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SOME CONTRIBUTIONS TO REGULAR POLYGONS

DENIZ ÖNCEL AND MURAT KIRIŞCI

Abstract. The aim of this work is to use Napoleon’s Theorem in different

regular polygons, and decide whether we can prove Napoleon’s Theorem is

only limited with triangles or it could be done in other regular polygons that
can create regular polygons.

1. Introduction

The famous theorem of Napoleon is one of the most interesting assertions from
elementary geometry of planar figures. Although over 150 years have passed, math-
ematicians still continues to be of interest to Napoleon’s Theorem as both profes-
sional and amateur alike. Because, this theorem is an important and useful tool
to expand the mathematical horizon for many mathematicians. In the Euclidean
Plane, Napoleon’s Theorem is easily proven. A wide variety of proofs of this theo-
rem have been given in a lot of manuscripts.

In this work, we give a well known simple proof of Napoleon’s Theorem based
on Sine and Cosine Laws. Further, we apply the Theorem to regular polygon such
as regular hexagon, square and octagon.

Napoleon’s Theorem states the fact that if equilateral triangles are drawn out-
side of any triangle, the centers of the equilateral triangles will form an equilateral
triangle.

We take a main triangle ∆ABC, three equilateral triangles, which are outside
∆ABC are ∆ADB, ∆BCE, ∆AFC. We denote the discovered triangle by ∆PQR.

Then, F̂AC = ÂCF = ĈFA = ÂDB = B̂AD = D̂BA = B̂CE = ÊCB = ĈBE =
60◦ (Figure 1).

We give a well known simple proof of Napoleon’s Theorem as follows:
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Figure 1

Proof. [1] Since ∆ECB, ∆FCA, ∆ADB are equilateral, then F̂AC = ÂCF =

ĈFA = ÂDB = B̂AD = D̂BA = B̂CE = ÊCB = ĈBE = 60◦. We take |CQ|,
|BQ|, |BP |, |AP |, |AR|, |CR| is an angle bisector. Thus, P̂AB = P̂BA = Q̂BC =

Q̂CB = R̂CA = R̂AC = 30◦. Isosceles triangles have two equal sides, that is,
x = x1, y = y1, z = z1 and so use the fact that the centroid of an equilateral
triangle ∆ADB, ∆BCE, ∆AFC lies along each median, 2/3 of the distance from

the vertex to the midpoint of the opposite side, x = x1 =
2 a

√
3

2

3 = a
√

3
3 , y = y1 = c√

3
,

z = z1 = b√
3
. If we use the Cosine formula for ∆PQR, then, we have

|RP |2 = y2 + z2 − 2yz cos(α+ 60◦)

|RP |2 =

(
c√
3

)
+

(
b√
3

)
− 2

c√
3

b√
3

cos(α+ 60◦)

3|RP |2 = b2 + c2 − 2bc cos(α+ 60◦)

3|RP |2 = b2 + c2 − 2bc(cosα cos 60◦ − sinα sin 60◦)

3|RP |2 = b2 + c2 − 2bc(
1

2
cosα−

√
3

2
sinα).

If we apply the Law of Cosine to ∆ABC and the Law of Sine for the area of ∆ABC,
then, we can write a2 = b2 + c2 − 2bc cosα and 2(Area of ∆ABC) = bc sinα,
respectively. Substituting these statement into the 3|RP |2 = b2 +c2−2bc( 1

2 cosα−
√

3
2 sinα) gives

3|RP |2 =
1

2

(
a2 + b2 + c2

)
+ 2
√

3(Area of ∆ABC).
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Figure 2

In the same idea, we can compute the length of |PQ| and |RQ|. Since, the
∆APB, ∆BQC, ∆CRA are isosceles triangles, we say α = β = θ and also |RQ| =
|PQ| = |RP |. Then, it follows that the ∆PQR connecting the three centroids is
equilateral.

�

2. Main Results

In this section, we will apply Napoleon’s Theorem to some regular polygon and
prove as in Section 1.

2.1. Application to Regular Hexagon. Consider the regular hexagonABCDEF
and the six regular hexagons, which are outside the main regular hexagon(Figure 2).

Each interior of this hexagon is 120◦, because the sum of the interior angles
of any hexagon is 720◦. Now, we divide regular hexagons into six pieces by us-
ing its diagonals. It will make six equilateral triangles, which are all 60◦. Then,

Ĝ1ED = Ĝ1DE =< Ĥ1DC = Ĥ1CD = Î1CB = Î1BC = Ĵ1BA = Ĵ1AB =
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K̂1AF = K̂1FA = L̂1EF = L̂1FE = 60◦.

The diagonals of regular hexagon are equal. Hence half of the diagonals are
equal too. Hence, c5 = e3, m3 = n3, f3 = i3, t3 = a4, r3 = s3, q3 = p3. Also,
a = b = c = d = e, since regular hexagon has equal sides. We know that the equi-
lateral triangles have equal sides. From this, we can write c5 = e3 = c, f3 = i3 = b,
m3 = n3 = a, q3 = p3 = f , r3 = s3 = e and t3 = a4 = d. In that case, we
obtain ∆CH1I1 = ∆BI1J1 = ∆AK1J1 = ∆FL1K1 = ∆EG1L1 = ∆DH1G1 and
|H1I1| = |I1J1| = |J1K1| = |K1L1| = |L1G1| = |G1H1|, as we desired.

The ratio between the lengths of edges of the main hexagon and the discov-
ered/new hexagon:

Let’s think that one side of the main hexagon is x, (x ∈ Z).

sin 60◦

x
=

sin 60◦

|CH1|
x = |CH1|
∆H1DCis isosceles triangle since|CH1| = |DH1|.

Also, ∆H1DC and ∆I1CB are equal hence |DH1| = |BI1|, the edges c = c5 = e3 =
x. Hence, from the special triangle (30− 60− 90) in the ∆CH1T1

sin 90◦

x
=

sin 60◦

|H1T1|√
3

2
x = |H1T1|.

Since |H1I1| is the double of |H1T1| because the edges see the same degree, 60◦

|H1I1| =
√

3x.

The one side of the main hexagon is x then, one side of the discovered hexagon
need to be

√
3x, since the ratio between sides won’t change no matter the size of

the hexagon because same sine law will be applied with the same, equal angles.

2.2. Application to Square. The main square is ABCD and the four squares,
which are outside the main square(Figure 3).

Each interior of a square is 90◦, because the sum of the interior angles of any
quadrilateral is 360◦. DG and CH, BJ and CI, BK and AL, MA and ND are

the bisector of the squares. Then, ÔDC = ÔCD =< P̂CB = P̂BC = Q̂BA =

Q̂AB = Ĥ1AD = Ĥ1DA = ÔDC = ÔCD = 45◦.

The diagonals of square are equal, so half of the diagonals are equal too. From
this statement, u = w, o = p1, q1 = d2, e2 = q. Then, we can write the isosce-
les triangles ∆ODC = ∆PDB = ∆BQA = ∆AH1D = ∆DOC. Since, square
has equal sides, then g = f = e = d. Using the special triangle (45-45-90),
g
√

2
2 = w, f

√
2

2 = o, e
√

2
2 = d2, d

√
2

2 = q and g
√

2
2 = w = o = d2 = q. Thus,

|OP | = |PQ| = |QH1| = |H1O|, as we desired.
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Figure 3

The ratio between the lengths of edges of the main square and the discovered/new
square:

Let’s think that one side of the main square is x, (x ∈ Z).

sin 90◦

x
=

sin 45◦

|OC|
√

2

2
x = |OC|.

Since |OP | is the double of |DC| because of edges w = o, |OP | =
√

2x. The one

side of the main square is x, then one side of the discovered square need to be
√

2x
since the ratio between the sides will not change no matter the size of the square
is because same sine law will be applied with the same angles.

2.3. Application to Octagon. The main octagon is ABCDEFGH and the eight
octagons, which are outside the main octagon(Figure 4).

Now, we know that, the sum of the interior angles of any octagon is 1080◦

and the diagonals are bisectors of the octagon, which are 67, 5◦. Thus, we obtain
that each of interior angle of a regular octagon is 135◦. And also, we can say

that Î2FE = Î2EF =< Ĵ2ED =< Ĵ2DE =< K̂2CD =< K̂2DC =< L̂2CB =<
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Figure 4

L̂2BC =< B̂M2A =< ÂM2B =< ÂN2H =< ĤN2A =< ĤO2C =< ĈO2H =<

ĈP2F =< F̂P2C.

Diagonals of regular octagon are equal. So half of the diagonals are equal too.
Therefore, |I2F | = |I2E| = |J2E| = |J2D| = |K2D| = |K2C| = |L2C| = |L2B| =
|BM2| = |AM2| = |N2A| = |N2H| = |O2H| = |O2C| = |P2C| = |P2F |. Since they
see the same angle, which is 45◦, then |CF | = |FE| = |ED| = |DC| = |CB| =
|BA| = |AH| = |HC|. The triangles ∆AM2B = ∆BL2C = ∆CK2D = ∆DJ2F =
∆FI2E = ∆CP2F = ∆HO2C = ∆AN2H are isosceles triangles. This step com-
pletes the proof.

The ratio between the lengths of edges of the main octagon and the discov-
ered/new octagon:
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Assume that one side of the main regular octagon is x, (x ∈ Z).

sin 45◦

x
=

sin 67, 5◦

|K2C|
1, 31x = |K2C|.

Also |K2C| and |CL2| are equal because they see the same angle which is 67, 5◦. If

we say the edges which see 45◦ will be x then the edges which see 90◦ will be
√

2x.

|K2C| = |CL2| = 1, 31x

|K2L2| = 1, 85x.

The one side of the main octagon is x then, one side of the discovered octagon need
to be 1.85x since the ratio between sides won’t change no matter the size of the
hexagon because same sine law will be applied with the same, equal angles.

3. Conclusion

In this work, we have investigated how Napoleon’s Theorem is applied to regular
polygons. Firstly, we gave a simple proof of the Theorem using Sine and Cosine
Laws. Further, we applied the Theorem to regular polygons such as hexagon, square
and octagon, with the same idea. We draw a triangle, which is not equilateral, and
then draw equilateral triangles outside the triangle. We got the centroids of the
equilateral triangle, unit them with lines.

In our application on hexagon, we found that the main regular hexagon was x
and the discovered square was

√
3x. Hence, the main regular hexagon would every

time be nearly twice as small as the new regular hexagon. We did the same ratios
in the application of square. This times the main square was x, and the discovered
square was

√
2x. Hence, this time the main square was one and a half smaller than

the new square. And also, we used the octagon. Thus, the regular polygons length
ratios which are the main and discovered polygon, was transferred in graphs and
seen that there was a strong correlation between them.
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