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Introduction and Preliminaries 

All rings would be with identity and associative in this article. Every module is considered a unitary left 

module. Let 𝑊 and 𝑆 be a module and a ring meeting these requirements, respectively. The notation 

𝑇 ≤ 𝑊 will imply that 𝑇 is a submodule of  𝑊 and the impression 𝑇 ≤⊕ 𝑊 means that  𝑇 is a direct 

summand of 𝑊. A submodule 𝑇 of  𝑊 is referred to as the small module in 𝑊,
 
if 𝑊 ≠ 𝑇 + 𝑇1 for any 

proper submodule 𝑇1 of  𝑊 and indicated by 𝑇 ≪ 𝑊. The sum of its small submodules will be shown 

by 𝑅𝑎𝑑(𝑊). A submodule 𝑇 of  𝑊 is called as supplement of 𝑃 in 𝑊, if it is a minimal element of the 
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Abstract 

In this study, we clarify 𝑚𝑔𝑠⊕ −modules that are the generalization of ⊕
−cofinitely radical supplemented modules and look at some of their basic 

characteristics. Additionally, we determine the prerequisites for the factor 

module of an arbitrary 𝑚𝑔𝑠⊕ −module to be a 𝑚𝑔𝑠⊕ −module and 

characterized semiperfect rings with the aid of this module. 
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set {𝑌 ≤ 𝑊|𝑊 = 𝑃 + 𝑌} which is equivalent to 𝑊 = 𝑃 + 𝑇 and  𝑃 ∩ 𝑇 ≪ 𝑇. If each submodule of 𝑊 

has a supplement in 𝑊,  then 𝑊 is named supplemented, [1]. Let  𝑊 be a module and  𝑇 ≤ 𝑊. 𝑇 is called 

a cofinite submodule of  𝑊, if  𝑊 𝑇⁄   is finitely generated. Cofinite submodules are one of the interesting 

concept of module theory, and they have various properties and applications in the study of algebraic 

structures. There are many different studies related with these modules in the literature [2, 3]. If each 

submodule of  𝑊 has a supplement that is a direct summand of 𝑊, then 𝑊 is named ⊕ −supplemented 

[4]. Otherwise, if each cofinite submodule of  𝑊 has a supplement which is a direct summand of  𝑊, 

then  𝑊 is called cofinitely ⊕ −supplemented [5]. According to [6], a module 𝑊 is called radical 

supplemented (Rad-supplemented) when each submodule of 𝑊 has a Rad-supplement in 𝑊. In other 

words, for any submodule  𝑇 of 𝑊, a submodule 𝑃 of  𝑊is named a Rad-supplemented of the submodule 

𝑇 in 𝑊 if 𝑊 = 𝑃 + 𝑇 and 𝑃 ∩ 𝑇 ⊆ 𝑅𝑎𝑑(𝑃). In reference [7]; radical supplement and radical 

supplemented modules are called as generalized supplement and generalized supplemented modules, 

respectively. By generalizing this definition, cofinite radical supplemented modules are defined. In [8], 

a module 𝑊is called cofinitely radical supplemented (cofinitely Rad-supplemented), if each cofinite 

submodule of 𝑊 has a Rad-supplement in 𝑊. Besides these, ⊕ −radical supplemented modules (⊕

−Rad-supplemented) are studied and defined in [9, 10]. Meanwhile, ⊕ −cofinitely radical 

supplemented modules introduced and examined in [11]. According to this, if each (cofinite) submodule 

of a module has a Rad-supplement which is a direct summand of itself, then it is called ⊕ −(cofinitely) 

radical supplemented. This definition is given as generalized ⊕ −cofinitely supplemented in [12]. In 

[11], 𝑐𝑔𝑠⊕ −module notation is used briefly instead of ⊕ −cofinitely radical supplemented modules 

and basic fundamental aspects of these modules are examined in there. In this article, we studied another 

version of 𝑐𝑔𝑠⊕ −module by using the concept of “maximal submodule” instead of “cofinite 

submodule”. A maximal submodule of  𝑊 is a submodule 𝑇 where there are no other submodules of 

 𝑊 that properly contains 𝑇, except for 𝑊 itself. In other words, if  𝑇 is maximal, there are no larger 

submodules contained in 𝑊 that properly extend 𝑇. Equivalently, for 𝑇, being a maximal submodule of 

 𝑊 implies that for any submodule 𝐾 of 𝑊,either 𝐾 is equal to 𝑇 or 𝐾 is equal to 𝑊. Also, it is well 

known that each maximal submodule is cofinite. A module is called a 𝑚𝑔𝑠⊕ −module, if each maximal 

submodule of it contains a Rad-supplement that is a direct summand of itself. Since each maximal 

submodule is a cofinite submodule, this study will be the most general study about this subject in the 

literature. It will be shown that 𝑚𝑔𝑠⊕ −modules and ⊕ −cofinite supplemented modules coincide in 

coatomic modules. It will be later proved that direct sum of 𝑚𝑔𝑠⊕ −modules brings out a 

𝑚𝑔𝑠⊕ −module. Nevertheless, we will prove that the factor module created by the fully invariant 

submodule of 𝑚𝑔𝑠⊕ −module is also the 𝑚𝑔𝑠⊕ −module. We will show for a ring that each free 

𝑆 −module is a 𝑚𝑔𝑠⊕ −module if and only if 𝑆 is semiperfect. 
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𝑴𝒈𝒔⊕ −Modules 

Definition 1. If each maximal submodule of a module has a Rad-supplement which is a direct summand 

of it, then it is called a 𝑚𝑔𝑠⊕ − module. 

Lemma 2. Every 𝑐𝑔𝑠⊕ −module is a 𝑚𝑔𝑠⊕ −module. 

Proof. Let  𝑊 be a 𝑐𝑔𝑠⊕ −module and the submodule 𝑋 be maximal in 𝑊. Since every maximal 

submodule is cofinite submodule, the rest is easy.  

Recall from [8] that, 𝑤 −local module is a module which has a unique maximal submodule. 

Proposition 3. If a 𝑚𝑔𝑠⊕ −module 𝑊 satisfies the condition  𝑅𝑎𝑑(𝑊) ≪ 𝑊, then it is ⊕ −cofinitely 

supplemented. 

Proof. Consider the submodule 𝑋 as a maximal of 𝑊. Based on the assumption, there are submodules 

𝑇and 𝑇1 of 𝑊where𝑊 = 𝑋 + 𝑇, 𝑋 ∩ 𝑇 ⊆ 𝑅𝑎𝑑(𝑇) and 𝑊 = 𝑇 ⊕ 𝑇1. Hence, we have 𝑋 ∩ 𝑇 ⊆

𝑅𝑎𝑑(𝑇) ⊆ 𝑅𝑎𝑑(𝑊) ≪ 𝑊 and  𝑇 ≤⊕ 𝑊. If we consider [1, 19.3(5)], then we can write  𝑋 ∩ 𝑇 ≪ 𝑇. 

Therefore 𝑊 is ⊕ −cofinitely supplemented. 

Recall from [1] that, if each proper submodule of  𝑊 is included in a maximal submodule of 𝑊 and 

every coatomic module has a small radical, then 𝑊is said to be coatomic. Thus, the following can be 

given without its proof. 

Corollary 4. Let 𝑊 be a coatomic module. 𝑊 is ⊕ −cofinitely supplemented if and only if it is a 

𝑚𝑔𝑠⊕ − module. 

Proposition 5. Any 𝑤 −local module is a 𝑚𝑔𝑠⊕ − module. 

Proof. It is easily obtained by combining Proposition 2.3 in [11] and Lemma 2. 

For any prime 𝑝, the ℤ −module ℚ ⊕ ℤ𝑝 is 𝑤 −local because 𝑅𝑎𝑑(ℚ ⊕ ℤ𝑝) ≅ ℚ is a unique 

submodule of  ℚ ⊕ ℤ𝑝. So, ℚ ⊕ ℤ𝑝 is a 𝑚𝑔𝑠⊕ − module. 

Theorem 6. Any arbitrary 𝑚𝑔𝑠⊕ −module with a maximal submodule includes a 𝑤 −local direct 

summand. 

Proof. Let 𝑊 be a 𝑚𝑔𝑠⊕ − module and 𝑋 be a maximal submodule of it. Then, there are submodules 

𝑌, 𝑌1 of  𝑊 such that 𝑊 = 𝑋 + 𝑌, 𝑋 ∩ 𝑌 ⊆ 𝑅𝑎𝑑(𝑌) and 𝑊 = 𝑌 ⊕ 𝑌1. Also, it can be said that  𝑌is a 

Rad-supplement of  𝑋 in 𝑊. If we consider Lemma 3.3 of [8], then we get 𝑌 is 𝑤 −local. Therefore 𝑌is 

a 𝑤 −local direct summand of 𝑊. 

We point out the sum of whole 𝑤 −local direct summands of  𝑊 by 𝑤𝐿𝑜𝑐⊕𝑊 and the sum of whole 

𝑚𝑔𝑠⊕ − submodules of 𝑊 by 𝑀𝑔𝑠⊕𝑊. 

Lemma 7. 𝑤𝐿𝑜𝑐⊕𝑊 ≤ 𝑀𝑔𝑠⊕𝑊, for any module 𝑊. 

Proof. Let 𝐿 represent a 𝑤 −local submodule of 𝑊 where 𝐿 ≤⊕ 𝑊. By using Proposition 5, we can say 

that 𝐿  is a 𝑚𝑔𝑠⊕ −module. Then we get 𝐿 < 𝑀𝑔𝑠⊕𝑊 and so 𝑤𝐿𝑜𝑐⊕𝑊 ≤ 𝑀𝑔𝑠⊕𝑊. 
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Theorem 8. Let any 𝑚𝑔𝑠⊕ − submodule of 𝑊 be a direct summand of 𝑊. In that case, 𝑊
𝑀𝑔𝑠⊕𝑊⁄  

does not include a maximal submodule if and only if  𝑊is a 𝑚𝑔𝑠⊕ − module.  

Proof. (⇐) Suppose that 𝐿
𝑀𝑔𝑠⊕𝑊⁄  is a maximal submodule of 𝑊

𝑀𝑔𝑠⊕𝑊⁄ . Then 𝐿 is the maximal 

submodule of 𝑊 . Based on the hypothesis, there are submodules 𝐿1, 𝐾 of 𝑊 such that  

𝑊 = 𝐿 + 𝐿1, 𝐿 ∩ 𝐿1 ⊆ 𝑅𝑎𝑑(𝐿1)  and  𝑊 = 𝐿1 ⊕ 𝐾. 

By Lemma 3.3 in [8], 𝐿1is a 𝑤 −local module and 𝐿1 is a 𝑚𝑔𝑠⊕ − module by Proposition 5. 

From here, we can say that 𝐿1 ⊆ 𝑀𝑔𝑠⊕𝑊and so we can write that 

𝑊
𝑀𝑔𝑠⊕𝑊⁄ = (𝐿

𝑀𝑔𝑠⊕𝑊⁄ ) + [
(𝐿1 + 𝑀𝑔𝑠⊕𝑊)

𝑀𝑔𝑠⊕𝑊
⁄ ] 

= (𝐿
𝑀𝑔𝑠⊕𝑊⁄ ) + (

𝑀𝑔𝑠⊕𝑊
𝑀𝑔𝑠⊕𝑊

⁄ ). 

Consequently, we obtain 𝑊
𝑀𝑔𝑠⊕𝑊⁄ = 𝐿

𝑀𝑔𝑠⊕𝑊⁄  and so 𝑊 = 𝐿 which is a contradiction. Hence 

𝑊
𝑀𝑔𝑠⊕𝑊⁄  does not include a maximal submodule. 

(⇒) Let 𝐿 be a maximal submodule of 𝑊. If 𝐿 includes the 𝑚𝑔𝑠⊕ − modules, then 𝑀𝑔𝑠⊕𝑊 < 𝐿 can 

be obtained. Thus 𝐿
𝑀𝑔𝑠⊕𝑊⁄  would be maximal submodule of 𝑊

𝑀𝑔𝑠⊕𝑊⁄ , which contradicts the 

hypothesis. In that case, 𝐿 does not contain 𝑀𝑔𝑠⊕𝑊 and there is a 𝑚𝑔𝑠⊕ −submodule 𝑋 of 𝑊 where 

𝑋 ⊄ 𝐿 and 𝑊 = 𝑋 + 𝐿. Remember that 𝑊 𝐿⁄ ≅ 𝑋
𝑋 ∩ 𝐿⁄ . From here 𝑋 ∩ 𝐿 is a maximal submodule of 

𝑋. As 𝑋 is a 𝑚𝑔𝑠⊕ −module, there are submodules 𝑌 and 𝑌1 of  𝑊 where 𝑋 = (𝑋 ∩ 𝐿) + 𝑌, (𝑋 ∩ 𝐿) ∩

𝑌 ⊆ 𝑅𝑎𝑑(𝑌) and 𝑋 = 𝑌 ⊕ 𝑌1. Therefore, we can obtain that 

𝑊 = 𝑋 + 𝐿 = (𝑋 ∩ 𝐿) + 𝑌 + 𝐿 = 𝐿 + 𝑌, 𝐿 ∩ 𝑌 = 𝐿 ∩ (𝑋 ∩ 𝑌) = (𝐿 ∩ 𝑋) ∩ 𝑌 ⊆ 𝑅𝑎𝑑(𝑌). 

Since 𝑋 ≤⊕ 𝑊,there is a submodule 𝑋1 of 𝑊with 𝑊 = 𝑋 ⊕ 𝑋1. Therefore  

𝑊 = 𝑋 ⊕ 𝑋1 = (𝑌 ⊕ 𝑌1) ⊕ 𝑋1 = 𝑌 ⊕ (𝑌1 ⊕ 𝑋1) and so 𝑊 is a 𝑚𝑔𝑠⊕ − module.  

Theorem 9. Any direct sum of 𝑚𝑔𝑠⊕ − modules is a 𝑚𝑔𝑠⊕ − module. 

Proof. Assume that {𝑊𝑖}𝑖∈𝐼 is a family of 𝑚𝑔𝑠⊕ − modules such that 𝑊 =⊕
𝑖∈𝐼

𝑊𝑖 and 𝐿 is maximal 

submodule of 𝑊. Then we can write 𝑊 = 𝐿 + 𝑊𝑖0
 for 𝑊𝑖0

⊂ 𝐿, 𝑖0 ∈ 𝐼. 

Since 𝑊
𝐿⁄ ≅

𝑊𝑖0
𝐿 ∩ 𝑊𝑖0

⁄  and 𝑊
𝐿⁄  is a simple module, 

𝑊𝑖0
𝐿 ∩ 𝑊𝑖0

⁄ is simple and so 𝐿 ∩ 𝑊𝑖0
 is a 

maximal submodule of  𝑊𝑖0
.Then, there are submodules 𝑋, 𝑋1of  𝑊𝑖0

 where 𝑊𝑖0
= (𝐿 ∩ 𝑊𝑖0

) + 𝑋,

𝑋 ∩ (𝐿 ∩ 𝑊𝑖0
) ⊆ 𝑅𝑎𝑑(𝑋) and 𝑊𝑖0

= 𝑋 ⊕ 𝑋1 because 𝑊𝑖0
 is a 𝑚𝑔𝑠⨁-module. From here, we can 

obtain that 𝑊 = 𝐿 + 𝑊𝑖0
= 𝐿 + (𝐿 ∩ 𝑊𝑖0

) + 𝑋 = 𝐿 + 𝑋 and 𝐿 ∩ 𝑋 ⊆ 𝑅𝑎𝑑(𝑋). Nevertheless, we get 

𝐿 ≤⊕ 𝑊 since 𝑊𝑖0
 and  𝑋 are direct summands of 𝑊and 𝑊𝑖0

, respectively. As a result, 𝑊is a 𝑚𝑔𝑠⊕ − 

module. Recall from [13] that, a module 𝑊 has the summand sum property (SSP) if the sum of two 
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direct summands of  𝑊 is again a direct summand of  𝑊. Also, 𝑊 has the property (𝐷3), if 

𝑋, 𝑌 ≤⊕ 𝑊 with 𝑊 = 𝑋 + 𝑌, then 𝑋 ∩ 𝑌 ≤⊕ 𝑊  [13]. 

Theorem 10. Let 𝑊 be a 𝑚𝑔𝑠⊕ −module which has the property (𝐷3)and (SSP). Then, every maximal 

direct summand of 𝑊 is a 𝑚𝑔𝑠⊕ − module. 

Proof. Let 𝐾 be a maximal direct summand of  𝑊. Then, there is a submodule 𝐾1 of 𝑊 where 𝑊 =

𝐾 ⊕ 𝐾1 and 𝐾1 is finitely generated. Suppose that 𝑇 is a maximal submodule of 𝐾. Since 𝑊
𝑇⁄ =

(𝐾
𝑇⁄ ) ⊕ 𝐾1 is finitely generated, 𝑇 is a maximal submodule of 𝑊. Therefore 𝑊is a 𝑐𝑔𝑠⊕ −module by 

Theorem 2.2 in [11] and there are submodules 𝐾1 and 𝐾2of 𝑊 with 𝑊 = 𝑇 + 𝐾1, 𝑇 ∩ 𝐾1 ⊆

𝑅𝑎𝑑(𝐾1)  and  𝑊 = 𝐾1 ⊕ 𝐾2. Note that 𝑊 = 𝑇 + 𝐾1 = 𝐾 + 𝐾1. Since 𝑊 = 𝐾 ⊕ 𝐾1, 𝑊 = 𝐾1 ⊕ 𝐾2,

𝑊 = 𝐾 + 𝐾1 and 𝑊 has the property (𝐷3), it can be written that  𝐾 ∩ 𝐾1 ≤⊕ 𝑊. Therefore, we can 

write 𝑊 = (𝐾 ∩ 𝐾1) ⊕ 𝑋 for a submodule 𝑋 of 𝑊. Hence one can easily get the equality  𝐾 = 𝐾 ∩

𝑊 = 𝐾 ∩ (𝑇 + 𝐾1) = 𝑇 + (𝐾 ∩ 𝐾1). Besides these, 𝑇 ∩ (𝐾 ∩ 𝐾1) = 𝑇 ∩ 𝐾1 ⊆ 𝑅𝑎𝑑(𝐾1) ⊆ 𝑅𝑎𝑑(𝑊). 

If one uses the chapter 19.3 in [1], then 𝑇 ∩ (𝐾 ∩ 𝐾1) ⊆ 𝑅𝑎𝑑(𝐾 ∩ 𝐾1) can be obtained due to 𝐾 ∩

𝐾1 ≤⊕ 𝑊. As a result, by taking the intersection of both sides of the equation 𝑊 = (𝐾 ∩ 𝐾1) ⊕

𝑋 with 𝐾, we can obtain that 𝑊 = (𝐾 ∩ 𝐾1) ⊕ (𝐾 ∩ 𝑋) and so 𝐾 is a 𝑚𝑔𝑠⊕ − module. 

Corollary 11. Let 𝑊 be a 𝑚𝑔𝑠⊕ − module and  𝐸𝑛𝑑𝑆(𝑊)  has the (SSP). Then, every maximal direct 

summand of 𝑊 is a 𝑚𝑔𝑠⊕ − module. 

Proof. By Theorem 2.3 in [14], 𝑊has (SIP) and (SSP). It well down that any module having (SIP) 

satisfies the (𝐷3)  condition. Now the proof follows by Theorem 10.  

In [15], a submodule 𝐿 of  𝑊is called as fully invariant if 𝑓(𝐿) is included in 𝐿 for each endomorphism 

𝑓
 
of 𝑊. It is known that 𝑅𝑎𝑑(𝑊)  and 𝜏(𝑊) are fully invariant submodules of 𝑊. 

Theorem 12. Let 𝑊 be a 𝑚𝑔𝑠⊕ − module and  𝐿 ≤ 𝑊. If 𝐿 is a fully invariant submodule of 𝑊, then 

𝑊
𝐿⁄  is a 𝑚𝑔𝑠⊕ − module. 

Proof. Assume that 𝑇 𝐿⁄  is a maximal submodule of 𝑊 𝐿⁄ . Then, 𝑇 is a maximal submodule of 𝑊 and 

so we have submodules 𝑋 , 𝑋1  of 𝑊where 𝑊 = 𝑇 + 𝑋, 𝑇 ∩ 𝑋 ⊆ 𝑅𝑎𝑑(𝑋) and 𝑊 = 𝑋 ⊕ 𝑋1  by the 

hypothesis. Since 𝐿 is a fully invariant submodule of 𝑊, we can write 𝐿 = (𝐿 ∩ 𝑋) ⊕ (𝐿 ∩ 𝑋1)
 
by 

Lemma 2.1 in [15]. Moreover, 
(𝑋 + 𝐿)

𝐿⁄  is a Rad-supplement of 𝑇 𝐿⁄  in 𝑊 𝐿⁄  according to Proposition 

2.6 in [7]. Then 𝑊 𝐿⁄ = [
(𝑋 + 𝐿)

𝐿⁄ ] ⊕ [
(𝑋1 + 𝐿)

𝐿
⁄ ]. Consequently, 

(𝑋 + 𝐿)
𝐿⁄  is a Rad-supplement of 

𝑇
𝐿⁄  such that  (

(𝑋 + 𝐿)
𝐿⁄ ) ≤⊕

𝑊
𝐿⁄  and 𝑊 𝐿⁄  is a  𝑚𝑔𝑠⊕ − module. 

Corollary 13. Let 𝑊 be a 𝑚𝑔𝑠⊕ −module. Then 𝑊 𝑅𝑎𝑑(𝑊)⁄  and 𝑊 𝜏(𝑊)⁄  are 𝑚𝑔𝑠⊕ − modules. 

Proposition 14. Let 𝑊 be a  𝑐𝑔𝑠⊕ −module and 𝐿 be a fully invariant submodule of 𝑊. If 𝐿 is a 

maximal direct summand of 𝑊, then 𝐿 is a 𝑚𝑔𝑠⊕ −module. 
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Proof. Assume that 𝐿 is a maximal direct summand of  𝑊. Then, there is a submodule 𝐿1 of 𝑊 satisfying 

 𝑊 = 𝐿 ⊕ 𝐿1. Let 𝑇 be a maximal submodule of  𝐿. As every maximal submodule is cofinite, evidently 

𝐿
𝑇⁄  is finitely generated. Since 𝑊 𝐿⁄ ≅ 𝐿1 is simple and so 𝑊 𝐿⁄ ≅ 𝐿1 is finitely generated. Hence 𝑇 is 

a cofinite submodule of  𝑊. Because 

𝑊
𝑇⁄ =

(𝐿 ⊕ 𝐿1)
𝑇

⁄ = (𝐿
𝑇⁄ ) ⊕

(𝐿1 ⊕ 𝑇)
𝑇

⁄ ≅ (𝐿
𝑇⁄ ) ⊕ 𝐿1 

is finitely generated. By using the hypothesis, one can write 𝑊 = 𝑇 + 𝐾, 𝑇 ∩ 𝐾 ⊆ 𝑅𝑎𝑑(𝐾) and 𝑊 =

𝐾 ⊕ 𝐾1 where 𝐾, 𝐾1 ≤ 𝑊. Since 𝐿 is a fully invariant submodule of 𝑊,we can write 𝐿 = (𝐿 ∩ 𝐾) ⊕

(𝐿 ∩ 𝐾1) by Lemma 2.1 in [15]. By taking the intersection of both sides of the equation 𝑊 = 𝑇 + 𝐾 

with  𝐿, we can obtain the following equality  𝐿 = 𝐿 ∩ 𝑊 = 𝐿 ∩ (𝑇 + 𝐾) = 𝑇 + (𝐿 ∩ 𝐾). In addition to 

these, it can be written that  𝑇 ∩ (𝐿 ∩ 𝐾) = 𝑇 ∩ 𝐾 ⊆ 𝑅𝑎𝑑(𝐾) ⊆ 𝑅𝑎𝑑(𝑊). Since 𝐿 ∩ 𝐾 ≤⊕ 𝐿 and 

𝐿 ≤⊕ 𝑊 , we can get  𝐿 ∩ 𝐾 ≤⊕ 𝑊. By using chapter 2.2.(6) in [6], 𝑇 ∩ (𝐿 ∩ 𝐾) = 𝑇 ∩ 𝐾 ⊆

𝑅𝑎𝑑(𝐿 ∩ 𝐾) can be written. This implies that  𝐿 is a 𝑚𝑔𝑠⊕ − module.  

Theorem 15. Let 𝑊be a module and 𝑊1, 𝑊2 ≤ 𝑊 such that 𝑊 = 𝑊1 ⊕ 𝑊2. Then 𝑊2 is a 

𝑚𝑔𝑠⊕ −module if and only if there is a submodule 𝑇  of  𝑊2 such that 𝑇 ≤⊕ 𝑊, 𝑊 = 𝐿 + 𝑇 and 𝐿 ∩

𝑇 ⊆ 𝑅𝑎𝑑(𝑇)
 
for each maximal submodule 𝐿 𝑊1

⁄  of 𝑊 𝑊1
⁄ . 

Proof. (⇒)Assume that 𝐿
𝑊1

⁄  is a maximal submodule of  𝑊
𝑊1

⁄ . It is well known that 

(𝑊
𝑊1

⁄ )

(𝐿
𝑊1

⁄ )
⁄ ≅ 𝑊

𝐿⁄  is simple. Since the following equality 

𝑊
𝐿⁄ =

(𝑊1 + 𝑊2)
𝐿

⁄ =
(𝑊1 + 𝑊2 + (𝐿 ∩ 𝑊2))

𝐿
⁄ =

(𝐿 + 𝑊2)
𝐿

⁄ ≅
𝑊2

(𝐿 ∩ 𝑊2)⁄   

can be written, we get that 𝐿 ∩ 𝑊2 is a maximal submodule of 𝑊2. From the hypothesis, we have 

submodules, 𝑇1 of  𝑊2 such that 𝑊2 = (𝐿 ∩ 𝑊2) + 𝑇, (𝐿 ∩ 𝑊2) ∩ 𝑇 ⊆ 𝑅𝑎𝑑(𝑇) and 𝑊2 = 𝑇 ⊕ 𝑇1. 

From here, 𝑊 = 𝐿 + 𝑇 and 𝐿 ∩ 𝑇 ⊆ 𝑅𝑎𝑑(𝑇) can be obtained.  Hence 𝑇 ≤⊕ 𝑊 because of  𝑇 ≤⊕ 𝑊2. 

(⇐)Let 𝑆 be a maximal submodule of  𝑊2 . If one consider the following equality 

(𝑊
𝑊1

⁄ )

(
(𝑆 + 𝑊1)

𝑊1
⁄ )

⁄ ≅ 𝑊
(𝑆 + 𝑊1)⁄ =

(𝑊1 + 𝑊2)
(𝑆 + 𝑊1)⁄ =

(𝑆 + 𝑊1 + 𝑊2)
(𝑆 + 𝑊1)⁄  

≅
𝑊2

[𝑊2 ∩ (𝑆 + 𝑊1)]⁄ =
𝑊2

[𝑆 + (𝑊1 ∩ 𝑊2)]⁄ =
𝑊2

𝑆⁄ . 

It can be written that 
(𝑆 + 𝑊1)

𝑊1
⁄   is a maximal submodule of 𝑊 𝑊1

⁄ . By the assumption, since there 

is a submodule 𝑇 of  𝑊2 where 𝑇 ≤⊕ 𝑊2,    𝑊 = 𝑇 + 𝑆 + 𝑊1,    (𝑆 + 𝑊1) ∩ 𝑇 ⊆ 𝑅𝑎𝑑(𝑇), it is easy to 
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see that 𝑊2 = 𝑇 + 𝑆, 𝑊2 = 𝑇 ⊕ (𝑊2 ∩ 𝑇1) and 𝑆 ∩ 𝑇 ⊆ (𝑆 + 𝑊1) ∩ 𝑇 ⊆ 𝑅𝑎𝑑(𝑇). Hence, 𝑊2 is a 

𝑚𝑔𝑠⊕ − module. 

Theorem 16. An arbitrary ring 𝑆 is semiperfect if and only if every free 𝑆 −module is a 

𝑚𝑔𝑠⊕ −module. 

Proof. Firstly, assume that 𝑊 is an arbitrary free 𝑆 −module. By using Theorem 2.4 in [11],  𝑆𝑆 is a 

𝑐𝑔𝑠⊕ − module and so  𝑆𝑆 is a 𝑚𝑔𝑠⊕ − module. Conversely, let a free 𝑆 −module be a 𝑚𝑔𝑠⊕ − 

module. Then  𝑆𝑆 is a 𝑚𝑔𝑠⊕ −module.  𝑆𝑆 is (cofinitely) ⊕-supplemented, i.e. 𝑆 is semiperfect, due to 

Proposition 3. 
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