hilbert number sequences. Then, some properties are examined.

1. Introduction

In this study, all natural numbers are symbolized by \mathbb{N} and all non-negative real numbers are symbolized by \mathbb{R}^+ . If the dimension of the range space of a bounded linear operator is finite, it is called a finite rank operator [1].

Throughout this study, *E* and *F* represent real or complex Banach spaces. The space of all bounded linear operators from *E* to *F* is denoted by $\mathscr{B}(E,F)$ and the space of all bounded linear operators from an arbitrary Banach space to another arbitrary Banach space is denoted by \mathscr{B} . The operator ideal theory is a very important field in functional analysis. The theory of normed operator ideals first appeared in the 1950s in [2]. In functional analysis, most of the operator ideals are constructed via different scalar sequence spaces. *s*-number sequence is one of the most important example of this. For more information about operator ideals and *s*-numbers, we refer to [3–8]. The definition of *s*-numbers goes back to E. Schmidt [9] who used this concept in the theory of non-selfadjoint integral equations. In Banach spaces, there are many different possibilities of defining some equivalents for *s*-numbers, namely Kolmogorov numbers, Gelfand numbers, approximation numbers, etc. In the following years, Pietsch developed the concept of *s*-number sequence to collect all *s*-numbers in a single definition [10–12]. A map

 $S: K \to (s_r(K))$

which assigns a non-negative scalar sequence to each operator, is called an *s*-number sequence if for all Banach spaces E, F, E_0 , and F_0 the following conditions are satisfied:

- (i) $||K|| = s_1(K) \ge s_2(K) \ge \ldots \ge 0$, for every $K \in \mathscr{B}(E, F)$,
- (*ii*) $s_{p+r-1}(L+K) \leq s_p(L) + s_r(K)$ for every $L, K \in \mathscr{B}(E, F)$ and $p, r \in \mathbb{N}$,

(*iii*) $s_r(MLK) \le ||M|| s_r(L) ||K||$ for some $M \in \mathscr{B}(F, F_0), L \in \mathscr{B}(E, F)$ and $K \in \mathscr{B}(E_0, E)$, where E_0, F_0 are arbitrary Banach spaces, (*iv*) If $rank(K) \le r$, then $s_r(K) = 0$,

(v) $s_r(I_r) = 1$, where I_r is the identity map of *r*-dimensional Hilbert space l_2^r to itself [13].

 $s_r(K)$ represents the r-th *s*-number of the operator *K*.

Pietsch defined approximation numbers, which are frequently used examples of s-number sequence, $a_r(K)$, the *r*-th approximation number of a bounded linear operator as

$$a_r(K) = \inf \{ \|K - A\| : A \in \mathscr{B}(E, F), rank(A) < r \},\$$

where $K \in \mathscr{B}(E, F)$ and $r \in \mathbb{N}$ [10]. Let $K \in \mathscr{B}(E, F)$ and $r \in \mathbb{N}$. *Gel' f and* numbers $(c_r(K))$, *Kolmogorov* numbers $(d_r(K))$, *Weyl* numbers $(x_r(K))$, *Chang* numbers $(y_r(K))$, *Hilbert* numbers $(h_r(K))$, are some other examples of s-number sequences. For more information about these sequences, we refer to [1].

Some necessary properties of s-number sequences are given in the sequel.

Let $\mathscr{J} \in \mathscr{B}(F, F_0)$ be a metric injection. If the sequence $s = (s_r)$ satisfies $s_r(K) = s_r(\mathscr{J}K)$ for all $K \in \mathscr{B}(E, F)$ the sequence of s-number is named injective [14, p.90].

Proposition 1.1. [14, p.90-94] The number sequences $(c_r(K))$ and $(x_r(K))$ are injective.

Let $\mathscr{S} \in \mathscr{B}(E_0, E)$ be a metric surjection. If the sequence $s = (s_r)$ satisfies $s_r(K) = s_r(K\mathscr{S})$ for all $K \in \mathscr{B}(E, F)$ the s-number sequence is named surjective [14, p.95].

Proposition 1.2. [14, p.95] The number sequences $(d_r(K))$ and $(y_r(K))$ are surjective.

Proposition 1.3. [14, p.115] Let $K \in \mathcal{B}(E, F)$. Then, the following inequalities hold:

(*i*) $h_r(K) \le x_r(K) \le c_r(K) \le a_r(K)$, (*ii*) $h_r(K) \le y_r(K) \le d_r(K) \le a_r(K)$.

$$n_r(\mathbf{K}) \leq y_r(\mathbf{K}) \leq a_r(\mathbf{K}) \leq a_r(\mathbf{K})$$

Lemma 1.4. [11] Let $S, K \in \mathscr{B}(E, F)$, then $|s_r(K) - s_r(S)| \le ||K - S||$ for r = 1, 2, ...

Let the space of all real-valued sequences be denoted by ω . Then, a sequence space is any vector subspace of ω . Maddox defined the linear space l(p) as follows in [15]:

$$l(p) = \left\{ x \in \boldsymbol{\omega} : \sum_{n=1}^{\infty} |x_n|^{p_n} < \infty \right\},\,$$

where (p_n) is a bounded sequence of strictly positive real numbers.

If an operator $K \in \mathscr{B}(E,F)$ satisfies $\sum_{n=1}^{\infty} (a_n(K))^p < \infty$ for 0 ,*K* $is defined as an <math>l_p$ - type operator in [10] by Pietsch. Afterward *ces-p* type operators which is a new class obtained via Cesaro sequence space are introduced by Constantin [16]. Later on, Tita in [17], proved that the class of l_p type operators and *ces-p* type operators coincide.

In this paper φ denotes the Euler function. For every $u \in \mathbb{N}$ with $u \ge 1$, $\varphi(u)$ is the number of positive integers less than u which are coprime with u and $\varphi(1) = 1$. If $p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$ is the prime factorization of a natural number u > 1 then

$$\varphi(u) = u(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})...(1 - \frac{1}{p_r}).$$

Also, the equality $u = \sum \varphi($

$$u = \sum_{t \mid u} \varphi(t)$$

holds for every $u \in \mathbb{N}$ and $\varphi(u_1u_2) = \varphi(u_1)\varphi(u_2)$, where $u_1, u_2 \in \mathbb{N}$ are coprime [18]. In [19] the sequence space $\ell_p(\Phi)$ is defined as:

$$\ell_p(\Phi) = \left\{ x = (x_n) \in \omega : \sum_n \left| \frac{1}{n} \sum_{t|n} \varphi(t) x_t \right|^p < \infty \right\} \quad (1 \le p < \infty).$$

Let E^* , the dual of E, be the set of continuous linear functionals on E. The map $x' \otimes y : E \to F$ is defined as

$$\left(x^{'}\otimes y\right)(x)=x^{'}(x)y$$

where $x \in E$, $x' \in E^*$ and $y \in F$.

A subcollection ϑ of \mathscr{B} is said to be an operator ideal if for each component $\vartheta(E,F) = \vartheta \cap \mathscr{B}(E,F)$ the following conditions are hold:

- (*i*) if $x' \in E^*$, $y \in F$, then $x' \otimes y \in \vartheta(E,F)$,
- (*ii*) if $L, K \in \vartheta(E, F)$, then $L + K \in \vartheta(E, F)$,
- (*iii*) if $L \in \vartheta(E, F)$, $K \in \mathscr{B}(E_0, E)$ and $M \in \mathscr{B}(F, F_0)$, then $MLK \in \vartheta(E_0, F_0)$ [12].

Let ϑ be an operator ideal and $\rho : \vartheta \to \mathbb{R}^+$ be a function on ϑ . Then, if the following conditions are hold:

- (i) if $x' \in E^*$, $y \in F$, then $\rho(x' \otimes y) = ||x'|| ||y||$;
- (*ii*) if $\exists \mathscr{C} \geq 1$ such that $\rho(L+K) \leq \mathscr{C}[\rho(L) + \rho(K)];$
- (*iii*) if $L \in \vartheta(E, F), K \in \mathscr{B}(E_0, E)$ and $M \in \mathscr{B}(F, F_0)$, then $\rho(MLK) \leq ||M|| \rho(L) ||K||$,

 ρ is called a quasi-norm on the operator ideal ϑ [12].

For special case $\mathscr{C} = 1$, ρ is a norm on the operator ideal ϑ .

If ρ is a quasi-norm on an operator ideal ϑ , it is denoted by $[\vartheta, \rho]$. Also, if every component $\vartheta(E, F)$ is complete with the quasi-norm ρ , $[\vartheta, \rho]$ is called a quasi-Banach operator ideal.

Let $[\vartheta, \rho]$ be a quasi-normed operator ideal and $\mathscr{J} \in \mathscr{B}(F, F_0)$ be a metric injection. If for every operator $K \in \mathscr{B}(E, F)$ and $\mathscr{J}K \in \vartheta(E, F_0)$ we have $K \in \vartheta(E, F)$ and $\rho(\mathscr{J}K) = \rho(K)$, $[\vartheta, \rho]$ is called an injective quasi-normed operator ideal. Furthermore, let $[\vartheta, \rho]$ be a quasinormed operator ideal and $\mathscr{S} \in \mathscr{B}(E_0, E)$ be a metric surjection. If for every operator $K \in \mathscr{B}(E, F)$ and $K \mathscr{S} \in \vartheta(E_0, F)$ we have $K \in \vartheta(E, F)$ and $\rho(K \mathscr{S}) = \rho(K)$, $[\vartheta, \rho]$ is called a surjective quasi-normed operator ideal [12].

Let K^* be the dual of K. An s-number sequence is called symmetric and completely symmetric if for all $K \in \mathscr{B}$, $s_r(K) \ge s_r(K^*)$ and $s_r(K) = s_r(K^*)$, respectively [12].

The dual of an operator ideal ϑ is denoted by ϑ^* and it is defined as

$$\vartheta^{*}(E,F) = \left\{ K \in \mathscr{B}(E,F) : K' \in \vartheta(F^{*},E^{*}) \right\}$$

[12].

An operator ideal ϑ is called symmetric if $\vartheta \subset \vartheta^*$ and is called completely symmetric if $\vartheta = \vartheta^*$ [12].

2. Main Results

An operator $K \in \mathscr{B}(E,F)$ is in the class of s-type $\ell_p(\Phi)$ if

$$\sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K) \right)^p < \infty \quad (1 \le p < \infty).$$

The class of all *s*-type $\ell_p(\Phi)$ operators is denoted by $L_{p,\Phi}(E,F)$.

Theorem 2.1. The class $L_{p,\Phi}$ is a quasi-normed operator ideal by

$$\|K\|_{p,\Phi} = \frac{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t \mid n} \varphi(t) s_t(K)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p\right)^{\frac{1}{p}}}, \quad (1$$

Proof. In this proof we show that the class $L_{p,\Phi}$ satisfies the conditions of an operator ideal and $||K||_{p,\Phi}$ satisfies the conditions for a quasi-norm. Let $x' \in E^*$ and $y \in F$. Then,

$$\begin{split} \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(x^{'} \otimes y)\right)^p &= \left(\sum_{t|1} \varphi(t) s_t(x^{'} \otimes y)\right)^p + \left(\frac{1}{2} \sum_{t|2} \varphi(t) s_t(x^{'} \otimes y)\right)^p + \left(\frac{1}{3} \sum_{t|3} \varphi(t) s_t(x^{'} \otimes y)\right)^p + \dots \\ &= \left(\varphi(1) s_1(x^{'} \otimes y)\right)^p + \left(\frac{1}{2} \varphi(1) s_1(x^{'} \otimes y)\right)^p + \left(\frac{1}{3} \varphi(1) s_1(x^{'} \otimes y)\right)^p + \dots \\ &= \left(s_1(x^{'} \otimes y)\right)^p \left(1 + (\frac{1}{2})^p + (\frac{1}{3})^p + \dots\right) \\ &< \infty. \end{split}$$

Since the operator $x' \otimes y$ has rank one, $s_n(x' \otimes y) = 0$ for $n \ge 2$. Therefore, $x' \otimes y \in L_{p,\Phi}(E,F)$. And also,

$$\begin{split} \left\| x' \otimes y \right\|_{p,\Phi} &= \frac{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t \mid n} \varphi(t) s_t(x' \otimes y) \right)^p \right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \right)^p \right)^{\frac{1}{p}}} \\ &= \frac{\left[\left(s_1(x' \otimes y) \right)^p \left(1 + \left(\frac{1}{2} \right)^p + \left(\frac{1}{3} \right)^p + \ldots \right) \right]^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \right)^p \right)^{\frac{1}{p}}} \\ &= s_1(x' \otimes y) = \| x' \otimes y \| = \| x' \| \| y \|. \end{split}$$

Hence $\|x' \otimes y\|_{p,\Phi} = \|x'\|\|y\|$. Let $L, K \in L_{p,\Phi}(E,F)$. Then,

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(L)\right)^p < \infty, \quad \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K)\right)^p < \infty.$$

To show that $L + K \in L_{p,\Phi}(E,F)$, let begin with

$$\begin{split} \sum_{t|n} \varphi(t) s_t(L+K) &\leq \sum_{t|n} \varphi(2t-1) s_{2t-1}(L+K) + \sum_{t|n} \varphi(2t) s_{2t}(L+K) \\ &\leq \sum_{t|n} \left(\varphi(2t-1) + \varphi(2t) \right) s_{2t-1}(L+K) \\ &\leq \sum_{t|n} \mathscr{C} \varphi(t) s_{2t-1}(L+K) \\ &\leq \mathscr{C} \left(\sum_{t|n} \varphi(t) s_t(L) + \sum_{t|n} \varphi(t) s_t(K) \right) \end{split}$$

since $\exists \mathscr{C} \geq 1$ which satisfies $\varphi(2t-1) + \varphi(2t) \leq \mathscr{C}\varphi(t)$.

By using Minkowski inequality, we get;

$$\begin{split} \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(L+K)\right)^p\right)^{\frac{1}{p}} &\leq C \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(L) + \frac{1}{n} \sum_{t|n} \varphi(t) s_t(K)\right)^p\right)^{\frac{1}{p}} \\ &\leq C \left[\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(L)\right)^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K)\right)^p\right)^{\frac{1}{p}} \right] \\ &< \infty. \end{split}$$

Hence, $L + K \in L_{p,\Phi}(E,F)$. Additionally,

$$\begin{split} \|L+K\|_{p,\Phi} &= \frac{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(L+K)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p\right)^{\frac{1}{p}}} \\ &\leq C \bigg[\frac{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(L)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p\right)^{\frac{1}{p}}} + \frac{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p\right)^{\frac{1}{p}}} \bigg] \\ &= C \big[\|L\|_{p,\Phi} + \|K\|_{p,\Phi} \big]. \end{split}$$

Let $M \in \mathscr{B}(F, F_0)$, $S \in L_{p, \Phi}(E, F)$ and $K \in \mathscr{B}(E_0, E)$. Then,

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(MLK) \right)^p \leq \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) \|R\| s_t(L) \|K\| \right)^p$$
$$\leq \|R\|^p \|T\|^p \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(L) \right)^p < \infty.$$

So $MLK \in L_{p,\Phi}(E_0,F_0)$. Furthermore,

$$\begin{split} \|MLK\|_{p,\Phi} &= \frac{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(MLK)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p\right)^{\frac{1}{p}}} \\ &\leq \|R\| \, \|K\| \, \frac{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(L)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p\right)^{\frac{1}{p}}} = \|R\| \, \| \, \|L\|_{p,\Phi} \, \|K\| \, . \end{split}$$

Therefore, $L_{p,\Phi}(E,F)$ is an operator ideal, and $||K||_{p,\Phi}$ is a quasi-norm on this operator ideal.

Theorem 2.2. Let $1 . <math>\left[L_{p,\Phi}(E,F), \|K\|_{p,\Phi}\right]$ be a quasi-Banach operator ideal.

Proof. Let *E*, *F* be any two Banach spaces and $1 \le p < \infty$. The following inequality holds

$$\|K\|_{p,\Phi} = \left[\frac{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n}\sum\limits_{t|n} \varphi(t)s_t(K)\right)^p}{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n}\right)^p}\right]^{\frac{1}{p}} \ge \|K\| = s_1(K)$$

for $K \in L_{p,\Phi}(E,F)$. Let (K_m) be a Cauchy sequence in $L_{p,\Phi}(E,F)$. Then, for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\left\|K_m-K_l
ight\|_{p,\Phi}$$

for all $m, l \ge n_0$. It follows that

$$\|K_m - K_l\| \le \|K_m - K_l\|_{p,\Phi} < \varepsilon$$

(2.1)

Then, (K_m) is a Cauchy sequence in $\mathscr{B}(E,F)$. $\mathscr{B}(E,F)$ is a Banach space since F is a Banach space. Therefore, $||K_m - K|| \to 0$ as $m \to \infty$ for $K \in \mathscr{B}(E,F)$. Now we show that $||K_m - K||_{p,\Phi} \to 0$ as $m \to \infty$ for $K \in L_{p,\Phi}(E,F)$. The operators $K_l - K_m$, $K - K_m$ are in the class $\mathscr{B}(E,F)$ for $K_m, K_l, K \in \mathscr{B}(E,F)$. Then,

$$|s_n(K_l-K_m)-s_n(K-K_m)| \le ||K_l-K_m-(K-K_m)|| = ||K_l-K||.$$

Since $K_l \to T$ as $l \to \infty$ that is $||K_l - K|| < \varepsilon$ we obtain

$$s_n(K_l-K_m) \to s_n(K-K_m)$$
 as $l \to \infty$.

It follows from (2.1) that the statement

$$\|K_m - K_l\|_{p,\Phi} = \left[\frac{\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{l|n} \varphi(l) s_l(K_m - K_l)\right)^p}{\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p}\right]^{\frac{1}{p}} < \varepsilon$$

valid for all $m, l \ge n_0$. From (2.2) the following inequality is obtained.

$$\left[\frac{\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K_m - K)\right)^p}{\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p}\right]^{\frac{1}{p}} < \varepsilon, \quad \text{as } l \to \infty.$$

Hence we have

 $\|K_m - K\|_{p,\Phi} < \varepsilon$, for all $m \ge n_0$.

Finally, we show that $K \in L_{p,\Phi}(E,F)$.

$$\begin{split} \sum_{t|n} \varphi(t) s_t(K) &\leq \sum_{t|n} \varphi(2t-1) s_{2t-1}(K) + \sum_{t|n} \varphi(2t) s_{2t}(K) \\ &\leq \sum_{t|n} \left(\varphi(2t-1) + \varphi(2t) \right) s_{2t-1}(K - K_m + K_m) \\ &\leq \sum_{t|n} \mathscr{C} \varphi(t) s_{2t-1}(K - K_m + K_m) \\ &\leq \mathscr{C} \left(\sum_{t|n} \varphi(t) s_t(K - K_m) + \sum_{t|n} \varphi(t) s_t(K_m) \right). \end{split}$$

By using Minkowski inequality; since $K_m \in L_{p,\Phi}(E,F)$ for all m and $||K_m - K||_{p,\Phi} \to 0$ as $m \to \infty$, we have

$$\begin{split} \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K)\right)^p\right)^{\frac{1}{p}} &\leq \mathscr{C} \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_k(K-K_m) + \frac{1}{n} \sum_{t|n} \varphi(t) s_k(K_m)\right)^p\right)^{\frac{1}{p}} \\ &\leq \mathscr{C} \left[\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_k(K-K_m)\right)^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_k(K_m)\right)^p\right)^{\frac{1}{p}} \right] \\ &< \infty \end{split}$$

which means $K \in L_{p,\Phi}(E,F)$.

Definition 2.3. Let $\mu = (\mu_i(K))$ be one of the sequences $s = (s_n(K))$, $c = (c_n(K))$, $d = (d_n(K))$, $x = (x_n(K))$, $y = (y_n(K))$ and $h = (h_n(K))$. Then, the space $L_{p,\Phi}^{(\mu)}$ generated via $\mu = (\mu_i(K))$ is defined as

$$L_{p,\Phi}^{(\mu)}(E,F) = \left\{ K \in \mathscr{B}(E,F) : \sum_{n} \left(\frac{1}{n} \sum_{t \mid n} \varphi(t) \mu_t(K) \right)^p < \infty, (1 < p < \infty) \right\}.$$

The corresponding norm $\|K\|_{p,\Phi}^{(\mu)}$ for each class is defined as

$$\|K\|_{p,\Phi}^{(\mu)} = \frac{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{t|n} \varphi(t) \mu_t(K)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p\right)^{\frac{1}{p}}}.$$

(2.2)

Proposition 2.4. The inclusion $L_{p,\Phi}^{(a)} \subseteq L_{q,\Phi}^{(a)}$ holds for 1 .

Proof. Since
$$l_p \subseteq l_q$$
 for $1 we have $L_{p,\Phi}^{(a)} \subseteq L_{q,\Phi}^{(a)}$.$

Theorem 2.5. Let $1 . The quasi-Banach operator ideal <math>\left[L_{p,\Phi}^{(s)}, \|T\|_{p,\Phi}^{(s)}\right]$ is injective if the sequence $s_r(K)$ is injective.

Proof. Let $1 and <math>K \in \mathscr{B}(E, F)$ and $\mathscr{J} \in \mathscr{B}(F, F_0)$ be any metric injection. Suppose that $\mathscr{J}K \in L_{p,\Phi}^{(s)}(E, F_0)$. Then,

$$\sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(\mathscr{J}K) \right)^p$$

Since $s = (s_r)$ is injective, we have

$$s_r(K) = s_r(\mathscr{J}K)$$
 for all $K \in \mathscr{B}(E,F), r = 1, 2, \dots$

Hence, we get

$$\sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K) \right)^p = \sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(\mathscr{J}K) \right)^p < \infty.$$

Thus $K \in L_{p,\Phi}^{(s)}(E,F)$ and we have from (2.3)

$$\begin{split} \|\mathscr{J}K\|_{p,\Phi} &= \left[\frac{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n}\sum\limits_{t|n} \varphi(t)s_t(\mathscr{J}T)\right)^p}{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n}\right)^p}\right]^{\frac{1}{p}} \\ &= \left[\frac{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n}\sum\limits_{t|n} \varphi(t)s_t(K)\right)^p}{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n}\right)^p}\right]^{\frac{1}{p}} = \|K\|_{p,\Phi}^{(s)} \,. \end{split}$$

So, the operator ideal $\left[L_{p,\Phi}^{(s)}, \|K\|_{p,\Phi}^{(s)}\right]$ is injective.

Corollary 2.6. It is known that $(c_r(K))$ and $(x_r(K))$ are injective, therefore the quasi-Banach operator ideals $\left[L_{p,\Phi}^{(c)}, \|K\|_{p,\Phi}^{(c)}\right]$ and $\left[L_{p,\Phi}^{(x)}, \|K\|_{p,\Phi}^{(x)}\right]$ are injective [14, p.90-94].

Theorem 2.7. Let $1 . The quasi-Banach operator ideal <math>\left[L_{p,\Phi}^{(s)}, \|K\|_{p,\Phi}^{(s)}\right]$ is surjective if the sequence $(s_r(K))$ is surjective.

Proof. Let $1 and <math>K \in \mathscr{B}(E, F)$ and $\mathscr{S} \in \mathscr{B}(E_0, E)$ be any metric surjection. Suppose that $K\mathscr{S} \in L_{p,\Phi}^{(s)}(E_0, F)$. Then,

$$\sum_{n} \left(\frac{1}{n} \sum_{t \mid n} \varphi(t) s_t(K\mathscr{S}) \right)^p < \infty$$

Since $s = (s_r)$ is surjective, we have

$$s_r(K) = s_r(K\mathscr{S})$$
 for all $K \in \mathscr{B}(E, F), r = 1, 2, \dots$

Hence, we get

$$\sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K) \right)^p = \sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K\mathscr{S}) \right)^p < \infty.$$

Thus, $K \in L_{p,\Phi}^{(s)}(E,F)$ and we have from (2.4)

$$\begin{split} \|K\mathscr{S}\|_{p,\Phi}^{(s)} &= \left[\frac{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n} \sum\limits_{t|n} \varphi(t) s_t(K\mathscr{S})\right)^p}{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n}\right)^p}\right]^{\frac{1}{p}} \\ &= \left[\frac{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n} \sum\limits_{t|n} \varphi(t) s_t(K)\right)^p}{\sum\limits_{n=1}^{\infty} \left(\frac{1}{n}\right)^p}\right]^{\frac{1}{p}} = \|K\|_{p,\Phi}^{(s)} \,. \end{split}$$

Hence, the operator ideal $\left[L_{p,\Phi}^{(s)},\|K\|_{p,\Phi}^{(s)}\right]$ is surjective.

(2.3)

(2.4)

Theorem 2.9. The inclusion relations in the sequel hold for 1 :

(i)
$$L_{p,\Phi}^{(a)} \subseteq L_{p,\Phi}^{(c)} \subseteq L_{p,\Phi}^{(x)} \subseteq L_{p,\Phi}^{(h)}$$
,
(ii) $L_{p,\Phi}^{(a)} \subseteq L_{p,\Phi}^{(d)} \subseteq L_{p,\Phi}^{(y)} \subseteq L_{p,\Phi}^{(h)}$.

Proof. Let $K \in L_{p,\Phi}^{(a)}$. Then,

$$\sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) s_t(K) \right)^p < \infty$$

where 1 . And from Proposition 1.3, we have;

$$\sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) h_{k}(K)\right)^{p} \leq \sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) x_{k}(K)\right)^{p}$$
$$\leq \sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) c_{k}(K)\right)^{p}$$
$$\leq \sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) a_{k}(K)\right)^{p}$$
$$\leq \infty$$

and

$$\sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) h_{k}(K)\right)^{p} \leq \sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) y_{k}(K)\right)^{p}$$
$$\leq \sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) d_{k}(K)\right)^{p}$$
$$\leq \sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) a_{k}(K)\right)^{p}$$
$$< \infty.$$

Thus, the proof is completed.

Theorem 2.10. For $1 , <math>L_{p,\Phi}^{(a)}$ is a symmetric operator ideal, and $L_{p,\Phi}^{(h)}$ is a completely symmetric operator ideal.

Proof. Let 1 . $Firstly, we show that <math>L_{p,\Phi}^{(a)}$ is symmetric in other words $L_{p,\Phi}^{(a)} \subseteq \left(L_{p,\Phi}^{(a)}\right)^*$ holds. Let $K \in L_{p,\Phi}^{(a)}$. Then,

$$\sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) a_k(K) \right)^p < \infty$$

It follows from [12, p.152] $a_r(K^*) \le a_r(K)$ for $K \in \mathscr{B}$. Hence, we get

$$\sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) a_k(K^*) \right)^p \le \sum_{n} \left(\frac{1}{n} \sum_{t|n} \varphi(t) a_k(K) \right)^p < \infty.$$

Therefore, $K \in \left(L_{p,\Phi}^{(a)}\right)^*$. Thus, $L_{p,\Phi}^{(a)}$ is symmetric.

Let show that the equation $L_{p,\Phi}^{(h)} = \left(L_{p,\Phi}^{(h)}\right)^*$ is satisfied. It follows from [14, p.97] that $h_r(K^*) = h_r(K)$ for $K \in \mathscr{B}$. Then, we can write

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n \sum_{j \in E_k} v_j h_j(K^*) \right)^p = \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n \sum_{j \in E_k} v_j h_j(K) \right)^p a_k$$
$$\sum_n \left(\frac{1}{n} \sum_{t \mid n} \varphi(t) h_k(K^*) \right)^p = \sum_n \left(\frac{1}{n} \sum_{t \mid n} \varphi(t) h_k(K) \right)^p.$$

Hence, $L_{p,\Phi}^{(h)}$ is completely symmetric.

Theorem 2.11. Let
$$1 . $L_{p,\Phi}^{(c)} = \left(L_{p,\Phi}^{(d)}\right)^*$ and $L_{p,\Phi}^{(d)} \subseteq \left(L_{p,\Phi}^{(c)}\right)^*$ holds. Also, for any compact operators $L_{p,\Phi}^{(d)} = \left(L_{p,\Phi}^{(c)}\right)^*$ holds.$$

Proof. Let $1 . For <math>T \in \mathscr{B}$ it is known from [14] that $c_r(K) = d_r(K^*)$ and $c_r(T^*) \le d_r(K)$. Also, when K is a compact operator, the equality $c_r(K^*) = d_r(K)$ holds. So the proof is complete.

Theorem 2.12.
$$L_{p,\Phi}^{(x)} = (L_{p,\Phi}^{(y)})^*$$
 and $L_{p,\Phi}^{(y)} = (L_{p,\Phi}^{(x)})^*$ hold.

Proof. Let $1 . For <math>K \in \mathscr{B}$ we have from [14] that $x_n(K) = y_n(K^*)$ and $y_n(K) = x_n(K^*)$. Thus the proof is clear.

Article Information

Acknowledgements: The author would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's Contributions: The article has a single author. The author has read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Author own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of Data and Materials: Not applicable.

References

- [1] A. Maji, P. D. Srivastava, On operator ideals using weighted Cesàro sequence space, Egyptian Math. Soc., 22(3) (2014), 446-452.
- [2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Amer. Math. Soc., 16 (1955).
- [3] E. E. Kara, M. İlkhan, On a new class of s-type operators, Konuralp J. Math., 3(1) (2015), 1-11.
- [4] A. Maji, P. D. Srivastava, Some class of operator ideals, Int. J. Pure Appl. Math., 83(5) (2013), 731-740.
- [5] A. Maji, P. D. Srivastava, Some results of operator ideals on s-type |A, p| operators, Tamkang J. Math., 45(2) (2014), 119-136.
- [6] N. Şimşek, V. Karakaya, H. Polat, Operators ideals of generalized modular spaces of Cesaro type defined by weighted means, J. Comput. Anal. Appl., **19**(1) (2015), 804-811.
- [7] E. Erdoğan, V. Karakaya, Operator ideal of s-type operators using weighted mean sequence space, Carpathian J. Math., 33(3) (2017), 311-318.
- [8] P. Zengin Alp, E. E. Kara, A new class of operator ideals on the block sequence space $l_p(E)$, Adv. Appl. Math. Sci. 18(2) (2018), 205-217.
- [9] E. Schmidt, Zur theorie der linearen und nichtlinearen integralgleichungen, Math. Ann., 63(4) (1907), 433-476.
- [10] A. Pietsch, Einigie neu klassen von kompakten linearen abbildungen, Revue Roum. Math. Pures et Appl., 8 (1963), 427-447.
 [11] A. Pietsch, s-Numbers of operators in Banach spaces, Studia Math., 51(3) (1974), 201-223.
- [12] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
- [13] B. Carl, A. Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull. Lond. Math. Soc., 41(2) (2009), 332-340.
- [14] A. Pietsch, Eigenvalues and s-mumbers, Cambridge University Press, New York, 1986.
 [15] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18(2) (1967), 345-355.
 [16] G. Constantin, Operators of ces p type, Rend. Acc. Naz. Lincei., 52(8) (1972), 875-878.
 [17] N. Tita, On Stolz mappings, Math. Japonica, 26(4) (1981), 495-496.

- [18] E. Kovac, On ϕ convergence and ϕ density, Mathematica Slovaca, 55 (2005), 329-351.
- [19] M. İlkhan, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.