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1. Introduction

The concept of stability, widely used in applied sciences
such as mathematics, physics, engineering, and medicine,
was developed by Soviet mathematician A.M. Lyapunov in
the early 1900s (see [13]). This field, which continues to
expand and attract researchers, has become a broad
application area for time-delayed and non-delayed systems
(or equations). Numerous exciting studies have been
conducted on this topic, which has been addressed by many
researchers, and sufficient conditions for stability have been
established. Alkhazzan et al., in article [1], discussed a new
class of nonlinear fractional stochastic differential equations
with fractional integrals and discussed existence, uniqueness,
continuity of solutions and Ulam-Hyers stability with the
help of Banach contraction theorem. They supported their
work with an example. Singular and non-singular fractional
systems have been studied for many types of stability, such
as asymptotic stability (see [2,3,4,11,12,16,22,23,24]) and
Razumikhin stability [8,17]. Using the Lyapunov-Krasovskii
functional approach, the stability of fractional nonlinear
Caputo-Volterra integral equations was studied in article [9].
In article [15], Tun¢ and Tung investigated the qualitative
behavior of the solutions of Caputo Proportional derivatives
of delayed integro-differential equations. In article [19], by
using Lyapunov-krasovskii functional, some sufficient

conditions to guarantee robust stability and asymptotic
stability for indeterminate fractional singular systems with
neutral and time-varying delays in terms of the linear matrix
inequality were proved. For the existence and uniqueness of
solutions in singular systems, the system under consideration
must have the properties of impulse-free and regular. For this
reason, the authors in article [19] proved that the system they
discussed in the first stage has these two properties and then
has asymptotic stability and robust stability. By providing
these three properties simultaneously, it was proved that the
system discussed in article [19] has asymptotic admissibility
and robust admissibility. Moreover, the Lyapunov stability
of fractional neural networks with Riemann-Liouville delay
was studied in [25]. Stability and admissibility in singular
and non-singular systems with non-fractional delay have also
been discussed (see [5,6,18]). In addition to these studies,
there are many books that researchers can benefit from.
Examples include (see [7,20,21]) for singular systems and
(see [10,14]) for fractional differential equations.

This study, motivated by the above discussion and article [4]
and references there in, is investigated the admissibility of a
certain type of delay neutral fractional singular systems by
the help of Lyapunov functionals, zero equations, model
transformations and other some well-known inequalities.
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Some numerical examples are presented to demonstrate the
applicability of the proved results.

2. Preliminaries

In this paper motivated by the above discussion and article
[4] and references there in, we define a fractional neutral
singular system with constant and variable delays and
nonlinear perturbation as:

o DAISX(t) + Ax(t—7)] = -Bx(t) + Rx(t—o) + E j x(s)ds
+TX(t—o(t)) + G(x(t—o(t)), (1)

X(t) = 3(t),t e[-x,0],x >0,k € R,
for qe(01], the system state X(t) e R",

A/B,R,E, T e R™
system matrices, the matrix S e R™" is singular and
satisfied rankS =r <n,n>1, with|| A|[<1, the time
variable delay o (t) is assumed to satisfy 0 < o(t) <o
and &(t) < u, the constant delays z,o are real positive
numbers and 9 € C([~x,0];R") with & = max{r,c}.
The nonlinear perturbation parameter G(.) satisfying

are symmetric positive definite

G™ (x(©))G(x(t)) < a®x" (t)x(t), ®)
G’ (x(t-o))G(x(t-o) <b’X' (t-oM)xt-o(t), @

where @,b given any numbers.

Before moving on to the details of our study, we would like
to remind of some useful definitions and lemmas that should
be known.

Definition 2.1 ( [4] ). The Riemann-Liouville fractional
integral and the derivation are defined as

WD x(t)——j(t $)¥x(s)ds, (q > 0),
] 1 d”t
DI = e j

q+l n
ty

Lemma 2.1 ([4]). For x(t)eR" and p >q >0, then

s, (n-1<qg<n).

to th (to Dt_px(t))zto th_px(t)-

Lemma 22 ( [4]). Let x(t) € R", be a vector of a
differentiable function. For positive semi-definite matrix

N eR™ and Vqe(0]), Vt>t,, then

w D (X (ONX(1)) < 2x" (t)N, D x(t)
is satisfied.
3. Admissibility

We obtain sufficient conditions for the admissibility
properties of the systems discussed in this section. We prove
the regular, impulse-free, and stable states accepted as
admissibility conditions in the first theorem. In the remaining
four corollaries, we show that only the new systems defined
by constructing new Lyapunov-Krasovskii functionals are
stable, since regular and impulse-free states can be
represented in a similar way. Therefore, we prove five
sufficient conditions stating that these systems guarantee
admissibility.

If we define a new operator like

Q(t) = Sx(t) + Ax(t —7), then the system (1) can be
rewritten as in the form below:

D{Q(t) = -Bx(t) + Rx(t— o)+ E jx(s)ds

+TX(t—o(t)) + G(x(t — o(t)). (4)

Theorem 3.1. We suppose that the following hypothesis is
met:

(H1) Let @,b be any numbersand 7 > 0,0 > 0, if
there are symmetric matrices

K, =K. >0,(k=1..7),
W, = WiT >0, (i=14,5), and any suitable dimensions
matrices W, (1 = 2,3) such that the following relationship

is satisfied:
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0, 0, O KlR KlT Kl KlE 0 | — |r 0| - §1 Ez — T 4 W51 WSZ
+ 0, 0, WR WT W, WE 0, S=USL= 0 ol B=UBL=_" — |Ws=U"WU =" _"|
* + @, 0 0 0 O© 0 Bs B Wss Wi
ol * * * “Ko 0 0 0 RW,'R 0
e ox x *  Og 0 0 TW,/R <% Pre- and post- multiplying (6) by L" and L respectively,
£ % % ¥ + @, 0 WR then we obtain
* * * * * *  —K, ETWATR _ _
* * * * * * * O pu T YRV Vi V2
- e V=LVL=-WsB-BWs=|_" _"|<0,
®) Vs Vi
where

0, =-W, -W,", ©,, =-K,B+W,S -W,",

®13 :WlA_W3T’

0, =W,5+SW, -W.B-BW, +K, +K, +K, +K, +a’K, +o’K,,
0,, =W,A+S'W,", @, =-BW,'R-W,,

O, =W,A+ AW, —K,,

O, = —(1- p)K, + b1,

O = —(1— 1)K, —él, Oy =—RW, —W,'R.

where & is a positive number and I is identity matrix with
appropriate dimension.

Then the zero solution of system (1) is admissible.

Proof. The proof of Theorem 3.1 is divided into two steps.
The first step deals with the properties impulse free and
regularity. The second step is related to the stability property.
Firstly, we can write from (5) that

0,, =W,S+S"W," -W,B-BW," +K, + K, + K, + K, +a’K, +°K, <0.

Since

WS+5 W +E +K +&, +K +ak +o'K, =0,

we can write

V =-W,B-BW, <0. (6)

Because of W5, B positive definite symmetric matrices
and rankS=r<n,n=1,
matrices U and L such that

there exist two regular

here, 64 = —W54§4 —§4W54. Because of 61,62 and

63 are unrelated to the discussion in proof. , their real
expressions are omitted here. From here, we obtain

~WsBs —BaWss < 0. Therefore, By is regular. From
this reason, the pair (S, B) is regular and impulse free (see
[21]). According to Dai [7] and Q. Wu et al., [19] the

system (1) is regular and impulse free.

Secondly, we prove that the system (1) is stable. For
symmetric matrices K, = KkT >0,(k=1..,7),
W, =W, >0, (i=14,5) and any suitable dimensions
matrices W; (1 =2,3). Let us define a new positive definite
functional as:

V(t)=, DI (Q (K, Q() + jXT(S)KZX(S)dS+ ij(S)st(s)ds

t-o

+ j(r —t+35)x"(s)K, x(s)ds + j.XT(S)KSX(S)dS

t-r t-o(t)

+ [ GTX(E)KG(X()ds +o [ [X" (K x()déd.

t-o(t) —ot+p

()

In view of the fact that Lemma 2.1, Lemma 2.2 and Jhensen
inequality Lemma (see [18]), by the time-derivative of V (t)

on the solution of system (1), we can get the following
inequality as:

V(t,x) < 2Q" (1)K, (,, DIQ(L)) + X" (1)K, x(t) = x" (t — 1)K, X(t — 7)
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 DE[Sx(#) + Ax(z — )] =—Bx(d) + Rx(t— o) + Tt — o(D) + G(:%r — o).

+ XT(t) K3X(t) - XT(t—U) K3X(t —O_) —}-'[)(T(t) K4X(t) x(f) = 8.t e[-x.0].x > 0.x e R, (11)
+ 3T (DK x(0 — (L —a(0)x" (1 — oK x(r — o)

G GEOKGED) -U-0OG (- 0KGE-00)  for  qe(01], the system state  X(t) € R,
+ 6 MOK 1) -0 [ 5 (©)K-x(s)ds A B,R, T € R™ are symmetric positive definite system

t—o

: matrices, the matrix S € R™" s singular and satisfied
AT DK[BX0) + Re(t=0)+ E [ K(3)dls + Tl = 0(0) + GGt ~0] yankS =r <n,n>1, with|| All<1, the time variable

-z

+ 207 (O, [-O) + Sx(£) + Ax(t — D] + X7 (DK ,x(F) delay o(t) is assumed to satisfy 0<o(t) <o and
+ 227 (O, [FQUA + () + Ax(r — D] - T (e — DK (5= 1) o"(t) < u, the constant delays 7,0 are real positive
2D+ SO + A= )]+ (DK numbers and 9 € C([-«,0];R") with x = max{r,c}

—xT (K x(r— o)+ o (DK (D + xT (DK x(0)
—(1- w)x" (t — GNK x(t — () + a* x" (K (D)
— (1= )G (x(t — CENK G x(t — () + T () K, x(8)

and the nonlinear perturbation parameter G(.) satisfying

. o . G"(x(t))G(x(t)) < a*x™ (t)x(t),
—i [x(s)ds | Ki [xtsds |
e ©  G(x({t-oM)G(X(t-o) <b™x" (t-oM)x(t-o(),
We noting that
0 =, quf}—Bl'(f)+ Rx(t-0)+E ‘l‘ w(s)ds + It — o (£)) + G(x(t — a(6))). where a, b are given any numbers.

-z

From here, we can obtain

. : Corollary 3.1. We suppose that the following hypothesis is
0=2, DICY (§BW,(~, D) ~Br($) +Ro(t~0)+ E [ x(s)dls+ Toft—0() + Gt~ (2)

met:

+ 2 (W (=, D)~ B+ Rt —0) + E | x(5)dls + Tt~ 010) + Gt —0e)). ©) (H2) Let @,b be any numbers and 7 > 0,5 > 0, if there
. . T
are symmetric matrices K, =K, >0,(k =1,...,6),

W, = WiT >0, (i=14,5) and any suitable dimensions

matrices W, (1 =2,3) such that the following relationship

02 & (t —o(B)x(t— o) — &G (x(t — G (O G(x(t — G(E))). (10) is satisfied:

where & > 0. - .

Additionally, from the nonlinear parameter G(.) condition
given with (3), we get

Combining (8)-(10), we can have the below inequality as: * AN, Ay W,R WT W, Ay,
V(0 < 2 00(0), tor M 0000
+# %+ -K, 0 0 RW/R|<0, (2
here the matrix © is defined with (5) and * * * * Ay 0 TW4TR

7O=IF@0 ¥ -0 F@-0) F@-on) GGir-o) IL\(SWS (DAY % % " " % A66 WATR
Because of matrix inequality (5) and impulse free and
regularity criteria are satisfied and ' (t) # 0,then the

neutral fractional singular system (1) is admissible. O where
Further, we define the following fractional neutral singular

t
system (1) with E .[X(S)ds =0,

t-o
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Corollary 3.2. We suppose that the following hypothesis is

A= - A, =—KB+WS—-W A, =WA- I-'F"ST .
met:

Ay, =W, S+S'"W, -WB—-BW] +K, +K, +&K, +K, +a’k

Ay, =W, A+S"W,) A, =—BW;R-W,,

A=W A+A4"W -K,.

A =—(1- 1K, +e’L

Age =—(1— 1)K, — L

A, =—RW,-WIR.

where & is a positive number and I is identity matrix with
appropriate dimension.

Then the zero solution of system (11) is admissible.

Proof. For symmetric matrices

K,.=K, >0,(k=1..6),
W, = WiT >0, (i=14,5) and any suitable dimensions

matrices W; (1 =2,3). Let us define a new positive definite
functional as:

DI (HK,Q0) + [ xT (5)K x(s)dls + [ x" (8) Kyx(s)ds

o r

V()=

I-= I-=

+ [ (1 -1+ 5)x" (5) K x(s)ds + [ <" () K jx(s)ds

+ i GT (N K Gx(s))ds.

et-Lis]

In view of Theorem 3.1, we show that the admissibility
condition (12) of system given with (11). O

Additionally, we define the following fractional neutral

t
singular  system (1)  with EIX(S)dSzO and
t-o

G(x(t-o(1)) =0,

© DI[SX(1) + AX(t - 7)] = -Bx(t) + Rx(t — &) + Tx(t - o (1)), (13)
X(t) = 9(t),t € [-x,0],xk > 0,k € R,
for qe(01], the system state X(t) e R",

A B,R, T € R™ are symmetric positive definite system

matrices, the matrix S € R™" is singular and satisfied
rankS =r <n,n>1, with|| Al[<l, the time variable
delay o(t) is assumed to satisfy 0<o(t) <o and
o(t) < u, the constant delays 7,0 are real positive

numbers and ¢ € C([-x,0];R") with x = max{z,c}.

(H3) Let 7 > 0,0 > 0 be numbers, if there are symmetric
matrices K, = KkT >0,(k =1,...,5),
W, = WiT >0,(i=145) and any suitable matrices

W, (1=2,3) such that the following relationship is
satisfied:

v, ¥, ¥, KR KT 0
* \P22 \{’23 WS R WST \P26
* W, 0 0 0 <0, (14)
* * * —-K, 0 RW,R
* * * * Y., TW,R
* * * * * \P66
Where

W, =T, - W, W, =K, B+ W8 -], W, =W, AW,
Y, =W,5+S5' W, -W.B-BW. +K, +K,+1K, + K.,
W =W, A+S W, W, =—BW RV,

W =W A+ AW, -K,,

Y., =—(1-u)K,, ¥, =—RW,-W]R.

Then, the zero solution of system (13) is admissible.

Proof. For symmetric matrices

K,=K, >0,(k=1..5),
W, = WiT >0, (i=214,5), and any suitable dimensions

matrices W, (1 =2,3). Let us define a new positive definite
functional as:

V ()=, DI Q" ()K,Q(t)) + ij(s)sz(s)ds + ij(s)st(s)ds

t-r t-o
t t
+ j(r—t +5)x" (s)K  x(s)ds + ij(s)st(s)ds.
t-r t-o(t)

In view of Theorem 3.1, we show that the admissibility

condition (14) of system given with (13). O
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Next, we define the following fractional neutral

t
singular system (1) with E IX(S)dS =0, TX(t—-o(t)) =0
t-o

and G(x(t—o(t))) =0,

o DE[SX(t) + Ax(t — 7)] = —Bx(t) + Rx(t — o), (15)
X(t) = 9(t),t e[-«,0],x >0,k € R,
for gqe(01], the system state X(t) e R",

A B,RecR™ are symmetric positive definite system

matrices, the matrix S € R™" s singular and satisfied

rankS =r <n,n>1 with|| A||<1, the constant delays

7,0 are real positive numbers and ¢ € C([-«x,0];R")

with x = max{r,c}.

Corollary 3.3. We suppose that the following hypothesis is
met:

(H4) Let 7 > 0,0 > 0 be numbers, if there are symmetric
matrices K, = KkT >0,(k=1...,4),
W, = WiT >0, (i=14,5), and any suitable dimensions

matrices W, (1 = 2,3) such that the following relationship
is satisfied:

_An A, Ay KR 0
* Ay Ay WR A
* % An 0 0 [<0, @6
* % x —K, BW,/R
* * * * A55
where

Ay =T, W A,=-KB+WS W} A,=WA-W,
A, =W,5+8'W, -W,B-BW, +K, +K, + 1K,

Ay =T, A+S"W,) A, =—BW R,

Ay =W, A+ A'W, —K,, A,, =—RW, -W[R.

Then the system (15) is admissible.

Proof. For symmetric matrices

K, =K. >0,(k=1..4),
W, = WiT >0, (i=14,5),and any suitable dimensions

matrices W, (1 =2,3). Let us define a new positive definite
functional as:

V ()=, DM (QT (1)K, Q(L)) + ij(s)sz(s)ds+ ij(s)KSX(s)ds

t-o

+ j(‘r —t+58)x" (s)K, x(s)ds.

t-r

In view of Theorem 3.1, we show that the admissibility
condition (16) of system given with (15). O

Next, we define the following fractional neutral singular

t
system (1) with E J-X(S)ds =0, Tx(t-o(t)) =0,
t-o

G(x(t—o(t)))=0and o =1,
o DEISX(t) + AX(t —7)] = -Bx(t) + Rx(t —7), (17)
X(t) = 9(t),t €[-«,0],x >0,k € R,
for qe(01], the x(t) e R",

A B,ReR™ are symmetric positive definite system

system state

matrices, the matrix S € R™" s singular and satisfied
rankS =r <n,n>1 with|| A||<1, the constant delay

7 is real positive number and ¢ € C([-x,0];R").
Corollary 3.4. We suppose that the following hypothesis is

met:
(H5) Let 7 > 0 be number, if there are symmetric matrices

K=K, >0,(k=1223),
W, = WiT >0,(1=14,5) and any suitable dimensions

matrices W, (1 =2,3) such that the following relationship
is satisfied:

Iy, T, Tl 0
* sz st H24 <0 (]_8)
* * Iy 0 '
* * * H44

where
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I, =W, -] T, =—K,B+W,S— W] TL, =WA4 -7, + KR,
I, =W,S+S'W,; —W.B—-BW, +K, +1K;,

[y, =W,A+S"W, T1,, =—BW,R—T,.

I, =W,A+A"W, -K,, TI,, =—RW, -W}R.

Then the system (17) is admissible.

Proof. For symmetric matrices

K, =K, >0,(k=123),
W, = WiT >0,(i=14,5)and any suitable dimensions

matrices W, (1 = 2,3). Let us define a new positive definite

functional as:

V(=D Q" (OK,Q0) + [ xT () K, x(s)ds + [ (T —+5)x" (5)K,x(5)ds.

t-z -z

In view of Theorem 3.1, we show that the admissibility

condition (18) of system given with (17). O

Remark 3.1. As mentioned in the first section, which is
introduction; this study was mainly inspired by some studies
cited references. However, since the systems discussed in
this study are singular, it is a new study different from some
of the studies cited in the references (see [4,11,18,22])
mentioned in the references, and it is clear that it is more
difficult to achieve the goal. To overcome this difficulty, we
benefited suitable Lyapunov-Krasovskii functionals and zero
equations. Moreover, the Lyapunov-Krasovskii functionals
used in the Study are new and obviously more
comprehensive than their counterparts used in the literature
(see [4,6,11,18,19,22]).

4. Numerical applications

In this section, we bring to the attention of the readers some
examples, with their annotated solutions and graphics,
showing that the theoretically sufficient conditions obtained
in the previous section are applicable in practice. When the
solutions of these examples are examined, it is clearly seen
that the zero solutions of the systems in question are stable
after a certain time interval. In addition, each example is
support with the corresponding simulation result obtained
with the help of MATLAB-Simulink.

Example 4.1. We define a fractional nonlinear neutral
singular system as:

. DI[Sx(8) + Ax(t — 1)] = —Bx(f) + Rx(t— o) + E [ x(s5)ds
+ It — o (D) + Gl £ — o)), (19)

for

€ (0.1, x( [X z(t)]Tv
G( (t-a(t ))):[sm( (t-a(t) 1-cos(x,(t-ot))]".

Solving the inequality (5), with the help of MATLAB

software, when
10 25 0 0.43 0
S = y B= y R= y
00 0 26 0 0.1225

o280 e 0015 0 T_0.02 0
1o 01725/ | 0o 002 | 0 o001/

we have a set of parameters that provides admissibility of the
system (19) that

a=0.002,
b =0.005,
r=02
0<a(t)=025+025sin t<05=¢
() =02%cost <025 =pu <1,
£=1

as follows:

0 -2 o0
I'-F: = -
-002f 7|0 -3
. 0.1 0
0.878 [ k= 0 0.00035
< - 0 e 0.0005 0
0000127 7| 0 000087 Y| 0  00001]

~ Too1 0 003 0] _ [oo0l 0
K, = : K4 = :K- = .
) 0 0.00012 : 0 8 0 0.001

It is clear that all conditions of admissibility criteria for
system (19) are satisfied. Therefore, the system (19) is
admissible. Also, the graph showing the orbital behavior of
the system (19) is as follows.

=
4 ~
I |
| —
o
o S ;
()
I_I
|—| =) "--.I
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695 0 0 ~7.98 0
§ : | | : — W=l 0 698 0 |W = -0.095 0
) —— 0 0 175 —00z2] -3
2‘\ 002 0 0 0.1028 0
\ W,=| 0 003 0 | W= K=0 014 o0 |
- N—__ z s i | 2802 5
= [IF----------}'H'?--—-?—I:"'-':'“‘-—‘;'-—--%"-"--------------— 0 0 0280 0.878 0.0003
/s 015 0 0 00065 00005 0
_2_'::_ | K={0 03 0 K= 0 00063 0 |K,= 0 00008 0
! 0 0 00001 0 0 00008 0 0 0000l
_4' i | | i | 001 0 0 003 0 0
| 2 4 K B (i 7 K= 0 0015 0 |K.= 0 0050}
time(sec) 0’ 0 0 000012 0 0 8

Figure 1. Orbital behavior of the system (19).

Example 4.2. We define a fractional nonlinear neutral
singular system as:

w DI[S(E) + Axt — 1)] = —Bx(£) + Rt — @) + Tt — o () + G (ot — (1)),
(20)

for ge 1, x®) =[x x® x®],
GOt — o(6) =[sin(x,(t —o(?)) sin(x(t —o(@ON +x, (- @) sin(x—a@N].

Solving the inequality (12), with the help of MATLAB

software, when

1 00 3 0 0 043 0 0
§S=/0 1 0L.B=|0 15 0 | R=| 0 044 0
00 0 0 0 26 0 0 01225
028 0 0 002 0 0
A= 0 025 0 = 0 003 0
0 0 01725 0 0 001

we have a set of parameters that provides admissibility of the
system (20) that a=0.002,
b=0.005 7 =02, 0<o(t)=025+0.25sint <0.5=0, o(t) =0.25c0st <0.25= <1, £ =1

as follows:

It is clear that all conditions of admissibility criteria for
system (20) are satisfied. Therefore, the system (20) is
admissible. Also, the graph showing the orbital behavior of
the system (20) is as follows.

4 ! ! N
; -
- -]
?
. | | | | |
I z 4 _ b 8 0 I_E
time(sec) o

Figure 2. Orbital behavior of the system (20).

Example 4.3. We define a fractional neutral singular system
as:

o DIISX() + AxX(t — 7)] = =BX(t) + Rx(t — o) + Tx(t - & (1)), (21)

for gcoux®=® %O xO xO
Solving the inequality (14), with the help of MATLAB

software, when

1000 25 0 0 0 043 0 0 0

0100 0 15 0 0 0 044 0 0
S= B- R=

0010 0 0 8 0 0 0 045 0

000 0 0 0 0 26] 0 0 0 01225

028 0 0 0 002 0 0 0

0 025 0 0 0 003 0 0
A=10 0 002 o “lo 0 0025 o0

0 0 0 01725 0 0 0 001
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we have a set of parameters that provides admissibility of the
system (21) that

=02, 0<0o(t)=0.25+0.255int <0.5=0, 6(t) =0.25c05t <0.25= p <1
as follows:
695 0 0 0 -798 0 0 0 -2 0 0 0
— 0 698 0 0 _— 0 -8 0 0 | 0 -0095 0 0
Y10 o 7 of*] 0o o0 -78 0 o 0 085 0
0 0 0 175 0 0 0
002 00 0 0.1028
0 003 0 0 i 0 0 014 0
W, = W=
0 0 0025 0 : 0 0.14 018
0 0 0 02802 0 0878 0.0003
15 0 0 0 0.0065 0
0 036 0 0 0 00063 O 0
K = LK. =
o 0 028 0 : 0 0 0006 O
0 0 0 000012 0 0 0 00008
[0.0005 O 0 0 001 0 0 0
i 0 00008 O 0 0 0015 0O 0
K, = | K.=
0 0 00006 O 0 0 0025 0
0 0 0 0.0001 0 0 0 0.00012

It is clear that all conditions of admissibility criteria for
system (21) are satisfied. Therefore, the system (21) is

admissible. Also, the graph showing the orbital behavior of

the system (21) is as follows.

time(sec) o

Figure 3. Orbital behavior of the system (21).

Example 4.4. We define a fractional neutral singular system
as:
(22)

w0 D [SX(t) + Ax(t — 7)] = —Bx(t) + Rx(t — o),

for

de (O, x®) =[x® %O Xt xO xOI,

Solving the inequality (16), with the help of MATLAB
software, when S = diag(1,1,1,1,0),
B = diag(25.15.8.10.26). R = diag(0.43.0.44,0.45, 0.48.0.1225),

A=diag(0.28.0.25,0.02,0.03.0.1725),
we have a set of parameters that provides admissibility of the
system (22) that 7 = 0.2, o = 0.5 as follows:

W, = diag(6.95,6.98,7,6.5,17.5),

W, = diag(-7.98,-8,-7.8,-8.02,—0.02),

W, = diag(-2,-0.095,0.85,0.5,-3),

W, =diag(0.02,0.03,0.025,0.028,0.2802),

W; =diag(0.1028,0.15,0.14,0.2,0.878),

K, =diag(0.1,0.14,0.18,0.23,0.00035),
K, =diag(0.15,0.36,0.28,0.18,0.00012),

K, =diag(0.0065,0.0063,0.006,0.008,0.0008),

K, =diag(0.0005,0.0008,0.0006,0.0012,0.0001).
It is clear that all conditions of admissibility criteria for
system (22) are satisfied. Therefore, the system (22) is
admissible. Also, the graph showing the orbital behavior of

the system (22) is as follows.

alt)

fimelsec) 4
timelsec) /1l

Figure 4. Orbital behavior of the system (22).

Example 4.5. We define a fractional neutral singular system
as:
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o DALISX(t) + Ax(t — 7)] = —Bx(t) + Rx(t — ), (23)

for

100 x0 =0 %O %0 xO x0 %O
Solving the inequality (18), with the help of MATLAB
software, when S = diag(1,1,1,1,1,0),

B =diag(25,15,8,10,12,26),

R = diag(0.43,0.44,0.45,,0.48,0.5,0.1225),
A = diag(0.28,0.25,0.02,0.03,0.04,0.1725),

we have a set of parameters that provides admissibility of the
system (23) that 7 = 0.2 as follows:

W, = diag(6.95,6.98,7,6.5,6.8,17.5),

W, =diag(-7.98,-8,-7.8,-8.02,—8.05,-0.02),

W, = diag(~2,0.095,0.85,0.5,0.75,-3),
W, = diag(0.02,0.03,0.025,0.028,0.035,0.2802),

W, = diag(0.1028,0.15,0.14,0.2,0.18,0.878),
K, =diag(0.1,0.14,0.18,0.23,0.25,0.00035),
K, =diag(0.15,0.36,0.28,0.18,0.23,0.00012),
K, = diag(0.0065,0.0008,0.006,0.0012,,00009,0.0001).
It is clear that all conditions of admissibility criteria for
system (23) are satisfied. Therefore, the system (23) is
admissible. Also, the graph showing the orbital behavior of

the system (23) is as follows.

I 05

1 fimefser) 1§ Z 2:5

Figure 5. Orbital behavior of the system (23).
5. Conclusions

In this paper, we proposed new delay-dependent criteria for
the admissibility of linear and nonlinear fractional singular

systems with variable and constant delays. We used some
useful lemmas and Lyapunov-Krasovskii functionals to
obtain these proposed criteria. The numerical examples we
present with graps at the end of the paper reveal the
advantages and applicability of our results.
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