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Abstract. Let λ = (λn) be a nondecreasing sequence of positive numbers
such that λn → ∞. A sequence (ξn) is called λ-bounded if

λn(ξn − α) = O(1)

with the limit lim
n→∞

ξn = α. In this work, we obtain several Tauberian re-

mainder theorems on λ-bounded sequences for the logarithmic summability
method with help of general logarithmic control modulo of the oscillatory be-

havior. Tauber conditions in our main results are on the generator sequence

and the general logarithmic control modulo.

1. Introduction

Let ξ = (ξn) be a sequence of real numbers. Throughout this work, the notation
of (ξn) = O(1) means that the sequence of (ξn) is bounded for large enough n.

The (C, 1) mean of (ξn) is defined by σ(1)
n (ξ) =

1

n+ 1

n∑
k=0

ξk and the logarithmic

mean of (ξn) is defined by ℓ(1)n (ξ) =
1

γn

n∑
k=0

ξk
k + 1

, where γn =

n∑
k=0

1

k + 1
∼ log n,

where for two sequences (un) and (vn) of positive numbers, we write un ∼ vn if

lim
n→∞

un

vn
= 1. A sequence (ξn) is said to be (C, 1) summable to a finite number α

if the limit

lim
n→∞

σ(1)
n (ξ) = α (1)
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exists and we say that a sequence (ξn) is logarithmic summable to a finite number
α, if

lim
n→∞

ℓ(1)n (ξ) = α (2)

[1]. It is well known that if a sequence (ξn) is convergent, then (1) and (2) are exist.
In other words, these two methods are regular methods. Also the existence of (1)
implies the existence of (2). However the converse implications are not always true.
For example the sequence (ξn) = (−1)n(2n+ 1) is neither ordinary convergent nor
(C, 1) convergent. But it is logarithmic convergent to 0.

For a sequence (ξn), we have the following identity:

ξn − ℓ(1)n (ξ) = v(0)n (∆ξ), (3)

where v(0)n (∆ξ) =
1

γn

n∑
k=1

γk−1(∆ξk). The identity (3) is called the logarithmic Kro-

necker identity and the sequence (v
(0)
n (∆ξ)) is called the generator sequence of (ξn).

For each integer k ≥ 1, ℓ
(k)
n (ξ) is defined by

ℓ(k)n (ξ) =
1

γn

n∑
t=0

ℓk−1
t (ξ)

t+ 1
, (4)

where ℓ
(0)
n (ξ) = ξn and ℓ

(1)
n (ξ) = ℓn(ξ).

If we get the logarithmic mean of the sequence of (v
(0)
n (∆ξ)), then we obtain

ℓ(1)n (v(0)(∆ξ)) =
1

γn

n∑
k=0

v
(0)
k (∆ξ)

k + 1
= v(1)n (∆ξ).

By getting the logarithmic mean of (v
(1)
n (∆ξ)), then we obtain

ℓn(v
(1)(∆ξ)) =

1

γn

n∑
k=0

v
(1)
k (∆ξ)

k + 1
= v(2)n (∆ξ).

Continuing in this way, we obtain the following sequence:

ℓn(v
(m−1)(∆ξ)) =

1

γn

n∑
k=0

v
(m−1)
k (∆ξ)

k + 1
= v(m)

n (∆ξ),

for m ≥ 1. Hence, all these given sequences can be written as follows:

v(m)
n (∆ξ) =


1
γn

n∑
k=0

v
(m−1)
k (∆ξ)

k + 1
, m ≥ 1

vn(∆ξ), m = 0.

For a sequence (ξn), classical logarithmic control modulo is defined by

ω(0)
n (ξ) = (n+ 1)γn−1∆ξn. (5)
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The general logarithmic control modulo of the oscillatory behavior of integer order
m ≥ 1 of a sequence (ξn) is defined by

ω(m)
n (ξ) = ω(m−1)

n (ξ)− ℓ(1)n (ω(m−1)(ξ)). (6)

Assume that λ = (λn) be a nondecreasing sequence of positive numbers such
that λn → ∞. A sequence (ξn) is called bounded with the rapidity (λn) if

λn(ξn − α) = O(1) (7)

with lim
n→∞

ξn = α. Shortly, we say that the sequence (ξn) is λ-bounded and the set

of all λ-bounded sequences is denoted by mλ.
Also a sequence (ξn) is called λ-bounded by logarithmic method of summability

if

λn(ℓ
(1)
n (ξ)− α) = O(1) (8)

with lim
n→∞

ℓ(1)n (ξ) = α. The set of all logarithmic λ-bounded sequences is denoted

by (ℓ,mλ).
Tauberian theory for the logarithmic method have been studied by various au-

thors. A number of authors such as Kwee [2] and Ishiguro [3–5] obtained some
Tauberian theorems for the logarithmic method and generalized some classical
Tauberian theorems to logaritmic method. Móricz [6] presented some classical
type Tauberian theorems for logarithmic method of sequences and established some
Tauberian theorems by introducing logarithmic summability method of integrals.

Later, Okur and Totur [7,8] introduced general logarithmic control modulo and
classical logarithmic control modulo for logarithmic method of integrals. And
they extanded Tuaberian theorems which are given for (C, 1) method. Sezer and
Çanak [9, 10] investigated new Tauberian conditions with help of general logarith-
mic control modulo for logarithmic method of sequences and proved some Theorems
for logarithmic method of power series.

On the other hand many researchers studied Tauberian remainder theorems for
some summability methods such as Kangro [11] and Tammeraid [12–14] after Kan-
gro’s work [15] in which the author introduced the concepts of Tauberian remiander
theorems by using summability with given rapidity λ. Meronen and Tammeraid [16]
presented some Tauberian remainder theorems for (C, 1) summability method from
a new perspective. In this work, they used the concept of general control modulo
which was defined in [17]. Later Sezer and Çanak [18,19] and Totur and Okur [20,21]
proved some results for weighted mean, Hölder and (C,α) summability methods.
They also benefited from the concept of general control modulo to obtain Tauberian
remainder theorems in these studies.

We aim in this paper to prove some Tauberian remainder theorems for the log-
arithmic summability method. Firstly, we prove 3 lemmas in section 2 and in
each lemma, the relationship between the different-order general logarithmic con-
trol modulo of a sequence and its different-order logarithmic means is given. After
that, the main theorems are presented in the next section. In the main theorems,
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we obtain λ-boundedness of a sequence from its logarithmic λ-boundedness by us-
ing conditions on generator sequence and general logarithmic control modulo of the
given sequence.

2. Auxilary Results

For the proofs of our main results, we require the following lemmas.

Lemma 1. The following equality is valid.

ω(1)
n (ξ) = ω(0)

n (ξ)− ξn + ℓ(1)n (ξ). (9)

Proof. Taking m = 1 in (6) and using (5), we get

ω(1)
n (ξ) = ω(0)

n (ξ)− ℓ(1)n (ω(0)(ξ))

= ω(0)
n (ξ)− 1

γn

n∑
k=0

(k + 1)γk−1∆ξk
k + 1

= ω(0)
n (ξ)− v(0)n (∆ξ).

Using (3) in the last equality, we obtain

ω(1)
n (ξ) = ω(0)

n (ξ)− ξn + ℓ(1)n (ξ).

□

Lemma 2. The following equality is valid.

ω(2)
n (ξ) = ω(0)

n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ). (10)

Proof. If we take m = 2 in (6), we obtain

ω(2)
n (ξ) = ω(1)

n (ξ)− ℓ(1)n (ω(1)(ξ)).

Using (9), we get

ω(2)
n (ξ) = ω(0)

n (ξ)− ξn + ℓ(1)n (ξ)− ℓ(1)n (ω(0)(ξ)− ξ + ℓ(1)(ξ))

= ω(0)
n (ξ)− ξn + ℓ(1)n (ξ)− 1

γn

n∑
k=0

1

k + 1
(ω

(0)
k (ξ)− ξk + ℓ

(1)
k (ξ))

From (4), we get

ω(2)
n (ξ) = ω(0)

n (ξ)− ξn + ℓ(1)n (ξ)− v(0)n (∆ξ) + ℓ(1)n (ξ)− ℓ(2)n (ξ).



GENERAL LOGARITHMIC CONTROL MODULO-TAUBERIAN REMAINDER THEOREMS395

By (3), we conclude that

ω(2)
n (ξ) = ω(0)

n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ).

□

Lemma 3. The following equality is valid.

ω(3)
n (ξ) = ω(0)

n (ξ)− 3ξn + 6ℓ(1)n (ξ)− 4ℓ(2)n (ξ) + ℓ(3)n (ξ). (11)

Proof. By taking m = 3 in (6), we have

ω(3)
n (ξ) = ω(2)

n (ξ)− ℓ(1)n (ω(2)(ξ)).

From (10), we obtain

ω(3)
n (ξ) = ω(0)

n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ)

−ℓ(1)n (ω(0)(ξ)− 2ξ + 3ℓ(1)(ξ)− ℓ(2)(ξ))

= ω(0)
n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ)

− 1

γn

n∑
k=0

1

k + 1
(ω

(0)
k (ξ)− 2ξk + 3ℓ

(1)
k (ξ)− ℓ

(2)
k (ξ)).

Now, using (4) in the last equality, we get

ω(3)
n (ξ) = ω(0)

n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ)

−v(0)n (∆ξ) + 2ℓ(1)n (ξ)− 3ℓ(2)n (ξ) + ℓ(3)n (ξ).

Finally, from definition of the logarithmic Kronecker identity, we have

ω(3)
n (ξ) = ω(0)

n (ξ)− 3ξn + 6ℓ(1)n (ξ)− 4ℓ(2)n (ξ) + ℓ(3)n (ξ).

□

3. Main Results

Theorem 1. Let ξ is λ-bounded by the (ℓ, 1) method. If

λnv
(0)
n (∆ξ) = O(1), (12)

then ξ is λ-bounded.

Proof. Because of ξ is λ-bounded by the (ℓ, 1) method, we have

λn

(
ℓ(1)n (ξ)− α

)
= O(1). (13)
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By the equality

λn (ξn − α) = λn

(
ℓ(1)n (ξ)− α+ ξn − ℓ(1)n (ξ)

)
,

we obtain

λn (ξn − α) = λn

(
ℓ(1)n (ξ)− α

)
+ λnv

(0)
n (∆ξ)

using (3). By combining (12) and (13) with the last equailty, we get

λn (ξn − α) = O(1).

So, ξ is λ-bounded and proof is completed. □

Theorem 2. Let ξ is λ-bounded by the (ℓ, 1) method. If

λnω
(0)
n (ξ) = O(1) (14)

and

λnω
(1)
n (ξ) = O(1), (15)

then ξ is λ-bounded.

Proof. Benefit from Lemma 1, we get the following equality:

λn (ξn − α) = λn

(
ℓ(1)n (ξ)− α− ω(1)

n (ξ) + ξn − ℓ(1)n (ξ) + ω(1)
n (ξ)

)
.

So, we conclude that

λn (ξn − α) = −λnω
(1)
n (ξ) + λn

(
ℓ(1)n (ξ)− α

)
+ λnω

(0)
n (ξ).

From λ-boundedness by the (ℓ, 1) method, we have (13). Taking (14) and (15) into
account we obtain

λn (ξn − α) = O(1).

This result completed the proof. □

Theorem 3. Let ξ is λ-bounded by the (ℓ, 1) method and the condition (14) is
satisfied. If

λnω
(2)
n (ξ) = O(1) (16)

and

λn

(
ℓ(2)n (ξ)− α

)
= O(1), (17)

then ξ is λ-bounded.

Proof. Using Lemma 2, we obtain the equality of

λn (ξn − α) = λn

(
−ω(2)

n (ξ) + ω(0)
n (ξ)− α− ξn − ℓ(2)n (ξ) + 3ℓ(1)n (ξ)

)
.

Therefore we get the following result:

2λn (ξn − α) = −λnω
(2)
n (ξ) + λnω

(0)
n (ξ)− λn

(
ℓ(2)n (ξ)− α

)
+ 3λn

(
ℓ(1)n (ξ)− α

)
.



GENERAL LOGARITHMIC CONTROL MODULO-TAUBERIAN REMAINDER THEOREMS397

Using (13), (14), (16) and (17) we get the result of

λn (ξn − α) = O(1).

It means that ξ is λ-bounded. □

Theorem 4. Let ξ is λ-bounded by the (ℓ, 1) method and the conditions (14) and
(17) are satisfied. If

λnω
(3)
n (ξ) = O(1) (18)

and

λn

(
ℓ(3)n (ξ)− α

)
= O(1), (19)

then ξ is λ-bounded.

Proof. With the Lemma 3 we obtain the following equality:

λn (ξn − α) = λn

(
−ω(3)

n (ξ) + ω(0)
n (ξ) + ℓ(3)n (ξ)− 4ℓ(2)n (ξ) + 6ℓ(1)n (ξ)− 2ξn − α

)
.

Then it follows that

3λn (ξn − α) = −λnω
(3)
n (ξ) + λnω

(0)
n (ξ) + λn

(
ℓ(3)n (ξ)− α

)
−4λn

(
ℓ(2)n (ξ)− α

)
+ 6λn

(
ℓ(1)n (ξ)− α

)
.

If we combine (13), (14), (17), (18) and (19), we have the equality

λn (ξn − α) = O(1).

Therefore we obtain that ξ is λ-bounded. □
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