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ABSTRACT 

The Industrial Internet of Things (IIoT) refers to a structure where multiple devices and sensors communicate with 

each other over a network. As the number of internet-connected devices increases, so does the number of attacks 

on these devices. Therefore, it has become important to secure the data and prevent potential threats to the data in 

factories or workplaces. In this study, a deep learning-based architecture was used to determine whether the data 

collected from IIoT sensors was under attack by looking at network traffic. The data that was not exposed to attacks 

was stored on the Ethereum Blockchain network. The Ethereum blockchain network ensured that sensor data was 

stored securely without relying on any central authority and prevented data loss in case of any attack. Thanks to 

the communication process over the blockchain network, updating and sharing data was facilitated. The proposed 

deep learning-based intrusion detection system separated normal and anomaly data with 100% accuracy. The 

anomaly data were identified with an average of 95% accuracy for which attack type they belonged to. The data 

that was not exposed to attacks was processed on the blockchain network, and an alert system was implemented 

for the detected attack data. This study presents a method that companies can use to secure IIoT sensor data. 

Keywords- Industrial Internet of Things, Blockchain, Cyber Security, Intrusion Detection System, Deep 

Learning 

 

ÖZ 

Endüstriyel Nesnelerin İnterneti (IIoT), birden fazla cihazın ve sensörün bir ağ üzerinden birbirleriyle iletişim 

kurduğu bir yapıyı ifade eder. İnternetle bağlantılı cihazların sayısı arttıkça, bu cihazlara yönelik saldırıların sayısı 

da artar. Bu nedenle, fabrikalarda veya işyerlerinde verileri güvence altına almak ve olası tehditlere karşı önlem 

almak önemli hale gelmiştir. Bu çalışmada, IIoT sensörlerinden toplanan verilerin ağ trafiğine bakılarak saldırı 

altında olup olmadığını belirlemek için derin öğrenme tabanlı bir mimari kullanıldı. Saldırıya uğramamış veriler 

Ethereum Blok Zincir ağına kaydedildi. Ethereum blok zincir ağı, sensör verilerinin merkezi bir otoriteye 

dayanmadan güvenli bir şekilde saklanmasını ve herhangi bir saldırı durumunda veri kaybının önlenmesini 

sağlamaktadır. Blok zincir ağı üzerinden iletişim süreci sayesinde veri güncelleme ve paylaşımı kolaylaştırıldı. 

Önerilen derin öğrenme tabanlı saldırı tespit sistemi, normal ve anormal verileri %100 doğrulukla 
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ayırabilmektedir. Anormal verilerinde, hangi saldırı tipine ait oldukları ortalama %95 doğrulukla tanımlandı.  

Saldırılara maruz kalmayan veriler blok zincir ağında işlendi ve tespit edilen saldırı verileri için uyarı sistemi 

geliştirildi. Bu çalışma, şirketlerin IIoT sensör verilerinin güvenliğini sağlamak için kullanabileceği bir yöntem 

sunmaktadır. 

Anahtar Kelimeler- Endüstriyel Nesnelerin İnterneti, Blok Zinciri, Siber Güvenlik, Sızma Tespit Sistemi, 

Derin Öğrenme 

I. INTRODUCTION 

The Internet of Things (IoT) is a network that connects real-life objects such as devices, vehicles, and 

appliances. These objects are equipped with sensors, software, and connectivity features, allowing them to gather 

and share data over the Internet. IoT is utilized in various fields such as Industry 4.0, smart cities, healthcare, and 

transportation [1]. Since IoT devices are connected to the internet, systems are vulnerable to attacks [2]. With the 

increasing number of IoT devices, the demand for cybersecurity solutions has also risen. The International Data 

Corporation (IDC) predicts that by 2025, there will be 55.7 billion connected devices, and generated data by these 

devices will significantly increase from 18.3 zettabytes in 2019 to 73.1 zettabytes [3]. Therefore, it is expected that 

the cybersecurity market will reach $270 billion by 2026. 

The Industrial Internet of Things (IIoT) is a subset of IoT and consists of a collection of interconnected 

devices, sensors, networks, and software that encompass all stages of a manufacturing process or industry. IIoT 

systems are utilized to enhance the performance, efficiency, and security of industrial processes or machine 

operations [4]. However, when system security is compromised, processes can fail, or systems may become unable 

to fulfil their functions. These security vulnerabilities can result in production losses, increased costs, or customer 

attrition. Additionally, they can lead to the unauthorized acquisition or use of personal data belonging to employees 

or customers by third parties. 

IoT intrusion detection is defined as any unauthorized action or activity that causes harm to the IoT 

ecosystem [5]. It refers to unauthorized access to data or devices, alteration or destruction of data or devices, and 

disruption of the normal functioning of the IoT system [6]. Examples of IoT intrusion detection include malicious 

software attacks, denial of service attacks, and unauthorized access to devices. With the increasing number of 

connected devices, IoT intrusion detection has become a significant concern in the field of cybersecurity. Deep 

learning is utilized as an effective tool in IoT intrusion detection. The IoT ecosystem typically generates a large 

amount of data, and analyzing and protecting it against intrusions can be challenging using traditional methods. 

Deep learning can process these large datasets and identify meaningful patterns and behaviors [7]. 

IIoT and blockchain technology can be combined to enhance the security of industrial systems and 

processes [8]. Blockchain is a distributed data structure that records transactions without the need for a central 

authority. Each block in a blockchain contains multiple transactions, and when a new transaction occurs on the 

blockchain, the record of that transaction is added to the copies of the ledger held by all participants [9]. Blockchain 

transactions are secured using cryptography, and the ledger is maintained by multiple computers rather than a 

central authority. Therefore, making changes to historical transaction records requires modifying each copy, which 

is highly challenging. The identities of the parties involved in transactions are encoded and protected. As a result, 

blockchain technology has become a popular choice for applications such as digital currencies, supply chain 

management, and voting systems [10]. 

In the context of IIoT, blockchain can be used to create an immutable record of sensor data and system 

events, which can be utilized to detect and prevent security threats [11]. For example, data collected by an IoT 

device can be recorded on the blockchain network and accessed by other devices, ensuring data integrity and 

preventing data manipulation. Furthermore, transactions conducted through blockchain technology are performed 

securely and encrypted, thereby enhancing the security of IoT devices [12]. In the tracking process of products 

manufactured in a factory, data collected by IoT sensors can be recorded on the blockchain to enable tracking 

information such as the current stage of products and the devices involved in processing [13]. Another example is 

the combined use of blockchain and IoT in the energy market, where IoT devices present in many homes can 

monitor energy production and consumption in real-time. This data can be recorded on the blockchain to facilitate 

the creation of a fair energy market between energy producers and consumers. Additionally, energy transactions 

conducted through blockchain technology are executed securely and transparently. 

Blockchain technology, unlike traditional databases, enables trust between parties involved in 

transactions without the need for a central authority. Transactions on the blockchain network are shared fairly 

among the participating parties, and no single entity can control the network. This demonstrates that blockchain 

can be used as a secure and reliable means for financial transactions, industrial data storage, and commercial 

operations [14]. 
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When delving into the fundamentals of why blockchain is considered trustworthy, we encounter the 

consortium mechanism. A blockchain consortium is a group of organizations that come together to operate a 

blockchain network [15]. Blockchain consortiums typically use Proof-of-Stake (PoS) variations as a consensus 

algorithm, maintaining blockchain integrity and verifying transactions while ensuring security and stability [16]. 

However, depending on trust levels within the consortium, other methods such as Proof of Authority (PoA) and 

Practical Byzantine Fault Tolerance (PBFT) may be preferred. For a democratic approach, Delegated Proof of 

Stake (DPoS) allows token holders to elect validators. For specific needs, consortiums can integrate various 

consensus algorithms using a pluggable consensus method. These range from Federated Byzantine Agreement 

(FBA), Proof of Elapsed Time (PoET) to traditional methods like Proof of Work (PoW) and PoS [17,18]. As 

technology advances, new consensus methods will emerge to meet evolving requirements. 

In our study, we proposed a deep learning-based intrusion detection system integrated with blockchain. 

To prevent attacks on industrial IoT devices, we first check if the incoming data to our system has been 

compromised. If there is malicious data as a result of an attack, we determine the type of attack it belongs to. We 

store IoT sensor data containing normal network traffic that is not exposed to attacks in the blockchain system. 

The following sections will delve into a deeper analysis and comparisons with other studies in the field. 

Investigations related to IoT threats and anomaly detection from various studies will be examined in Section I. 

Detailed insights into the definition of the dataset, a range of attacks and anomalies, learning models, and system 

frameworks are provided in Section II. Section III encompasses our experiment methodology, findings from the 

analysis, and comparisons with the most recent and advanced techniques in the field. Lastly, Section IV, and V, 

discloses the conclusions of our study, along with a perspective on potential future applications. 

A. Related Works 

A review of studies on the security of IoT devices in the literature reveals three distinct phases: machine 

learning, deep learning, and blockchain-related research.  

The authors propose an Intrusion Detection System (IDS) for detecting injection attacks in smart cities. 

They employ two feature selection techniques, namely constant removal and recursive feature elimination, and 

test them with Decision Tree (DT), Random Forests (RF), and Support Vector Machines (SVM) classifiers. They 

use the AWID dataset, which contains real Wi-Fi traces. By utilizing only 8 selected features through constant 

removal and recursive feature elimination, they achieve the highest accuracy rate (99%) with the DT classifier [3]. 

In their study, the authors created a simulated dataset for botnet attacks. They compare SVM, LSTM, and 

RNN models to classify the attacks using the generated dataset. They present binary classification results for both 

attacked and non-attacked attack types. Using SVM with all features, they achieve the highest accuracy rate [1]. 

Using a specifically designed IoT/IIoT testbed that includes a range of typical devices, sensors, protocols, 

and cloud/edge setups, Ferrag et al. produce a dataset. Data from various IoT devices, including inexpensive digital 

sensors, ultrasonic sensors, water level detection sensors, pH sensor probes, soil moisture sensors, heart rate 

sensors, flame sensors, and others are included in the dataset. Along with developing the dataset, they also identify 

and analyze fourteen attacks that they group into five categories: information gathering, man-in-the-middle attacks, 

injection attacks, and other attacks related to IoT and IIoT communication protocols. To identify these attacks, 

they contrast deep learning with conventional machine learning methods (DT, RF, KNN, and SVM) [19]. 

Babu et al. aim to address security concerns in smart cities. They propose a permission-based blockchain 

system using the mediator PUF (Physically Unclonable Function) model. Additionally, they propose a 

collaborative detection system utilizing machine learning techniques (SVM, RF, LR, DT) to detect DDoS attacks 

on IoT devices. Their ensemble model (SVM+RF+LR+DT) achieves the highest accuracy rate (97.39%) [20]. 

Tahir et al. propose a new authentication and authorization framework for blockchain-enabled IoT 

networks in healthcare applications. The framework utilizes a probabilistic model that uses random numbers in 

the authentication process and establishes a secure connection between IoT devices for data collection. The 

framework addresses critical security, privacy, and legal requirements in healthcare informatics. The proposed 

model is evaluated using the AVISPA tool and the Cooja simulator [21]. 

Chen et al. propose a blockchain-based system for Healthcare IoT that addresses isolated information and 

security gaps. The proposed system focuses on balancing data sharing and privacy protection. To achieve this, 

they designed a privacy protection method based on content extraction signatures, which provides detailed privacy 

protection to patients. Additionally, they designed a fault-tolerant Byzantine leader selection mechanism to 

enhance the security of the Raft algorithm while maintaining data sharing efficiency. Lastly, they design a 

summary contract to ensure efficient data acquisition. The proposed mechanism is evaluated through simulation 

and analysis for efficiency and security [22]. 



BŞEÜ Fen Bilimleri Dergisi / BSEU Journal of Science, 2024, 11(2): 369-384 

  E. Şahin, N.N. Arslan, F. Aydemir 

 372 

 

When reviewing the literature, it is observed that most studies perform intrusion detection on network 

traffic datasets obtained from IoT sensors or attempt to enhance security by storing IoT data in a blockchain 

mechanism. In our proposed system, we have a two-phase security mechanism. In the first phase, intrusion 

detection is performed, and if a sensor is under attack, our alert system is activated to provide information about 

the type of attack. If data is received from an unaffected sensor, the second phase of our work, which is the 

blockchain mechanism, records the sensor data. A similar architecture to our proposed system has not been found 

in the literature. 

II. MATERIAL AND METHODS 

A. Dataset 

In this study, the EdgeIIotset dataset prepared specifically for deep learning algorithms was used to check 

for any intrusion or tampering in the data received from the sensors. The EdgeIIotset dataset is a new cybersecurity 

dataset that can be used for IoT and IIoT applications [19]. Researchers have created this dataset to enable machine 

learning algorithms to perform intrusion and tampering detection on sensor data. Additionally, the researchers of 

the IIoT-Edge dataset prepared a subset called DNNEdgeIIoT-dataset to test deep learning-based IDS. IoT and 

IIoT detection, Cloud computing, Blockchain network, Fog computing, NFV, SDN, and Edge computing are the 

seven layers that make up the dataset. It contains network traffic information gathered from a variety of sensors, 

including ultrasonic, water level detection, pH, soil moisture, pulse rate, and flame sensors. The report also 

includes information on 14 distinct attacks against IoT and IIoT connectivity protocols. Denial-of-

Service/Distributed denial-of-service, Information gathering, Man-in-the-middle, Injection, and Malware are the 

five basic categories into which these types of attacks fall. 

In our data preprocessing phase, after removing rows with missing values and splitting the dataset into 

training (80%) and testing (20%) sets, we focused on converting categorical output values into numerical form. 

For this conversion, we utilized pandas' dummy encoding method. This technique transforms each categorical 

feature into multiple binary columns, representing the presence (1) or absence (0) of each unique value in the 

original feature. 

Mathematically, for a categorical variable 𝐶 with 𝑚 unique values, dummy encoding creates 𝑚 new 

binary features. Each feature 𝐷𝑖 corresponds to one of the 𝑚 values, where 𝐷𝑖 = 1 if  𝐶 equals the  𝑖{𝑡ℎ} value, and 

𝐷𝑖 = 0 otherwise. This method ensures that the model interprets these features as distinct categories without any 

inherent order. 

This process, along with the normalization of data to a range between 0 and 1, prepared our dataset for 

network processing. The transformed class distribution and statistical values are presented in Figure 1, reflecting 

the dataset’s state after these preprocessing steps. 

Figure 1. Distribution graphs of the EdgeIIoT dataset based on classes. 
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B. Feature Selection and SmoteENN 

In our study, to determine the best features in the dataset and thereby achieve improved results, the 

Recursive Feature Elimination with Cross-Validation (RFECV) technique [23,24] is employed. This method 

systematically combines feature elimination with model validation, executed through the following steps: 

Initial Setup: 

• Let 𝐹 =  {𝑓1, 𝑓2, … , 𝑓𝑛} represent the set of all 𝑛 features in the dataset. 

• A Random Forest classifier, denoted as 𝐸, is utilized as the base estimator. This choice is motivated 

by the classifier's capability to compute feature importances, which are essential for the elimination 

process. 

Recursive Feature Elimination (RFE): 

• The importance of each feature is evaluated by the estimator 𝐸. In the case of the Random Forest 

classifier, this is typically based on metrics like Gini importance or mean decrease in impurity. 

• The feature with the least importance, say 𝑓𝑙𝑒𝑎𝑠𝑡, is identified and eliminated, resulting in a reduced 

feature set 𝐹′ =  𝐹 \{𝑓_𝑙𝑒𝑎𝑠𝑡}. 

Cross-Validation (CV) Integration: 

• The dataset is partitioned into 𝑘 equal-sized subsets for k-fold cross-validation. 

• For each iteration, the estimator 𝐸 is trained on 𝑘 − 1 subsets and validated on the remaining subset. 

• The performance of  𝐸 is evaluated, typically using metrics like accuracy or F1-score, on the 

validation subset. 

• This process is repeated until each subset has been used for validation once. 

Optimization and Selection: 

• The average cross-validation score is calculated for each reduced feature set 𝐹′. 

• The process iteratively continues, eliminating one feature at a time, and tracking the corresponding 

cross-validation scores. 

• The optimal number of features is determined when the highest average cross-validation score is 

achieved. 

Outcome: 

• The final set of selected features, denoted as 𝐹∗, represents the subset of 𝐹 that yields the highest 

cross-validation score, balancing model performance and simplicity. 

This methodical approach, underpinned by the rigorous application of RFECV, led to the identification 

of the most relevant features in our dataset, significantly contributing to the enhanced performance of our model. 

As a result of this process, from the initial set of 92 features, we successfully identified and selected the 27 most 

impactful features. These selected features, which represent the optimal subset for our model, are comprehensively 

listed in Table 1. This strategic reduction and focus on key features have been instrumental in improving the 

model's accuracy and efficiency. 
 

Table 1. List of the best 27 features obtained using the RFECV method. 

No Feature Name No Feature Name No Feature Name 

1 icmp.checksum 10 tcp.connection.syn 19 http.request.method-0.0 

2 icmp.seq_le 11 tcp.connection.synack 20 http.referer-0.0 

3 http.content_length 12 tcp.flags 21 http.request.method-GET 

4 http.response 13 tcp.flags.ack 22 http.referer-0 

5 tcp.ack 14 tcp.len 23 http.referer-127.0.0.1 

6 tcp.ack_raw 15 tcp.seq 24 http.request.version-0 

7 tcp.checksum 16 udp.stream 25 http.request.version-0.0 

8 tcp.connection.fin 17 dns.qry.name 26 http.request.version-HTTP/1.0 

9 tcp.connection.rst 18 http.request.method-0 27 http.request.version-HTTP/1.1 



BŞEÜ Fen Bilimleri Dergisi / BSEU Journal of Science, 2024, 11(2): 369-384 

  E. Şahin, N.N. Arslan, F. Aydemir 

 374 

 

To address the class imbalance problem in the dataset, the SMOTEENN (Synthetic Minority Over-

sampling Technique with Edited Nearest Neighbors) technique was applied. Class imbalance occurs when one 

class has significantly more instances than the others. In such cases, machine learning models tend to focus more 

on the majority class and may misclassify minority class examples. SMOTE is a popular high-speed oversampling 

technique that generates synthetic examples for the minority class by interpolating among existing examples [25]. 

However, SMOTE can also introduce noisy examples that may degrade the classifier's performance. On the other 

hand, ENN is an undersampling technique that removes examples from the majority class that is close to the 

minority class in the feature space [26]. Since ENN can help in removing the noisy examples generated by 

SMOTE, it is deemed appropriate to use both methods together. After these procedures, the proportional 

distribution of the resulting data across the classes is shown in Figure 2. 

Figure 2. Distribution of data after applying the SmoteENN method for data augmentation. 

C. Deep Learning based Attack Detector 

After preprocessing the data, the Anomaly Detector model is applied. The Anomaly Detector model 

performs binary classification, separating the data into two classes: attacked (anomaly) and not attacked (normal). 

If no anomalies are detected in the incoming sensor data, the data is stored in the Blockchain layer. If an attack is 

detected in the incoming data, the Intrusion Detector model is used to determine the type of attack among the 14 

predefined attack types. The Warning layer is activated, providing the necessary information to the expert using 

the system. The proposed architectural structure is presented in Figure 3. 

Figure 3. Main diagram of the proposed Deep Learning-based Intrusion Detection System. 
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The proposed Anomaly and Intrusion Detector models share the same layer composition and workflow. 

The recommended model starts with two convolutional layers with filter sizes of 32 and 64, and kernel size of 3. 

A Dropout layer with a rate of 0.2 is added to reduce overfitting by randomly disabling the outputs of neurons 

[27]. Then, a Max pooling layer is added to reduce the input size by selecting the maximum feature values. Two 

more convolutional layers with filter sizes of 128 and 64, and kernel size of 3 are added. All convolutional layers 

use the ReLU activation function to calculate their outputs. A Flatten layer is added to convert the inputs into a 

vector form [28]. A fully connected layer with 224 neurons and a ReLU activation function is added. Another 

Dropout layer with a rate of 0.2 is added. A fully connected layer with 112 neurons using the ReLU activation 

function is added. Another Dropout layer is added. A fully connected layer with 56 neurons is added. The last 

layer of the model includes the SoftMax method.   

D. Blockchain-based IIoT Data Management 

Blockchain technology is a method used to enhance the security of digital transactions. This technology 

enables the establishment of direct trust between the parties involved in the transactions and guarantees the 

irreversibility of the transactions. The blockchain network is distributed fairly among the parties involved in the 

transactions, and it is not possible for any party to control the network. 

Currently, there are multiple blockchain technologies available. In this study, the Ethereum blockchain 

network is used. The Ethereum blockchain network is a distributed computer network and an open-source platform 

that enables the execution of smart contracts [29]. This network is operated by numerous computers and nodes 

worldwide, and each contributes to the security of the network and the accuracy of the transactions. As a result, 

the Ethereum network enables secure and fast transactions without the need for a central authority [30]. The 

Ethereum network verifies transactions using cryptographic techniques and maintains data integrity among all 

participating nodes. This ensures that all transactions performed on the Ethereum network are carried out securely 

and transparently. 

The Ethereum blockchain network proffers a multitude of advantages primarily due to its prowess in 

executing smart contracts [31]. It operates on the principle of decentralization, nullifying the need for a central 

authority, thereby facilitating expeditious and secure transactions. Additionally, Ethereum ensures rigorous 

security through its verification of transactions using advanced cryptographic techniques, thereby maintaining data 

integrity across all nodes. Consequently, transactions on the network are secure and resistant to tampering. The 

speed at which transactions are verified and confirmed is substantially accelerated due to Ethereum's distributed 

architecture. The hallmark of Ethereum, smart contracts, automate a wide array of processes, thereby mitigating 

human errors. Moreover, Ethereum offers a transparent transaction framework where all transactions can be 

tracked and recorded by any observer, boosting transaction transparency and significantly reducing the likelihood 

of manipulation. 

Thanks to these advantages, the Ethereum blockchain network is used in various sectors. In our study, we 

utilized the Smart Contract feature of the Ethereum network for the storage and management of data from sensors 

in factories. These contracts are written in the Solidity programming language. Solidity is the most popular 

programming language for smart contracts on the Ethereum platform [32]. Solidity has a syntax similar to other 

languages such as C++ and JavaScript. Smart contracts written in Solidity are distributed and executed among the 

nodes in the Ethereum network. 

Once the contract code is written, it is compiled into executable bytecode by the Ethereum Virtual 

Machine (EVM). The contract code is then sent to the Ethereum network, where it is distributed among the nodes 

of the network. When a user submits a transaction that affects the contract, the transaction is verified on the 

network, and the transaction fee required for executing the contract code is paid in Ethereum's cryptocurrency, 

Ether. Once the transaction is verified and the fee is paid, the contract code is executed by the nodes in the network, 

and the results are returned to the network. 

In this way, you can write smart contracts using Solidity on the Ethereum blockchain network, send them 

to the network, and perform various transactions through these contracts. Another advantage of using the Ethereum 

network is its compatibility with IPFS data servers for easy data transfer. IPFS (InterPlanetary File System) is a 

distributed file system and protocol [31]. The integration of Ethereum with IPFS allows Ethereum smart contracts 

to hold references to files stored on IPFS and access those files. This integration enables smart contracts on 

Ethereum to be connected to a distributed file system like IPFS instead of relying on centralized servers. 

Technically, the integration between IPFS and Ethereum provides Ethereum smart contracts with the 

ability to access files stored on IPFS. This is achieved by making IPFS hashes (IPFS addresses) part of the 

Ethereum smart contracts. A user can store the hash of an IPFS file within an Ethereum smart contract. As a result, 

the file content is not uploaded to the Ethereum network but is stored on IPFS. IPFS hashes can be placed in the 

data fields or function parameters of Ethereum smart contracts and later used to access the file. 
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In summary, in this study, a secure system was developed for the storage, verification, processing, and 

management of data from IoT sensors in factories. The visual diagram of the proposed Blockchain-based Data 

Management System is presented in Figure 4. The step-by-step progression of this system is as follows: 

1. Blockchain registration layer: Allows factories to register with their company information and then 

register their sensors. 

2. Data reading layer: Involves transferring data from IoT sensors to distributed edge devices. 

3. Data validation layer: Involves testing the data transferred to edge devices with a pre-trained Deep 

Learning-based Intrusion and Intrusion Detection System to check for tampering or attack attempts. 

If any tampering or attack is detected, send a message to the alert layer in the fifth step; if not, transfer 

the data to the blockchain layer in the fourth step. 

4. Blockchain data addition layer: The factory's user and sensor information are verified through the 

Ethereum network. If the transaction is approved, the validated data from IoT sensors is stored on 

the IPFS server. During the registration process, the access key obtained from the IPFS server is 

transferred to the Ethereum network along with the factory and sensor information. 

5. Alert message sending: The sensor and type of attack information from the alert message are 

transferred to the factory's alert system. 

Figure 4. Main diagram of the proposed Blockchain-based Data Management System.  

III. RESULTS 

A. Blockchain Implementation 

This study was developed using the Ethereum blockchain. The main coding part was done in the online 

Remix environment provided by the Ethereum blockchain. This environment allows us to write Smart Contracts 

and test them on various blockchain networks. Our study works on a private blockchain that we created. The first 

of our Smart Contracts is the Factory Registration contract. The pseudocode of this contract is provided in Figure 

5. The main function of this algorithm is factory Register, which takes factory_name, registry_number, and 

tax_number as parameters. In this function, the readBlockchain function is called to retrieve the data from the 

chain and assign it to the "blockchain" variable. Then, if there is a previous record for this factory, it displays a 

warning message. If there is no previous record, it combines the incoming three parameters with the timestamp 

value and passes it to the writeBlockchain function. 
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Function factoryRegister(factory_name, registry_number, tax_number) 

       blockchain  ←  call readBlockchain() 

       if registry_number in blockchain then 

              print "This registry number is already in use." 

       else 

              data  ←  [factory_name, tax_number, registry_number, timestamp] 

              call writeBlockchain(data) 

       endif 

endFunction 

Figure 5. Factory registration function. 

Our second Smart Contract in our application is the Sensor Registration. After the factory registration 

phase, the sensors belonging to these factories are registered on the blockchain along with their MAC addresses. 

The pseudocode of this contract is provided in Figure 6. First, similar to the first algorithm, data is read from the 

blockchain. Then, it is determined whether the sensor has been previously registered based on the MAC address. 

If there is no existing record and the incoming factory_id (factory information) is also validated, the sensor 

information along with its corresponding factory_id is passed to the writeBlockchain function for registration on 

the blockchain network. 

Function sensorRegister (sensor_name, mac_address, factory_id) 

      blockchain  ←  call readBlockchain() 

      if mac_address in blockchain then 

            print "This Sensor MAC address is already in use." 

      else if factory_id not in blockchain 

            print "The factory with the given ID does not exist." 

      else 

            data  ←  [sensor_name, mac_address, factory_id, timestamp] 

            call writeBlockchain(data) 

      endif 

endFunction 

Figure 6. Sensor registration function. 

The data from the sensors go through the data Control function before being sent to the blockchain 

network. The pseudocode for this function is provided in Figure 7. We pass the data from the sensors and the 

network's data to our pre-trained Anomaly Detector model to perform anomaly detection. If an anomaly or attack 

is detected, we pass the data to our Intrusion Detector model, which performs intrusion detection and returns the 

type of attack. The information is then directed to the warning Layer. If the data is determined to be healthy, we 

send the sensor data to the sensorAddData function for further processing. 

Function dataControl(sensor_id, sensor_data, network_data) 

      anomaly_result  ← call AnomalyDetectorModel([sensor_data, network_data]) 

      if anomaly_result then 

            intrusion_result  ← call IntrusionDetectorModel([sensor_data, network_data]) 

            call warningLayer(ıntrusion_result)     

      else 

            call sensorAddData(sensor_id, sensor_data)     

endFunction 

Figure 7. Data control function. 

The verified data obtained in the final stage is transferred to the sensor Add Data function. The 

pseudocode for this function is provided in Figure 8. In the initial step, data is retrieved from the blockchain 

network, and the sensor information is checked. If the sensor does not exist, a warning is issued. If the sensor 

information is validated, the incoming data is uploaded to the IPFS (Inter Planetary File System) using the upload 

IPFS function. The resulting IPFS hash value is then sent to the blockchain network for data access. 

Function sensorAddData(sensor_id, sensor_data) 

      blockchain  ←  call readBlockchain()     

      if sensor_id not in blockchain then 

            print "Sensor ID not found in the blockchain." 

      else 

            ipfs_hash ←  call uploadIPFS(sensor_data) 

            data  ←  [sensor_id, ipfs_hash, timestamp] 

            call writeBlockchain(data) 

endFunction 

Figure 8. Sensor data recording function. 
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1) Gas Cost Analysis and Considerations:  In this analysis, we focus on the gas costs associated with the 

“Factory Registration”, “Sensor Registration”, and “Sensor Data Manager” smart contracts on the Ethereum 

network. The values are presented in Wei, the smallest denomination of Ether, and represent average costs obtained 

in the Remix VM (Shanghai) environment. The cost calculations are provided in Table 2. 

Table 2. Gas Costs of Smart Contracts (in Wei). 

Smart Contract Operation Transaction Cost (Wei) Execution Cost (Wei) 

Factory Registration Create 140,000 120,000 

Update 40,000 20,000 

Delete 50,000 40,000 

Sensor Registration Create 160,000 140,000 

Update 50,000 30,000 

Delete 50,000 40,000 

Sensor Data 

Manager 

Create 170,000 55,000 

Delete 55,000 45,000 

Considerations on IPFS Costs and Real-world Testing: It's important to note that the above gas cost 

analysis does not include the costs associated with IPFS (InterPlanetary File System). Factories can either host 

IPFS software on their servers or use third-party hosting services, leading to variability in IPFS-related expenses. 

Additionally, while the simulations provide useful insights, testing this blockchain application in a real-world 

factory setting would yield more definitive results. 

Scenario Analysis: Gas Cost for 200 Sensors: Let's consider a hypothetical scenario where a factory has 

200 sensors, with each sensor transmitting data every five minutes. Assuming the `Create` operation is used for 

each data transmission in the `Sensor Data Manager` contract, we can estimate the total gas cost over a certain 

period. For simplicity, we'll calculate the cost for one hour: 

• Number of data transmissions per sensor in one hour: 
60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 / 𝑠𝑒𝑛𝑠𝑜𝑟
 = 12 transmissions/sensor. 

• Total transmissions for 200 sensors in one hour: 12 transmissions / sensor x 200 sensors = 2400 

transmissions. 

• Gas cost per transmission (using `Create` in Sensor Data Manager): 170,000 Wei. 

• Total gas cost for one hour: 2400 transmissions x 170,000 Wei/transmission. 

Now, let's calculate the total gas cost for one hour: Total Gas Cost for 1 Hour = 2400 x 170,000 Wei. 

This calculation provides a concrete example of the operational costs associated with this system for a 

specific use case. 

B. Comparison Metrics 

Precision, recall, F1-score, and accuracy are metrics used to evaluate the performance of classification 

models in fields such as machine learning, deep learning, and data science. These metrics are computed according 

to the following formulas (1-4): 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

F1-score = 2 ∗
precision ∗ recall

precision + recall
 (3) 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

Here, TP, TN, FP, FN, and FP indicate the number of true positive predictions, true negative predictions, 

true false positive predictions, and true negative predictions, respectively. These indicators have a range of 0 to 1, 

with 0 being the worst performance and 1 the best performance. While accuracy can be more helpful in datasets 

with balanced class distributions, precision, recall, and F1-score are more insightful in datasets with class 

imbalance. 

Confusion Matrix is a matrix used to evaluate the performance of classification models. The matrix 

displays the numerical values of true and predicted classes, distinguishing correct classifications, 
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misclassifications, false positives, and false negatives. Simply put, the Confusion Matrix is a visual tool that depicts 

the classification ability of a model. 

C. Loss Functions 

In training our anomaly detection model, we focused on distinguishing between normal and anomalous 

instances. This task, being a binary classification problem, necessitated the use of the Binary Cross-Entropy (BCE) 

loss function. The BCE [33] loss is calculated as −(𝑦log (𝑝) + (1 − 𝑦)log (1 − 𝑝)), where 𝑦 is the true label (0 

or 1 for normal and anomalous instances, respectively), and 𝑝 is the predicted probability of the instance being 

anomalous. This function is particularly effective in measuring the difference between the predicted probabilities 

and the actual binary labels, penalizing any significant deviations. 

For the intrusion detection model, which involves classifying multiple types of network intrusions, the 

Categorical Cross-Entropy (CCE [34]) loss function was employed due to its suitability for multi-class 

classification tasks. The CCE loss is defined as  − ∑ 𝑦𝑜,𝑐log (𝑝𝑜,𝑐)  
𝑀

𝑐=1
where 𝑀 represents the number of classes, 

𝑦𝑜,𝑐 is a binary indicator for whether class 𝑐 is the correct classification for observation 𝑜, and 𝑝𝑜,𝑐 is the predicted 

probability of observation 𝑜 being in class 𝑐. The CCE loss function excels in scenarios where each observation is 

assigned to one, and only one of several categories, making it highly suitable for our model focused on intrusion 

detection.  

Both loss functions were integral in guiding the respective models toward achieving accurate and reliable 

classifications, a critical aspect for the effective detection of anomalies and intrusions in network environments. 

D. Anomaly Detection Results 

Our Anomaly Detector model, developed in the Keras framework to discern attacks on sensor data, 

underwent a rigorous training regimen. It was trained using the Adam optimizer over 30 epochs with a batch size 

of 256. The training dataset, constituting 80% of the total data, encompassed ~1,500,000 samples, while the test 

dataset, making up the remaining 20%, contained ~400,000 samples. The performance metrics of the model on 

this test dataset are illustrated in Table 3. 

Table 3. Performance metrics of the Anomaly Detector model on the test dataset. 

Dataset Version Class Name Precision Recall F1-Score Accuracy 

Standard dataset Normal 0.89 0.99 0.94 0.91 

Anomaly 0.98 0.68 0.80 

Pre-processed 

dataset 

Normal 1.00 1.00 1.00 1.00 

 
Anomaly 1.00 1.00 1.00 

Despite the dataset exhibiting a significant class imbalance, with a ~3.5:1 ratio between the two classes, 

the model achieved notable results on the standard dataset. It showed high precision in detecting normal data, at 

0.89, with an overall accuracy of 0.91. The model's precision for anomaly detection was impressive at 0.98, 

although recall and F1-scores were relatively lower. 

The model's advanced capabilities, as discussed in the intrusion detection section, played a pivotal role in 

these outcomes. It demonstrated a strong aptitude for understanding the data, a critical factor in overcoming the 

challenges posed by class imbalance. Moreover, when tested on the pre-processed dataset, the model's performance 

was exceptional, achieving 100% accuracy, precision, and F1-score for both classes. This remarkable performance, 

even on the test dataset, indicates that the model not only understood the data well but also effectively avoided 

overfitting, showcasing impressive results across the board. 

E. Intrusion Detection Results 

We utilize our Intrusion Detector model to determine the specific attack types of the data identified as 

belonging to the anomaly class by our Anomaly Detector model. This model has the same network structure as the 

Anomaly Detector, except for the last layer, which contains 14 neurons representing the different attack classes. 

We trained this model using the Keras framework, performing the training process for 50 epochs with a batch size 

of 256 and utilizing the Adam optimization method. The training dataset consisted of approximately 60% of the 

total data, encompassing around 1,000,000 samples. The validation dataset contained approximately 20% of the 

data, with ~400,000 samples. The remaining 20% comprised the test dataset, also containing ~400,000 samples. 

 Due to the imbalanced distribution of the 14 attack classes in our dataset, we had to work on multiple 

versions. The first version includes only the pre-processed results of the standard 92 features in the dataset. The 

Confusion matrix and ROC area under the curve (AUC) obtained from the test dataset for this version are provided 
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in Figure 9, and Table 4. When examining these figures, we can observe that the obtained results have achieved 

high accuracy rates in certain classes but showed very low performance in multiple classes. 

Table 4. Performance of Intrusion Detector model on the test dataset for the standard 92-feature model. 

Class Name Precision Recall F1-Score 

Backdoor 0.96 0.98 0.97 

DDoS_HTTP 0.75 0.95 0.84 

DDoS_ICMP 1.00 1.00 1.00 

DDoS_TCP 0.82 1.00 0.90 

DDoS_UDP 1.00 1.00 1.00 

Fingerprinting 0.92 0.69 0.79 

MITM 1.00 1.00 1.00 

Password 0.45 0.89 0.60 

Port_Scanning 1.00 0.49 0.66 

Ransomware 1.00 0.87 0.93 

SQL_injection 0.81 0.21 0.33 

Uploading 0.68 0.48 0.56 

Vulnerability_scanner 1.00 0.85 0.92 

XSS 0.58 0.38 0.46 

Accuracy 0.82 

Macro avg 0.85 0.77 0.78 

Weighted avg 0.86 0.82 0.81 

Figure 9. Confusion matrix values (column a) and ROC area indicator (column b) for the standard 92-feature model. 

In the initial stage of our multi-class (14 classes) intrusion detection system, we faced a perplexing challenge. 

Some classes were identified with high accuracy, while others were markedly less accurate. This inconsistency 

prompted an investigation to ascertain whether the issue was rooted in the model design or the dataset. To this end, 

we conducted extensive tests on the Resnet50 [35] and Transformer [36] architectures. 

The test results were revealing: 

• Transformer: This model achieved an accuracy of 0.79, an F1-score of 0.74, a recall of 0.78, and a 

precision of 0.75. Despite these figures, the performance across different classes was uneven. 

• Resnet50: It showed a better accuracy of 0.93, but like the Transformer, the F1-score was 0.72, recall 

0.76, and precision 0.73, again with variable performance across classes. 

Ultimately, these tests led us to conclude that the problem did not lie within the network architectures. Rather, it 

was the dataset itself that was the source of the issue, specifically the class imbalance within it. 

To address the imbalance in our dataset, we implemented a multi-faceted strategy focusing on dataset 

enhancement. In terms of feature selection, we adhered to the methodology outlined in the Material Methods 
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section B of our study, utilizing the RFECV (Recursive Feature Elimination with Cross-Validation) technique. 

This approach enabled us to efficiently narrow down from 92 features to the 27 most impactful ones, ensuring a 

more focused and relevant dataset for our models. 

For data augmentation, we primarily utilized the SmoteENN method. While we experimented with 

various Smote techniques, SmoteENN emerged as the most effective in our context. Its combination of Synthetic 

Minority Over-sampling Technique (SMOTE) and Edited Nearest Neighbors (ENN) provided a robust solution to 

our class imbalance issue. 

After extensive testing with different combinations of features and data augmentation methods, we found 

that the best results were achieved with a specific configuration. The combination of using just the 27 selected 

features, applying class weighting, and incorporating the SmoteENN method for data augmentation proved to be 

the most successful. This particular setup not only addressed the class imbalance effectively but also enhanced the 

overall accuracy and reliability of our model, making it adept at handling the complexities of multi-class intrusion 

detection. 

In the final phase of our research, we applied the updated version of our dataset to train our proposed 

model. The performance of these models is depicted in Figure 10. On the left column of the figure, we present the 

training and validation accuracy of the models, while the right column features the training and validation loss 

visual graphs. Careful analysis of these visual graphs shows that our training process was effectively balanced. 

Both the accuracy and loss visual graphs demonstrate a stable and consistent progression, indicating that our 

models were adeptly trained, avoiding common pitfalls such as overfitting or underfitting. The steady convergence 

of these graphs is a testament to the effectiveness of our dataset enhancements, particularly the refined feature 

selection through RFECV and the implementation of the SmoteENN method for data augmentation. This 

equilibrium in the training and validation process suggests that our models are not only well-calibrated but also 

possess a strong capability for generalization, making them robust tools for multi-class intrusion detection. 

Figure 10. Visual schema of proposed model: Training and validation accuracy and loss graphs. 

In our continued effort to thoroughly understand the results of training the proposed model with the 

updated dataset, we present a detailed analysis in Figure 11. The left column of this figure features the Confusion 

Matrix, while the right column displays the ROC curves. A comprehensive examination of these elements reveals 

significant insights. Compared to the initial results shown in Figure 9, the high-performance capability of the 

network now extends across all classes. This is a clear indication that the modifications we made, particularly in 

addressing the dataset imbalance, have substantially improved the model's performance. Moreover, a closer look 

at the individual class performances in the Confusion Matrix and the ROC curves indicates a notable reduction in 

the imbalance problem, especially in those classes where it was previously more pronounced. This improvement 

is not just quantitative but qualitative as well, demonstrating the model's enhanced ability to detect attacks 

accurately and reliably across all classes. 

In concluding our results section, we highlight the data presented in Table 5, which outlines the average 

F1-score, precision, recall, and accuracy for each class in our model. Detailed examination of this table shows a 

pronounced improvement in comparison to the initial data shown in Table 4. The average accuracy, which was 

initially in the vicinity of 82%, has impressively risen to approximately 95%. Similarly, the average F1-score, 

previously at around 81%, has also escalated to about 95%. These enhancements in the average performance 

metrics across all classes clearly demonstrate the substantial improvements achieved in our model. This leap in 

average accuracy and F1-scores is a testament to the effectiveness of the adjustments we made to the model and 

our approach in tackling dataset imbalances. These collective improvements underscore our model's enhanced 

capability in accurately and reliably detecting multi-class attacks, providing a strong and conclusive finish to our 

analysis of the results. 
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Figure 11. Confusion matrix values (column a) and ROC area indicator (column b) for the improved Intrusion Detector model. 

Table 5. Performance of Proposed Intrusion Detector model on the test dataset. 

Class Name Precision Recall F1-Score 

Backdoor 1.00      1.00      1.00      

DDoS_HTTP  0.92      0.91      0.91    

DDoS_ICMP  1.00      1.00      1.00   

DDoS_TCP    1.00      0.83      0.90     

DDoS_UDP   1.00      1.00      1.00   

Fingerprinting 0.99      0.99      0.99     

MITM  1.00      1.00      1.00    

Password  0.56      0.80      0.66     

Port_Scanning  0.82      1.00      0.90   

Ransomware 1.00      0.99      1.00    

SQL_injection  0.95      0.74      0.84   

Uploading 0.83      0.89      0.86    

Vulnerability_scanner 0.99      0.96      0.98   

XSS   0.91      0.95      0.93    

Accuracy 0.95 

Macro avg 0.93 0.93 0.93 

Weighted avg 0.95 0.95 0.95 

IV. DISCUSSION 

1) Blockchain Implementation Discussion: In this study, we conducted tests on our Ethereum blockchain-

based applications named Factory Registration, Sensor Registration, and Sensor Data Manager using the Remix 

IDE's Virtual Machine environment. These tests included gas calculations, providing us with preliminary insights 

into the operational aspects of our blockchain implementation. However, it's important to note that the results 

obtained in a simulated environment, while valuable, may not fully capture the complexities and costs associated 

with real-world factory settings. Therefore, for more accurate and realistic assessments, especially in terms of cost-

effectiveness and practical feasibility, conducting tests in actual factory environments is crucial. This approach 

will allow us to better understand the scalability, security, and cost implications of deploying our blockchain 

solution in real-world industrial scenarios, providing a more comprehensive and realistic evaluation. 

2) Design of the Proposed Deep Learning-Based IDS: Regarding the design of our proposed deep 

learning-based Intrusion Detection System, the development process involved experimenting with various layers, 

filter sizes, kernel dimensions, and activation functions. While the final model emerged as a result of these 

extensive trials, we acknowledge that the process, though informed by various architectures in the literature, was 

somewhat prolonged and not fully streamlined. In future work, the adoption of methods like Hyperparameter 

Optimization (HPO) and Neural Architecture Search (NAS) could significantly enhance the efficiency and 

effectiveness of the model design process. These advanced techniques would enable a more systematic and 

optimized exploration of network architectures, potentially leading to more robust and performing models. 
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Incorporating these methods in future research could streamline the development process, leading to quicker, more 

efficient iterations and potentially more innovative solutions in the field of intrusion detection. 

V. CONCLUSIONS 

This study presents a method for ensuring the security of data from IIoT sensors in factories. The security 

of data is determined based on deep learning techniques to identify whether the data from IIoT sensors have been 

subjected to attacks. The data that is not exposed to attacks is stored and decentralized on the Ethereum blockchain 

network, ensuring its security and preventing data loss in the event of an attack. Ethereum blockchain is a 

distributed database that securely stores data without relying on any central authority. This method can be 

considered as a significant step towards securing IIoT sensor data. Secure storage of data prevents businesses from 

experiencing significant data loss. Additionally, the process of decentralization facilitates data updates and sharing. 

In the future, this method can be further improved to provide a stronger solution for securing IIoT sensor data. 

This study encourages further research in the field of IIoT security. 
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