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Abstract 

In this paper, the forced vibration analysis by a harmonically time-dependent force of an elastic 

plate covered rigidly by a rigid half-plane is given. The plate layer is subjected to bi-axial normal 

initial force, into lateral sides separately. Here, the preloading state is exactly static and 

homogeneous. To eliminate the disadvantage of such a nonlinear model, the problem formulation 

is modeled in terms of the fundamental consideration of the theory of linearized wave in elastic 

solids under a pre-loaded state (TLWESPS) in a plane-stress case. For this purpose, considering 

Hamilton’s principles, the system of the partial equations of motion and the boundary-contact 

conditions are found. Based on the virtual work and the fundamental theorem of the calculus of 

variation, the three-dimensional finite element method (3D-FEM) is used to understand the 

dynamic behavior of the plate. A numerical validation process is established based on error norm 

functions. Next, influences of certain problem parameters such as Young’s modulus, aspect ratio, 

thickness ratio, pre-loaded parameter, etc. on the frequency mode of the pre-stressed system are 

given. The numerical investigations show that higher values of Poisson's ratio promote the 

resonant mode of the plate while increasing the influence of the preloaded parameter on the 

dynamic response of the plate. 

 

Received: 24 Oct 2023 

Accepted: 05 Apr 2024  

 

 

Keywords 

Forced vibration 
Frequency response 

Initial stress 

Finite element method 

Resonance value 

 

 

 

1. INTRODUCTION 

 

A body is called elastic material if returning to its reference shape upon the removal of the applied forces. 

In fact, all the materials exhibit elastic behavior for sufficient small forces. It is well-known that 

mathematical investigations of the elastic response of a body constitute the theory of elasticity. The 

interdependence between the force of the system and the resultant stresses/deformations has been an 

important topic in several practical applications for a long time. The books by Barber [1] and Lurie [2] 

noted detailed information related to this topic. 

 

According to the open literature, the idea of modeling an interrelationship between the elastic force and 

deformation was put forward for the first time by the famous English scientist Robert Hooke in 1678. 

Nevertheless, a general mathematical consideration of the elasticity of theory was not created until the 

nineteenth century. After a development process that started with Navier's investigation of the general field 

equations and that continued with Cauchy's investigation of basic elasticity relations and the concept of 

stress, the theory of elasticity took shape with a long list of prominent scientists and mathematicians such 

as Bernoullis, Kelvin, Poisson, Lamé, Kirchhoff, Rayleigh, Love, Timoshenko, and so on. 
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Within the scope of the theory of elasticity, investigating relevant wave propagation problems in an elastic 

medium is very difficult due to many factors like material properties, the configuration of the problem, etc. 

A nonlinear state may appear in the problem. Therefore, to be able to make it possible to obtain the solution, 

certain theoretical attempts were done. At the beginning of the 20th century, the first important venture was 

done by Southwell [3], laying down the foundation of a new theoretical approach, which is termed "Three-

Dimensional Linearized Equations (TDLE)". The theory eliminates the nonlinear wave propagation issue 

in the medium. However, as mentioned above, additional problem conditions increase the degree of 

nonlinearity of the problem. Therefore, this theory must be adapted to new cases. Due to the mentioned 

reasons, Biezeno and Henky contributed to the adaptation process of TDLE [4]. To find a solution to 

different types of problems, TDLE has been updated under certain assumptions by several scientists, i.e., 

Biot [5], Neuber [6], Trefftz [7], and Green et al. [8], Guz [9], Zubov [10], Tiersten [11], Ogden [12], 

Akbarov and Guz [13], and Reddy [14]. 

 

In the 1950s, the importance of results related to the dynamic behavior of initially stressed (or pre-loaded) 

mediums was realized by mechanic scientists. However, the initial stress concept yields the nonlinear stress 

waves in the medium. Based on certain assumptions, the general nonlinear case can be linearized or 

simplified. This allows for the investigation of dynamic problems for pre-loaded bodies. In particular, there 

are two different approaches for identifying the assumptions, i.e., (i) approximate approach and (ii) exact 

approach. The first one is based on the reduction of dimension under the Bernoulli, Kirchhoff–Love, and 

Timoshenko hypotheses; namely, in this case, three-dimensional problems turn into two-dimensional ones 

and two-dimensional ones to one-dimensional ones. To be clear, although the approximate approaches ease 

the solution process, the results can be meaningless, both qualitatively and quantitatively. For example, the 

near-surface dynamic behavior of the pre-loaded medium cannot be analyzed. Hence, the exact approach 

may be the most appropriate preference and is termed the theory of linearized wave in elastic solids under 

a pre-loaded state (TLWESPS). It should be stated that the fundamental principles of TLWESPS were 

created by Guz [15]. By the way, the investigations of TLWESPS can also be classified into two groups. 

While the papers in the first group investigate wave propagations, the ones in the second group deal with 

stress distributions in the medium. Akbarov presented a wide investigation related to this theory and its 

modifications [16]. 

 

Due to applications of the concept of "initial stress" or "pre-load", there are many papers in the open 

literature. Here, a brief survey is presented for TLWESPS. Kepçeler studied torsional wave dispersion 

through the imperfect interface of an elastic bi-layered cylinder that is initially stressed into a thickness 

direction [17]. Zamanov and Agasiyev solved the Lamb-type problem in a pre-stressed system involving 

three-layered compressible elastic materials with infinite horizontal lengths [18]. Eröz presented a vibration 

analysis for a pre-loaded elastic plate subjected to a timely harmonic loading, standing on a rigid half-plane 

[19]. Akbarov et al. investigated the influence of incomplete contact interaction on the dynamic behavior 

of the two-layered plate with pre-load under a perpendicular dynamic force [20]. Hu et al. derived 

dispersion relations for axisymmetric waves in a circular cylindrical pipe that is initially stressed into a 

lateral surface [21]. Ilhan and Koç reported their results on the effect of poling direction on wave 

propagation in a piezoelectric slab standing on a piezoelectric half-plane [22]. Kurt et al. analyzed near-

surface wave propagation in a pre-stressed elastic strip resting on a pre-loaded piezoelectric half-plane [23]. 

Yeşil solved forced and natural vibration problems of a pre-loaded three-dimensional orthotropic slab 

involving two neighboring cylindrical cavities [24]. Daşdemir modeled the dynamic behavior of a pre-

loaded piezoelectric strip with finite length exposed to a harmonic force resting on a rigid half plane [25]. 

Daşdemir simulated finite element analysis of a system of two pre-loaded elastic layers with finite lengths 

subjected to a point-wise dynamic force, standing on a rigid ground [26]. Selim derived the dispersion 

relationship of TWs in a pre-loaded single-walled carbon nanotube with surface irregularity within the 

scope of Flügge shell theory [27]. Babych and Glukhov investigated the effect of a moving force on the 

dynamic response of a pre-loaded compounded plate [28]. Mandi et al. studied torsional wave propagation 

in a pre-loaded stratified structure with transversely isotropic, porous layer, inhomogeneous medium, and 

visco-elastic semi-infinite medium [29]. Bagirov considered the mechanical problem in the axisymmetric 

waves propagating by the contacting of the longitudinal cuts in a cylinder [30]. Kumawat et al. discussed 

the torsional wave in a pre-loaded compounded cylinder made of imperfectly bonded Steel, Aluminum, and 

Bronze [31]. Daşdemir analyzed the dynamic response of a pre-loaded piezoelectric slab that can be 
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polarized in various axial directions and that is under a harmonic force [32]. Veliyev and Ipek investigated 

the dispersion of axisymmetric quasi-Scholte waves in the initially nonhomogeneous loaded hollow 

cylinder including an intrinsic compressible inviscid fluid [33]. Dehghanian et al. analyzed wave 

propagation analysis of pre-loaded incompressible hyperelastic multi-layered plates in terms of the first-

order shear deformation plate theory [34]. 

 

In [35], Daşdemir and Eröz started a discussion to be able to understand the dynamic reaction of a three-

dimensional slab with pre-loads under a perpendicular force, based on a rigid half-plane. However, the 

mentioned paper contains a limited investigation of the problem under consideration. For this reason, it 

would be important to search for a further numerical investigation related to a finite dimensional pre-

stressed elastic system, i.e., in particular, to highlight the frequency response of the problem. A detailed 

mathematical model is created and the equations of motion are presented, in addition to boundary-contact 

terms. In the context of the virtual work principle and the calculus of variation, a three-dimensional finite 

element model is established for solving the resultant problem. Following, the outcomes of the paper are 

presented for the effects of Young’s modulus, thickness ratio, aspect ratio, and initial stress parameter on 

the problem. 

 

The current study is split into sub-sections to present the content as clear guidance as follows. Section 2 

displays the structure of the problem, including partial differential equations and the respective boundary-

contact terms, while section 3 models the solution procedure. The first part of section 4 gives the validation 

of the presented model while the rest part displays the numerical results. Finally, the important findings are 

encapsulated in the conclusion part.  

 

2. PROBLEM FORMULATION 

 

A three-dimensional elastic plate, whose architecture can be observed in Figure 1, with the dimension of 

2 2a b h   is considered in the current paper. According to the geometrical configuration, the volume and 

outward surfaces of the plate are denoted by D  and S . To be clear, they are defined as follows:  

 

( ) 1 2 3 1 2 3, , :0 2 , 0, 0 2D x x x x a h x x b=   −       (1) 

 

1 3 1 3 2 2
1 2 3 4 5 62 2 0 0 0x a x b x x x x h

S S S S S S S
= = = = = =−

=   (2) 

 

where ix  is the Cartesian coordinate component, which coincides with the Lagrangian coordinate 

component ix . It should be noted that the origin point is located to the left-front corner of the free surface. 

 

 
Figure 1. Geometry of the problem 
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The production of the plate can be summarized as follows. First, the plate is made of isotropic, 

homogeneous, and moderately elastic materials in the shape of a rectangular prism. The resultant body is 

caused by a normal force in a horizontal direction, and then the same process is repeated for other horizontal 

direction. This yields a pre-load case in the medium. Note that the applied force may be whether tension or 

compression. On the other hand, there are two assumptions for this process: (i) the normal forces are strictly 

static and homogeneous, and (ii) the amplitudes of the dynamic perturbations are considerably smaller than 

those of the pre-deformations. In this case, our investigation can be conducted with TLWESPS, eliminating 

nonlinearity, and thus, the initial stress case can be defined as follows: 

 
0

11 11q = , 
0

33 33q = , and 0

ij ijq =  for otherwise  (3) 

 

where 11q  and 33q  are a constant, the top index “0” represents the pre-load case, and , 1,2,3i j = .  

 

Following this, the plate is put forward to a rigid half-plane and then is affected by a dynamic force with a 

harmonic variable of time t  with frequency   such that 
i te 

. In this case, all the problem functions, i.e., 

displacement, strain, and stress components, can be clarified to harmonic and amplitude parts. In addition, 

we can utilize a transformation rule to study the problem in normalized coordinates, namely /i ix x h= . For 

simplicity, we neglect the upper dashes and overbars. As a result, the equations of motion are given as 

follows [15]:  

 
2 2

, , 0ij j kj i jk iq u h u  + + =   (4) 

 

where ij  and iu  are stress and displacement components,   is the mass density, the subscripts after a 

comma denote the coordinate derivative, and repeated indices imply the conventional summation rule. In 

addition, the strain-displacement relation between the stresses and strains can be defined as 
 
=S CE and =S LU   (5) 

 

where 

 

 11 22 33 23 13 12

T
     =S ,  11 22 33 23 13 122 2 2

T
     =E ,  1 2 3

T
u u u=U  

 

1
0 0 0

1 2 1 2 1 2

1
0 0 0

1 2 1 2 1 2

1
0 0 0

1 2 1 2 1 2

1 1
0 0 0 0 0

2

1
0 0 0 0 0

2

1
0 0 0 0 0

2

E

  

  

  

  

  

  



− 
 − − −
 

− 
 − − −
 

− 
 − − −

=  +
 
 
 
 
 
 
 
 

C  and 

1 3 2

2 3 1

3 2 1

0 0 0

0 0 0

0 0 0

T

x x x

x x x

x x x

   
 
   
   

=  
   

   
 

    

L  

 

where E  is the Young’s modulus,   is the Poisson’s ratio, ij  is the strain component, and the letter “T ” 

denotes transpose operator. 

 

The boundary-contact conditions for the current situation are follows: 
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I. Dynamic force conditions 

 

2
21 0

0
x


=
= , 

2

*

22 0 ox
p 

=
= − , 

2
23 0

0
x


=
= ,   (6) 

 

II. Robin boundary conditions at the lateral sides 

 

( )
1

1 11 ,1
0,2

0i i
x a

q u
=

+ = , ( )
3

3 33 ,3
0,2

0i i
x b

q u
=

+ =   (7) 

 

III. Rigid foundation conditions 

 

2 1i x
u

=−
  (8) 

 

where 0p  is the amplitude of the external loading and 
*  is the Dirac’s delta-function such that 

   ( )2 2*

1 3x a x b = − + − . 

 

3. FINITE ELEMENT PROCEDURE 

 

In this section, a solution method to the problem is developed by employing the finite element method since 

the plate under consideration has finite lengths in each axial direction. However, it should be noted that a 

big data can be obtained due to the nature of the method. To do this, we first construct a weak form for the 

current analysis. Let us consider the virtual displacement function V that satisfies the same identities with 

the principal displacement vector U . If multiplying the system of equations in Equation (4) with the virtual 

displacement function and integrating all the resultant statements over the problem volume, we obtain  

 

( ) ( ) ( )0 2 2 0 0 2 2

, ,
0 T T T T T T

vj j
D D D

h dD dD h dD    = + + = + − + +
        V S S E V U V S V S E E S S E V U  (9) 

 

where the subscript " v " denotes terms related to the virtual functions. Next, using the famous Ostrogradsky 

theorem yields 

 

( ) ( ) ( )2 2 0 0 cos ,T T T T

v j

D D S

h dD dD x dS    − + = +
     V U E S S E V S V S E n  (10) 

 

where n  is the unit normalized vector and ( )cos , ixn  is the direction cosine. Considering the surfaces of 

the volume in Equation (2) and the boundary-contact terms in Equations (6)-(8), we get 

 

( )
5

2 2 0

5 0T T T

v

D D S

h dD dD dS  − + − =
   V U E S S E V f  (11) 

 

where f  is the force. Equation (11) is the weak form of our problem. According to Hamilton’s principle 

and the virtual work principle [36], we can write 

 

( )
5

2 2 0

50 T T T

D D S

h dV dD dS    = − + −
   U U E S S E U f  

 

and from Equation (5),  
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( )

( ) ( )( ) ( )

5

5

2 2 0

5

2 2 0

5

0

1 1

2 2

T T T

D D S

T T T

D D S

h dV dD dS

h dV dD dS

   

   

 = − + −
 

 
= − + − 

 

  

  

U U E C S E U f

U U E C S E U f

 

 

Consequently, we obtain 

 

 ( )
5

2 2 0

5

1
0

2

T T T

D S

h C dD dS 
 

 = − + − 
  

 
 U U S Σ S U f  (12) 

 

which is the variational form of the problem. From Equation (12), our problem can be organized as a total 

potential functional as follows: 

 

( )2 0  − − =Κ P M   (13) 

 

where 

 

21

2

T

D

h dD= Κ U U , 

5

5

T

S

dS= M U f , and  ( )01

2

T

D

C dD = +
 P S Σ S  

 

Here, Κ  is the kinetic energy, P  is the potential energy, and M  is the force energy, respectively. 

 

For our solution procedure, we split the volume of the plate into the finite number of elements. Let hD  be 

the volume of a brick element mesh, i.e., hD D , 
1 2h hD D = , and hD D= . By the way, there are 

three degrees of freedom per element, i.e., 1u , 2u , and 3u . In particular, we consider the eight-noded 

isoparametric brick element. Figure 2 displays a geometrical configuration of a typical finite element. In 

this case, we can investigate the solution to problem in terms of the nodal displacements and their nodal 

virtual ones as follows: 

 
h eh=U ΝU , 

h eh =U Ν U ,    1 2 3

T Teh
ui i i iu u u u= =U ,  1 2 8N N N=Ν  and i iN n I=  (14) 

 

where uiu  is the nodal displacement components, in  is the linear basis function at the thi node, I  is the 

identity matrix, N  is the shape function matrices of order 3 24 , respectively. One can find the list of the 

shape functions in the monograph by Chandrupatla and Belegundu [37]. Further, the strain vector 
h

Ε  can 

be written in term of the nodal displacement vector 
h

U as 

 
h eh eh= =S LΝU BU   (15) 

 

 1 2 8B B B=B ,  

1 3 2

2 3 1

3 2 1

0 0 0

0 0 0

0 0 0

T

i i i

i i i
i

i i i

n n n

x x x

n n n
B

x x x

n n n

x x x

   
 
   
   

=  
   

   
 

    

. 
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In order to obtain comfortably a solution to the problem, we can compute all the equations in the normalized 

coordinates ( ), ,r s t , instead of the local coordinates ( )1 2 3, ,e e ex x x . In this case, we can write 

  

( )
8

1

, ,e e

i i

i

N p r s
=

=x x , 1 2 3

T
e e e e =  x x x x , and 1 2 3

T
e e e e

i i i i
 =  x x x x  

 

with the Jacobean matrix 

 
8 8 8

1 2 3

1 1 1

1 2 38 8 8

1 2 3 1 2 3

1 1 1

1 2 38 8 8

1 2 3

1 1 1

e e ei i i
i i i

i i i e e e

p i p i p i

e e e e e ei i i
i i i r i r i r i

i i i e e

s i s i s i

e e ei i i
i i i

i i i

N N N

p p p

N N N

r r r

N N N

s s s

= = =

= = =

= = =

   
   
 
   

= = 
   

   
 

   

  

  

  

x x x

D x D x D x

J x x x D x D x D x

D x D x D x

x x x

e

 
 
 
 
 

, 81 2

v

NN N

v v v

  
=     

D . 

 

 
Figure 2. A typical finite element and the order of nodes 

 

Note that the determinant of the matrix J  is positive every time due to the smooth shape of the finite 

element. We can, therefore, move the considered values from one coordinate system to other using the 

relation 

 

1 2 3

1
T T

x x x p r s

−   =   D D D J D D D . 

 

With these explanations, we can re-write Equation (12) as follows: 

 

( ) ( ) ( )
5

2

5

1
0

2

T T T
eh e eh eh e eh eh e

SD

dD dS 
 

 − − = 
   

 
 U M U U K U J U F J  (16) 

 

where 

 
2e Th=M Ν Ν , ( )0e T= +K B C S B , and 

e T=F Ν f .  (17) 

 

Here, e
K  is the local stiffness matrix, e

M  is the local mass matrix, and e
F  is the local force vector. Further, 

if Equation (16) is re-organized according to the coefficients of 
eh

U , we get the following system of 

equations: 
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( )2e e eh e− =K M U F   (18) 

 

where 

 

( )0e T

D

dD= +K B C S B J , 
2e T

D

h dD= M Ν Ν J , and 

5

5

e T

S

dS= F Ν f J . (19) 

 

As a result, we obtain the standard solution to the problem over the considered finite element. Using an 

appropriate transformation from local node number to global one, the local solution can be globalized as 

follows: 

 

( )2− =K M U F   (20) 

 

where K  and M are the global stiffness and mass matrices, U  and F  are the global displacement and 

force vector, respectively. When solving Equation (20), the values of the stress components over each node 

are obtained by employing Hook’s relations. 

 

4. NUMERICAL RESULTS  

 

The dynamic response of the elastic three-dimensional plate based on a rigid foundation under a time-

harmonic force is numerically discussed in this section. To this end, introduce the notations 

 

h





 = , 
ij

ij

q



= , 

a

b
=a , and 1

2

h

a
=h   (21) 

 

where   is the dimensionless frequency parameter,   is the initial stress parameter, a  is the aspect ratio, 

and h  is the thickness ratio, respectively. To obtain general findings, we assume that 0 = , 11 33  = =

, 0 = , 1=a , 0.2=h , and 0.33 = , where   is the Poisson’s ratio. 

 

First of all, it is necessary to prove the convergence of the created algorithm. To do this, define the following 

relative error functions: 

 

max i
i

x x
 
= , 

1 1i

i

x x= , and 
2

0 0i

i

x x=  . 

 

 
Figure 3. Distributions of error functions for various number of meshes 
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Figure 3 provides a convergence analysis for our numerical results according to the above three norm 

functions. According to the general motivation of the finite element method, as the mesh number over the 

problem domain increases, the obtained numerical results must improve. The error graphs establish the 

predictions. It can be seen that as the number of finite elements increases, the errors converge to zero 

rapidly. In fact, it can be seen from the curves of the error functions that this convergence is quadratic. This 

means that even with a small increase in the number of finite elements, one can achieve higher accuracy. 

This indicates that the PC algorithm has been validated. 
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(a) (b) 

  
(c) (d)  

Figure 4. Three-dimensional distributions of 22 0/h p  under (a) 0.1=h , (b) 0.2=h , (c) 0.3=h , (d) 

0.4=h , and (e) Color scale 

 

Figure 4 supplies three-dimensional distributions of the stress 22 0/h p  on the plane 2 / 1x h = −  for the 

cases where 0.1=h  (Figure 4a), 0.2=h  (Figure 4b), 0.3=h  (Figure 4c), and 0.4=h  (Figure 4d). It is 

seen that with increasing the ratio h , the stress 22 0/h p  decrease. We conclude from the graphs that the 

stress distributions create three zones, namely, the reddish zone, the bluish zone, and the purplish zone. 

These may be called the main zone, the moderate zone, and the free zone, respectively. To be clear, these 

regions can be represented by 

 

• ( ) ( )
2 2 2

1 3 1/ 2.5 / 2.5x h x h r− + −    

• ( ) ( )
2 22 2

1 1 3 2/ 2.5 / 2.5r x h x h r − + −   

• ( ) ( )
2 22

2 1 3/ 2.5 / 2.5r x h x h − + − . 
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In the main zone, the stress reaches relatively higher values. While the situation becomes calmed down in 

the moderate zone, the stress state vanishes almost in the free zone. These findings can be observed clearly 

from the color scale rod. In particular, for the case where 0.4=h , the stress distribution is unstable and 

there are symmetric additional four. It is well-known from open literature that sometimes, there is a 

parametric resonance in the system for a specific value of the problem parameters. In this case, an unstable 

dynamic response of the system may be observed. This is indeed the case in Figure 4d. Additionally, it 

follows that the distribution of graph (b) coincides exactly with Figure 3.a of the paper in [35]. On the other 

hand, according to Equation (7), the stress values at the lateral sides of the plate converge to zero in the loss 

of the initial stress case. Taking the graphs into account, it follows that this speculation is valid, confirming 

the PC algorithm once again. 

 

  

 
(e) 

(a) (b) 

  
(c) (d)  

Figure 5. Three-dimensional distributions of 22 0/h p  under (a) 10=a , (b) 2=a , (c) 0.2=a , (d) 

0.1=a , and (e) Color scale 

 

Figure 5 provides the dynamic behavior of the normal stress 22 0/h p  on the plane 2 / 1x h = −  for certain 

values of the aspect ratio a , i.e., 10=a  (Figure 5a), 2=a  (Figure 5b), 0.2=a  (Figure 5c), and 0.1=a  

(Figure 5d). Here, the discussion will be held with Figure 4b ( 0.2=h  and 1=a ) together. As the aspect 

ratio a  increases, 22 0/h p  decrease. For the case where 1=a , the stress distributions look like a circular 

shape, but in other cases, i.e., for 1a , the distributions look like an ellipse shape. The main axis of the 

ellipse lies on the parallel line to the shorter side, at the center of the plane. According to the graphs, the 

main zone engages a certain area in each graph. But there is a strange case in Figure 5a.  For certain values 

of *a  such that *a a , the stress waves quickly hit the lateral sides of the plate because the size of the 

main zone covered by the stress waves is smaller than the surface of the plate. The regions where the stress 

takes relatively high values due to the impact occur on the side surfaces where the short edge is located. To 

be clear, the values of *a can be detected from the graphs. The same comments can be made partially for 

Figure 5b. 
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Figure 6 displays the influence of the parameter   on the dynamic reaction of 22 0/h p  on the plane 

2 / 1x h = − , i.e., 0.06 = −  (Figure 6a), 0.03 = −  (Figure 6b), 0.03 =  (Figure 6c), and 0.06 =  (Figure 

6d). It should be noted that we consider Figure 4b ( 0.2=h  and 0 = ). By the way, these values are not 

random. The mechanical experiments in the literature prove that the initial stress values change over the 

range 0.8 0.8−   . Here, while the positive sign of   denotes the initial stretching, the negative one 

implies the initial compressing. According to the graphs, an increase in the value of the initial compressing 

yields an increase in the stress value, but an increase in the value of the initial stretching leads to a decrease 

in the stress value in the medium. More precisely, the amplitude of the main zone decreases in accordance 

with the initial stress parameter  . However, the effect mentioned is somewhat limited. It is seen that the 

moderate and free zones are unaffected by the initial stress state. 

 

  

 
(e) 

(a) (b) 

  
(c) (d)  

Figure 6. Three-dimensional distributions of 22 0/h p  under (a) 0.06 = − , (b) 0.03 = − , (c) 0.03 = , 

(d) 0.06 = , and (e) Color scale 

 

Figure 7 shows three-dimensional distributions of the stress 22 0/h p  on the plane 2 / 1x h = −  for certain 

values of the Poisson’s ratio  , i.e., 0.11 =  (Figure 7a), 0.22 =  (Figure 7b), 0.33 =  (Figure 7c), and 

0.44 =  (Figure 7d). The Poisson's ratio of linear, homogeneous, and isotropic materials changes over 

1.0 0.5−   since their Young's modulus, the shear modulus, and the bulk modulus must have positive 

values. It is established from the graphs that the absolute values of the normal stress 22 0/h p  decrease 

with the ratio  . Moreover, the main zone disappears with increasing the ratio   and integrates 

immediately with the moderate zone. The results prove that the ratio   is an important factor for the 

dynamical behavior of the plate in response to the external force. 
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Considering all the graphs in Figures 4 to 7, while there is a direct link between 22 0/h p  and h ,  a  or 

 , there is an indirect link between 22 0/h p  and  . On the other hand, the stress 22 0/h p  reaches its 

unique maximal value at the middle point of the surface. 

 

Above, we investigated three-dimensional graphs of the stress 22 0/h p  along the plate's bottom surface, 

but our primary purpose is to focus on the frequency response of the elastic plate under consideration. For 

this purpose, the next discussions will be carried out on the middle point of the bottom surface. 

 

  

 
(e) 

(a) (b) 

  
(c) (d)  

Figure 7. Three-dimensional distributions of 22 0/h p  under (a) 0.11 = , (b) 0.22 = , (c) 0.33 = , 

(d) 0.44 = , and (e) Color scale 

 

Figure 8 provides some important results to explain the relationships between 22 0/h p  and   for 

particular values of the ratio h . The absolute values of the stress 22 0/h p  increase with  . To be clear, 

the dependency between 22 0/h p  and   is non-monotone. The graphs prove that there are some points 

where the stress 22 0/h p  has maximal values versus  . Denote it by *  and it is called the resonance 

value. An increase in the values of the thickness ratio h  leads to a decrease in the values of * . To be 

clear, the ratio h  encourages the resonance mode of the plate. This means that the ratio h  plays an 

important role in the dynamic reaction of the pre-stressed plate, not only in a quantitatively but also in a 

qualitatively. On the other hand, the number of local maximal values of the stress 22 0/h p  versus   

increases with the ratio h , too. From these results, one can say that the thickness ratio h  increases the 

stability of the system. More precisely, a thicker plate means a more stable system. 
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Figure 8. Dependency between 22 0/h p  and   for certain values of h  

 

 
Figure 9. Dependency between 22 0/h p  and   for certain values of   

 

 
Figure 10. Dependency between 22 0/h p  and   for certain values of h  

 

Figure 9 gives attention to the effect of the ratio    on the frequency mode of the plate exposed to the time-

harmonic force. It is shown from the graphs that the ratio    has a serious effect on the mentioned response. 
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As the ratio   increases, the values of *  decrease. This means that the ratio   exceeds that mode. 

Besides, the number of local maximal values of the stress 22 0/h p  increases as the ratio   decreases. The 

influence of the ratio is important in the frequency response of the plate, qualitatively and quantitatively. 

 

Figure 10 demonstrates the effect of the thickness ratio h  on the relationship between 22 0/h p  and  . 

The graphs show that the mentioned dependency is linear. As in Figure 6, while the initial stretching 

parameter   causes a decrease in the value of the stress 22 0/h p , the initial compressing parameter   

leads to, on the contrary, an increase. In consequence, the results are self-consistent, validating our 

algorithm again. The slopes of the graphs decrease as the ratio h  increases. This means that the influence 

of the parameter   on the dynamic response of the stress 22 0/h p  decreases as the ratio h  increases. For 

the thinner plate, more efficiency is obtained from the initial stress in the medium. 

 

 
 

Figure 11. Dependency between 22 0/h p  and   for certain values of   

 

Figure 11 presents the influence of the ratio   on the relationship between 22 0/h p  and  . It follows 

from the graphs that the absolute values of the stress 22 0/h p  increase with the ratio   and this effect is 

quite noticeable for 0.3  . The slopes of the graphs decrease with the ratio  , in contrary to the one of 

the ratio h . As a result, we conclude that increasing the ratio   yields the influence of the parameter   on 

the stress 22 0/h p  to increase. 

 

5. CONCLUSIONS 

 

The present problem is concerned with forced vibration analysis of a two-axially pre-loaded plate exposed 

to a time-harmonic force, covered by a rigid half-plane. A mathematical model is given according to the 

theory of linearized wave in elastic solids under a pre-loaded state (TLWESPS) and a solution procedure is 

proposed based on the three-dimensional finite element model. Some numerical results are discussed. Some 

of the inferences are summarized as follows: 

 

• While increasing the thickness ratio causes to decrease the resonance values; 

• The effect of initial stress parameter on the dynamic response of the plate increases with Poisson’s 

ratio; 

• Three stress zones occur at the bottom surface of the plate generally; 

• An increase in the value of Poisson’s ratio exceeds the resonance value of the plate;  

• As the thickness ratio decreases, the effect of initial stress parameter on the dynamic response of the 

plate. 
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NOMENCLATURE 

 

a  Width of the plate P  Potential energy 

a  Aspect ratio ijq  Pre-load parameter 

b  Depth of the plate S  Outward surfaces of the plate 

D  Volume of the plate S  Stress vector 

E  Young’s modulus t  Time parameter 

E  Strain vector iu  Displacement component 
e

F  Local force vector eh
U  Local displacement vector 

F  Global force vector U  Global displacement vector 

f  Force vector V  Virtual displacement function 

h  Height of the plate ix  Cartesian coordinate component 

h  Thickness ratio ix  Lagrangian coordinate component 

i  Complex unit ix  Normalized coordinate component 

J  Jacobean matrix e
x  Nodal coordinate vector 

Κ  Kinetic energy *  Dirac’s delta-function 

e
K  Local stiffness matrix ij  Strain component 

K  Global stiffness matrix ij  Initial stress parameter 

L  Gradient matrix   Poisson’s ratio 

M  Force energy   Mass density 
e

M  Local mass matrix ij  Stress component 

M  Mass matrix   Frequency of external force 

n  Unit normalized vector   Dimensionless frequency parameter 

0p  Value of the point-located force   
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