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This paper deals with fractional singular systems with mixed delays and several admissibility 
criteria are obtained by using Lyapunov-Krasovskii functionals, model transformation, useful 
lemmas, zero equations and other well-known inequalities. Finally, some numerical examples 
are given with graps to verify and justify the admissibility of practical systems by using our 
proposed methods. 
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1. Introduction

The concept of stability, widely used in applied sciences 
such as mathematics, physics, engineering, and medicine, 
was developed by Soviet mathematician A.M. Lyapunov in 
the early 1900s (see [13]). This field, which continues to 
expand and attract researchers, has become a broad 
application area for time-delayed and non-delayed systems 
(or equations). Numerous exciting studies have been 
conducted on this topic, which has been addressed by many 
researchers, and sufficient conditions for stability have been 
established. Alkhazzan et al., in article [1], discussed a new 
class of nonlinear fractional stochastic differential equations 
with fractional integrals and discussed existence, uniqueness, 
continuity of solutions and Ulam-Hyers stability with the 
help of Banach contraction theorem. They supported their 
work with an example. Singular and non-singular fractional 
systems have been studied for many types of stability, such 
as asymptotic stability (see [2,3,4,11,12,16,22,23,24]) and 
Razumikhin stability [8,17]. Using the Lyapunov-Krasovskii 
functional approach, the stability of fractional nonlinear 
Caputo-Volterra integral equations was studied in article [9]. 
In article [15], Tunç and Tunç investigated the qualitative 
behavior of the solutions of Caputo Proportional derivatives 
of delayed integro-differential equations. In article [19], by 
using Lyapunov-krasovskii functional, some sufficient 

conditions to guarantee robust stability and asymptotic 
stability for indeterminate fractional singular systems with 
neutral and time-varying delays in terms of the linear matrix 
inequality were proved. For the existence and uniqueness of 
solutions in singular systems, the system under consideration 
must have the properties of impulse-free and regular. For this 
reason, the authors in article [19] proved that the system they 
discussed in the first stage has these two properties and then 
has asymptotic stability and robust stability. By providing 
these three properties simultaneously, it was proved that the 
system discussed in article [19] has asymptotic admissibility 
and robust admissibility. Moreover, the Lyapunov stability 
of fractional neural networks with Riemann-Liouville delay 
was studied in [25].  Stability and admissibility in singular 
and non-singular systems with non-fractional delay have also 
been discussed (see [5,6,18]). In addition to these studies, 
there are many books that researchers can benefit from. 
Examples include (see [7,20,21]) for singular systems and 
(see [10,14]) for fractional differential equations. 

This study, motivated by the above discussion and article [4] 
and references there in, is investigated the admissibility of a 
certain type of delay neutral fractional singular systems by 
the help of Lyapunov functionals, zero equations, model 
transformations and other some well-known inequalities. 
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Some numerical examples are presented to demonstrate the 
applicability of the proved results. 

2. Preliminaries  

In this paper motivated by the above discussion and article 
[4] and references there in, we define a fractional neutral 
singular system with constant and variable delays and 
nonlinear perturbation as:  
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for ],1,0(∈q  the system state ( ) ,nx t ∈ℜ
nnTERBA ×ℜ∈,,,,  are symmetric positive definite  

system matrices, the   matrix nnS ×ℜ∈
 

is singular and 
satisfied ,1, ≥≤= nnrrankS  with ,1|||| <A  the time 
variable delay )(tσ  is assumed to satisfy σσ ≤≤ )(0 t  
and ,)( µσ ≤t  the constant delays στ ,  are real positive 

numbers and  )];0,([ nC ℜ−∈ κϑ  with }.,max{ στκ =  
The nonlinear perturbation parameter (.)G  satisfying 
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where ba,   given any numbers. 
 
Before moving on to the details of our study, we would like 
to remind of some useful definitions and lemmas that should 
be known. 

 
Definition 2.1 ( [4] ). The Riemann-Liouville fractional 
integral and the derivation are defined as 
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Lemma 2.1 ( [4] ).   For ntx ℜ∈)(  and ,0>> qp  then 
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Lemma 2.2 ( [4] ).   Let ,)( ntx ℜ∈  be a vector of a 
differentiable function. For positive semi-definite matrix 

nn×ℜ∈Ν   and ,  ),1,0( 0ttq ≥∀∈∀  then 
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is satisfied. 

3. Admissibility 

We obtain sufficient conditions for the admissibility 
properties of the systems discussed in this section. We prove 
the regular, impulse-free, and stable states accepted as 
admissibility conditions in the first theorem. In the remaining 
four corollaries, we show that only the new systems defined 
by constructing new Lyapunov-Krasovskii functionals are 
stable, since regular and impulse-free states can be 
represented in a similar way. Therefore, we prove five 
sufficient conditions stating that these systems guarantee 
admissibility. 

 
If we define a new operator like 

)()()( τ−+=Ω tAxtSxt , then the system (1) can be 
rewritten as in the form below: 

 

∫
−

+−+−=Ω
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q
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Theorem 3.1.  We suppose that the following hypothesis is 
met:   

         
(H1)  Let ba,  be any numbers and ,0,0 >> στ  if 

there are symmetric matrices

),7,...,1 ( ,0 T =>= kKK kk  

),5,4,1 ( 0,W T
i =>= iWi  and any suitable dimensions 

matrices )3,2 (  =iWi  such that the following relationship 
is satisfied: 
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where  ε  is a positive number and Ι  is  identity matrix with 
appropriate dimension. 

Then the zero solution of system (1) is admissible. 

Proof.  The proof of Theorem 3.1 is divided into two steps. 
The first step deals with the properties impulse free and 
regularity. The second step is related to the stability property. 
Firstly, we can write from (5) that  
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Because of BW   ,5   positive definite symmetric matrices 

and  ,1, ≥≤= nnrrankS  there exist two regular 
matrices U  and L  such that 
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Pre- and post- multiplying (6) by TL   and  L  respectively,
then we obtain 
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here, .5444544 WBBW −−=∇  Because of  21 ,∇∇  and  

3∇  are unrelated to the discussion in proof. , their real 
expressions are omitted here. From here, we obtain 

.0544454 <−− WBBW Therefore, 4B  is regular. From 
this reason, the pair ),( BS  is regular and impulse free (see 
[21]). According to Dai  [7] and Q. Wu et al., [19]  the 
system (1) is regular and impulse free.  

Secondly, we prove that the system (1) is stable. For 

symmetric matrices ),7,...,1 ( ,0 T =>= kKK kk

)5,4,1 ( 0,W T
i =>= iWi and any suitable dimensions 

matrices ).3,2 (  =iWi  Let us define a new positive definite 
functional as: 
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In view of the fact that Lemma 2.1, Lemma 2.2 and Jhensen 
inequality Lemma (see [18]), by the time-derivative of )(tV
on the solution of system (1), we can get the following 
inequality as: 

)()()()())(()(2),( 221 ττ −−−+ΩΩ≤ ΤΤΤ txKtxtxKtxtDKtxtV q
tto


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)()()()()()( 433 txKtxtxKtxtxKtx ΤΤΤ +−−−+ τσσ

(8) 
We noting that 

From here, we can obtain 

(9) 

Additionally, from the nonlinear parameter (.)G condition 
given with (3), we get 

(10) 
where .0>ε  

Combining (8)-(10), we can have the below inequality as: 
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      here the matrix Θ  is defined with (5) and 

Because of  matrix inequality (5) and impulse free and 
regularity criteria are satisfied and ,0)( ≠Τ tχ then the 
neutral fractional singular system (1) is admissible. □ 
Further, we define the following fractional neutral singular 
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where  ε  is a positive number and Ι  is  identity matrix with 
appropriate dimension. 
 
Then the zero solution of system (11) is admissible.  

Proof. For symmetric matrices

),6,...,1 ( ,0 T =>= kKK kk  

)5,4,1 ( 0,W T
i =>= iWi  and any suitable dimensions 

matrices ).3,2 (  =iWi  Let us define a new positive definite 
functional as: 

 
 

In view of Theorem 3.1, we show that the admissibility 
condition (12) of system given with (11). □ 
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Then, the zero solution of system (13) is admissible. 
  
Proof. For symmetric matrices
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functional as: 

 
         

∫∫
−

Τ

−

ΤΤ− ++ΩΩ=
t

t

t

t

q
tto dssxKsxdssxKsxtKtDtV

στ

)()()()())()(()( 321
1

   

.)()()()()(
)(

54 ∫∫
−

Τ

−

Τ ++−+
t

tt

t

t

dssxKsxdssxKsxst
στ

τ   

 
In view of Theorem 3.1, we show that the admissibility 

condition (14) of system given with (13).  □ 
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Next, we define the following fractional neutral 
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Then the system (15) is admissible. 
  

Proof. For symmetric matrices
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In view of Theorem 3.1, we show that the admissibility 
condition (16) of system given with (15). □ 
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Then the system (17) is admissible.  
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Remark 3.1. As mentioned in the first section, which is 
introduction; this study was mainly inspired by some studies 
cited  references. However, since the systems discussed in 
this study are singular, it is a new study different from some 
of the studies cited in the references (see [4,11,18,22]) 
mentioned in the references, and it is clear that it is more 
difficult to achieve the goal. To overcome this difficulty, we 
benefited suitable Lyapunov-Krasovskii functionals and zero 
equations. Moreover, the Lyapunov-Krasovskii functionals 
used in the Study are new and obviously more 
comprehensive than their counterparts used in the literature 
(see [4,6,11,18,19,22]). 

4. Numerical applications 

In this section, we bring to the attention of the readers some 
examples, with their annotated solutions and graphics, 
showing that the theoretically sufficient conditions obtained 
in the previous section are applicable in practice. When the 
solutions of these examples are examined, it is clearly seen 
that the zero solutions of the systems in question are stable 
after a certain time interval. In addition, each example is 
support with the corresponding simulation result obtained 
with the help of MATLAB-Simulink. 

Example 4.1.  We define a fractional nonlinear neutral 
singular system as: 
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as follows: 

 
 

It is clear that all conditions of admissibility criteria for 
system (19) are satisfied. Therefore, the system (19) is 
admissible. Also, the graph showing the orbital behavior of 
the system (19) is as follows. 
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Figure 1.  Orbital behavior of the system (19). 

 
Example 4.2.  We define a fractional nonlinear neutral 
singular system as:  

(20) 

for  [ ]   ,)()()()( ],1,0( 321
Τ=∈ txtxtxtxq   

 
 

Solving the inequality (12), with the help of MATLAB 

software, when 

 

 
we have a set of parameters that provides admissibility of the 
system (20) that ,002.0=a

1  ,125.0cos25.0)(  ,5.0sin25.025.0)(0  ,2.0  ,005.0 =<=≤==≤+=≤== εµσσστ ttttb 

 
as follows: 

 
 
It is clear that all conditions of admissibility criteria for 
system (20) are satisfied. Therefore, the system (20) is 
admissible. Also, the graph showing the orbital behavior of 
the system (20) is as follows.   
     

 
Figure 2.  Orbital behavior of the system (20). 

 
Example 4.3.  We define a fractional neutral singular system 
as:  

)),(()()()]()([ ttTxtRxtBxtAxtSxD q
tto σστ −+−+−=−+          (21) 

for  [ ]   ,)()()()()( ],1,0( 4321
Τ=∈ txtxtxtxtxq   

Solving the inequality (14), with the help of MATLAB 

software, when 
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we have a set of parameters that provides admissibility of the 

system (21) that  
125.0cos25.0)(  ,5.0sin25.025.0)(0  ,2.0 <=≤==≤+=≤= µσσστ tttt   

as follows: 

 

 
 

It is clear that all conditions of admissibility criteria for 

system (21) are satisfied. Therefore, the system (21) is 

admissible. Also, the graph showing the orbital behavior of 

the system (21) is as follows. 

       

 
Figure 3.  Orbital behavior of the system (21). 

 
Example 4.4.  We define a fractional neutral singular system 
as:  

),()()]()([ στ −+−=−+ tRxtBxtAxtSxD q
tto      (22) 

for  

[ ]   ,)()()()()()( ],1,0( 54321
Τ=∈ txtxtxtxtxtxq

 

 

Solving the inequality (16), with the help of MATLAB 

software, when  ),0,1,1,1,1(diagS =  

 
we have a set of parameters that provides admissibility of the 

system (22) that 5.0  ,2.0 == στ  as follows: 

),3,5.0,85.0,095.0,2(
 ),02.0,02.8,8.7,8,98.7(

 ),5.17,5.6,7,98.6,95.6(

3

2

1

−−−=
−−−−−=

=

diagW
diagW
diagW

 

 ),878.0,2.0,14.0,15.0,1028.0(W
  ),2802.0,028.0,025.0,03.0,02.0(

5

4

diag
diagW

=
=

 

 ),00012.0,18.0,28.0,36.0,15.0(K
  ),00035.0,23.0,18.0,14.0,1.0(

2

1

diag
diagK

=
=

 

 ).0001.0,0012.0,0006.0,0008.0,0005.0(K
  ),0008.0,008.0,006.0,0063.0,0065.0(

4

3

diag
diagK

=
=

 It is clear that all conditions of admissibility criteria for 

system (22) are satisfied. Therefore, the system (22) is 

admissible. Also, the graph showing the orbital behavior of 

the system (22) is as follows. 

       

 
Figure 4.  Orbital behavior of the system (22). 

 
Example 4.5.  We define a fractional neutral singular system 
as:  
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),()()]()([ ττ −+−=−+ tRxtBxtAxtSxDq
tto   (23) 

for  

[ ]   ,)()()()()()()( ],1,0( 654321
Τ=∈ txtxtxtxtxtxtxq  

Solving the inequality (18), with the help of MATLAB 

software, when  ),0,1,1,1,1,1(diagS =

 ),1225.0,5.0,48.0,,45.0,44.0,43.0(
 ),26,12,10,8,15,25( 

diagR
diagB

=
=

  ),1725.0,04.0,03.0,02.0,25.0,28.0(diagA =  

we have a set of parameters that provides admissibility of the 

system (23) that 2.0=τ  as follows: 

 ),02.0,05.8,02.8,8.7,8,98.7(
 ),5.17,8.6,5.6,7,98.6,95.6(

2

1

−−−−−−=
=

diagW
diagW

 

),2802.0,035.0,028.0,025.0,03.0,02.0(
 ),3,75.0,5.0,85.0,095.0,2(

4

3

diagW
diagW

=
−−−=

 

 ),00035.0,25.0,23.0,18.0,14.0,1.0(
),878.0,18.0,2.0,14.0,15.0,1028.0(W

1

5

diagK
diag

=
=

 

).0001.0,00009,,0012.0,006.0,0008.0,0065.0(
 ),00012.0,23.0,18.0,28.0,36.0,15.0(K  

3

2

diagK
diag

=
=

 It is clear that all conditions of admissibility criteria for 

system (23) are satisfied. Therefore, the system (23) is 

admissible. Also, the graph showing the orbital behavior of 

the system (23) is as follows.  

      

 
Figure 5.  Orbital behavior of the system (23). 

5. Conclusions 

In this paper, we proposed new delay-dependent criteria for 
the admissibility of linear and nonlinear fractional singular 

systems with variable and constant delays. We used some 
useful lemmas and Lyapunov-Krasovskii functionals to 
obtain these proposed criteria. The numerical examples we 
present with graps at the end of the paper reveal the 
advantages and applicability of our results. 
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