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On a new approach in the space of measurable functions
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ABSTRACT. In this paper, we present a new modulus of continuity for locally integrable function spaces which is
effected by the natural structure of the Lp space. After basic properties of it are expressed, we provide a quantitative
type theorem for the rate of convergence of convolution type integral operators and iterates of them. Moreover, we
state their global smoothness preservation property including the new modulus of continuity. Finally, the obtained
results are performed to the Gauss-Weierstrass operators.
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1. INTRODUCTION

The study of quantitative type theorems for an approximation process is one of the research
topics in Approximation Theory. Quantitative type theorems are significant tools to identify
not only the convergence of a sequence of operators into an identity operator but also the
rate of this convergence in a unique theorem. On the other hand, the modulus of continuity
represents considerable tools for obtaining quantitative estimates of the error of approximation
for positive processes. They can be defined in more special functions related to a wide class
of function space. Gadjiev et al. in [27], motivated us to write this paper, was presented a
new approximation process. The authors took into account weighted local integrable function
space which contains classical Lp (R) space and obtained the Korovkin type theorem on this
space. Thus, some results regarding the Korovkin type approximation theorem in the space
Lp [a, b] of the Lebesgue integrable functions on a compact interval are generalized the results
on unbounded intervals. Also, in [25], rates of A- statistical convergence of operators in the
space of locally integrable functions are handled. The main advantage in considering weighted
local integrable functions space, any function that is bounded with respect to the corresponding
norm of the space, can be unbounded for the usual Lp norm. This allows us to widen the class
of functions for which we consider the above approximation problems. In fact, in the literature,
approximation results have been primarily considered either Lp [a, b] or Lp (R) space (see [17],
[24], [28] and [26]), for a more general space of functions, for instance Orlicz spaces, see [23, 4].

On the other hand, Mellin transformations play major roles not only in mathematics but also
in engineering, computer science, physics, etc. Their significance arises from their applications
to real-life problems. For example, they are concerned with signal processing problems as in
the classical Shannon Sampling Theorem, but exponentially spaced (see e.g., [18], [19], [21],
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[15]). Comprehensive approach to Mellin transforms and connections with the Mellin con-
volution operators were improved in [20]. The singular integrals of Mellin convolution type
were first introduced by W. Kolbe and R. J. Nessel in [29]. Butzer and Jansche [20] comprehen-
sively analyzed Mellin transformation. They defined the Mellin convolution and gained some
significant results. It plays a prominent role in the Mellin analysis, like the conventional con-
volution operators in the Fourier analysis. These convolution integrals are used to characterize
the behavior of solutions of certain boundary value problems in wedge-shaped regions. In [31],
quantitative theorems on linear approximation processes of convolution operators in Banach
spaces are given. Butzer and Jansche [20] extensively studied them, in connection with the
Lp convergence. Later, Bardaro and Mantellini [11] concerned Mellin convolution operators of
type

(Twf) (s) =

∞∫
0

Kw (t) f (ts)
dt

t
, s ∈ R+,

where f belongs to domain of the operator Tw and Kw : (0,∞) → R is a set of the kernels.
Compared with the usual classical convolution, the translation operator is replaced by a dila-
tion operator, and Lebesgue measure by the Haar measure µ = dt/t of the multiplicative group
R+. This makes fully independent the operator from the classical convolution operators over
the line group. We will denote by Lp (µ,R+) = Lp (µ), 1 ≤ p < +∞, the Lebesgue spaces with
respect to the measure µ and by L∞ (µ) the space of all the essentially bounded functions. We
will denote by ∥f∥p and ∥f∥∞ the corresponding norms.

Mamedov [30] developed the approximation theory by Mellin convolution operators Tw by
considering the logarithmic Taylor formula, Mellin derivatives, logarithmic uniform continuity
and logarithmic moment of kernel function Kw, which makes probable us to have better order
of approximation. In [8] and [9], the authors introduced a suitable linear combination of Mellin
type operators to accelerate convergence. A crucial contribution for the Voronovskaja type re-
sults for singular integral operators of Mellin convolution given by C. Bardaro and I. Mantellini
in [14], [11] and [7]. Another approach to gain better approximation order, Bardaro and Man-
tellini [12] considered linear combinations of Mellin type operators using the iterated kernels.
Also, in [10], [16] and [5], some contributions on sampling operators in Mellin-Lebesgue spaces
were obtained recently. Angeloni and Vinti, both in [2] and [3], studied Mellin integral oper-
ators in the space of functions of bounded variation in the multidimensional setting via the
notion of variation for multivariate functions. In the recent past, in [32], Ozsarac et al. defined
a new generalization of Mellin convolution operators that preserve logarithmic functions, and
investigated the weighted approximation properties of the operators.

Pointwise convergence for type linear singular integrals in periodic case or in the line group
was thoroughly worked in the classical book by P.L. Butzer and R.J. Nessel [22], where in par-
ticular an almost everywhere convergence is acquired using the notion of the Lebesgue point
of a function f ∈ Lp, 1 ≤ p ≤ +∞. Also, in [13], pointwise convergence theorems for nonlinear
Mellin convolution operators are verified.

In [27], even if, for what concerns Korovkin type results on this concept have been proved,
quantitative type results of approximation have not been yet studied. In this paper, we tackle
the above problems for convolution type operators. Such operators are studied by many math-
ematicians due to their various application in different domains of mathematics and physics
(see [22]).

For this intention, in this paper, with the motivation of [6], we present a new modulus of con-
tinuity whose structure is compatible with the nature of the locally integrable function space
to measure the rate of convergence. Also, the global smoothness preservation property of the
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convolution-type operators is proved. This property is also used to obtain a quantitative type
theorem for the convolution type operator with an iterated kernel instead of a basic kernel.

Now, we express the notion of locally integrable function in Mellin setting. In the course
of this paper, we will use the weight function ω defined by ω (x) = 1 + log2 x, x ∈ R+. Then,
we will denote by Xp,ω (loc) the space of all locally integrable functions, that is the space of all
measurable functions f satisfying the inequality 1

2 log h

xh∫
x/h

|f (s)|p ds

s


1/p

≤ Mfω (x) , x ∈ R+,

where Mf is a positive constant which depends on the function f , p > 1 and h > 1 is any
positive constant.

To simplify statement, we need the followings. For any real numbers a and b (a < b), we
write

∥f ;Xp (a, b)∥ =

 1

log b
a

b∫
a

|f (s)|p ds

s

1/p

.

Xp,ω (loc) is a linear normed space with the norm

∥f∥Xp,ω
= sup

x∈R+

(
1

2 log h

xh∫
x/h

|f (s)|p ds
s

)1/p

ω (x)

= sup
x∈R+

∥f ;Xp (xh, x/h)∥
ω (x)

.(1.1)

It is clear that

Lp

(
R+
)
⊂ Xp,ω (loc) ,

where Lp (R+) is the Lebesgue space with respect to the measure ds/s. Let Xkf
p,ω (loc) be the

subspace of all functions f ∈ Xp,ω (loc) for which there exists a constant kf such that

lim
x→∞

∥f − kfω;Xp,ω (xh, x/h)∥
ω (x)

= 0.

In the case of kf = 0, we will write X0
p,ω (loc) .

2. DEFINITION OF NEW WEIGHTED MODULUS OF CONTINUITY

In this part, to obtain the rate of convergence of approximation, we introduce a new type
weighted modulus of continuity for function f ∈ Xp,ω (loc). Firstly, the new weighted modulus
of continuity has some properties that are similar to the properties of the classical modulus of
continuity. Using the weighted modulus of continuity, we obtain estimates of approximation
of function f ∈ Xp,ω (loc) with respect to weighted norm. For each f ∈ Xp,ω (loc), we set
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ΩX,ω (f ; δ) = sup
|log s|≤δ

sup
x∈R+

(
1

2 log h

xh∫
x/h

|f (ts)− f (t)|p dt
t

)1/p

ω (x)ω (s)

= sup
|log s|≤δ

sup
x∈R+

∥f (ts)− f (t) ;Xp,ω (xh, x/h)∥
ω (x)ω (s)

,(2.2)

where δ > 0. It is clear that ΩX,ω (f ; δ) is a non-negative and non-decreasing function. First,
we show that ΩX,ω is bounded.

Lemma 2.1. For any f ∈ Xp,ω (loc) and δ > 0, we have

ΩX,ω (f ; δ) ≤ 3 ∥f∥Xp,ω
.

Proof. Using the inequality ω (xs) ≤ 2ω (x)ω (s), we obtain by (1.1)

ΩX,ω (f ; δ) ≤ sup
|log s|≤δ

sup
x∈R+

∥f (·s) ;Xp,ω (xh, x/h)∥
ω (x)ω (s)

+ sup
|log s|≤δ

sup
x∈R+

∥f ;Xp,ω (xh, x/h)∥
ω (x)ω (s)

≤ 3 ∥f∥Xp,ω
.

□

Lemma 2.2. For any non-negative real numbers λ and δ, the following relation

(2.3) ΩX,ω (f ;λδ) ≤ (1 + λ) ΩX,ω (f ; δ)

holds.

Proof. We take into account δ > 0. For any positive integer n, we may write

ΩX,ω (f ;nδ) = sup
|log s|≤nδ

sup
x∈R+

∥f (ts)− f (t) ;Xp,ω (xh, x/h)∥
ω (x)ω (s)

= sup
|log s|≤δ

sup
x∈R+

∥f (tsn)− f (t) ;Xp,ω (xh, x/h)∥
ω (x)ω (sn)

≤ sup
|log s|≤δ

sup
x∈R+

n∑
k=1

∥∥f (tsk)− f
(
tsk−1

)
;Xp,ω (xh, x/h)

∥∥
ω (x)ω (sn)

= sup
|log s|≤δ

sup
x∈R+

n∑
k=1

∥∥f (tsk)− f
(
tsk−1

)
;Xp,ω (xh, x/h)

∥∥
ω (x)ω (s)

× ω (s)

ω (sn)

≤ nΩX,ω (f ; δ) .

Since ΩX,ω (f ; δ) is non-decreasing function of δ, the inequality

ΩX,ω (f ;λδ) ≤ ΩX,ω (f ; ([λ] + 1) δ) ≤ (λ+ 1)ΩX,ω (f ; δ)

holds for λ > 0, where [·] means the integer part. □

Theorem 2.1. If f ∈ X
kf
p,ω (loc), then limδ→0 ΩX,ω (f ; δ) = 0.
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Proof. Because of f ∈ X
kf
p,ω (loc) , lim

x→∞

∥f−kfω;Xp,ω(xh,x/h)∥
ω(x) = 0, for all ε > 0, there exists a

positive real number x0 such that for all x > x0

∥f − kfω;Xp,ω (xh, x/h)∥ < εω (x) .

Let x1 > x0 + δ. Let us divide the norm into two parts. Then

ΩX,ω (f ; δ) = sup
|log s|≤δ

sup
x∈R+

∥f (ts)− f (t) ;Xp,ω (xh, x/h)∥
ω (x)ω (s)

≤ sup
|log s|≤δ

sup
0<x≤x1

∥f (ts)− f (t) ;Xp,ω (xh, x/h)∥
ω (x)ω (s)

+ sup
|log s|≤δ

sup
x>x1

∥f (ts)− f (t) ;Xp,ω (xh, x/h)∥
ω (x)ω (s)

≤ ωX (f ; δ) + sup
|log s|≤δ

sup
x>x1

(
1

2 log h

xh∫
x/h

|f (ts)− kfω (t)|p dt
t

)1/p

ω (x)ω (s)

+ sup
|log s|≤δ

sup
x>x1

(
1

2 log h

xh∫
x/h

|f (t)− kfω (t)|p dt
t

)1/p

ω (x)ω (s)
,

where

ωX (f ; δ) = sup
|log s|≤δ

sup
|x|≤x1

∥f (ts)− f (t) ;Xp,ω (xh, x/h)∥ .

It is shown that in [20, page:340], for each ε > 0, there exists h > 1 such that for all 0 < s < x1.
Then for x > x1 and |log s| ≤ δ, with the elementary calculations, we get

 1

2 log h

xh∫
x/h

|f (ts)− kfω (t)|p dt

t


1/p

≤

 1

2 log h

xh∫
x/h

|f (ts)− kfω (ts)|p dt

t


1/p

+ kf

 1

2 log h

xh∫
x/h

|ω (ts)− ω (t)|p dt

t


1/p

≤

 1

2 log h

xsh∫
xs/h

|f (t)− kfω (t)|p dt

t


1/p

+ 4kf |log s| (|log x|+ log h+ |log s|) .
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For x > x1 and |log s| ≤ δ, we obtain

ΩX,ω (f ; δ) ≤ ωX (f ; δ) + sup
|log s|≤δ

sup
|x|>x1

(
1

2 log h

xsh∫
xs/h

|f (t)− kfω (t)|p dt
t

)1/p

ω (x)ω (s)

+ sup
|log s|≤δ

sup
|x|>x1

4kf |log s| (|log x|+ log h+ |log s|)
ω (x)ω (s)

+ sup
|log s|≤δ

sup
|x|>x1

(
1

2 log h

xh∫
x/h

|f (t)− kfω (t)| dt
t

)1/p

ω (x)

1

ω (s)

and
ΩX,ω (f ; δ) ≤ ωX (f ; δ) + ε+ 4kfδ (1 + δ + log h) + ε.

As [x1/h, x1h] is compact interval, we get lim
δ→0

ωX (f ; δ) = 0. Therefore, we have lim
δ→0

ΩX,ω (f ; δ) <

2ε. Since the inequality is true for each ε > 0, desired result is attained. □

3. APPROXIMATION PROPERTIES

Let K : R+ × R+ → R be a kernel function homogenous degree 0, i.e.

K (λs, λt) = K (s, t)

for every λ, s, t > 0. We will assume that K is globally measurable K (s, .) ∈ L1 (R+) with∫
R+

K (s, t)
dt

t
= 1, s ∈ R+.

For a given j ∈ N, we define logarithmic and absolute logarithmic moment of order j of the
function K, respectively by

(3.4) mj (K) :=

∫
R+

K (s, t) logj
(
t

s

)
dt

t

and

(3.5) Mj (K) :=

∫
R+

|K (s, t)|
∣∣∣∣logj ( t

s

)∣∣∣∣ dtt .
Also, we define Mellin Fejer kernel (Kw) for all w > 0 generated by K putting

Kw (s, t) = wK (sw, tw) , s, t ∈ R.
It is easy to see that

(3.6)
∫
R+

Kw (s, t)
dt

t
= 1.

Let us regard the convolution type singular integral operator

(3.7) (Twf) (s) =

∫
R+

Kw (s, t) f (t)
dt

t

for every f : R+ → R in the domain of the operators Tw.
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Lemma 3.3. Tw be defined by (3.7). If f ∈ Xp,ω (loc), then we have

∥Twf∥Xp,ω
≤ 2 (M0 (Kw) +M2 (Kw)) ∥f∥Xp,ω

.

Proof. Taking into account the operator defined by (3.7), we can write

∥Twf∥Xp,ω
= sup

x∈R+

∥Twf ;Xp,ω (xh, x/h)∥
ω (x)

= sup
x∈R+

1

ω (x)

 1

2 log h

xh∫
x/h

∣∣∣∣∣∣
∫
R+

Kw (s, t) f (t)
dt

t

∣∣∣∣∣∣
p

ds

s


1/p

= sup
x∈R+

1

ω (x)

 1

2 log h

xh∫
x/h

∣∣∣∣∣∣
∫
R+

Kw (1, t) f (ts)
dt

t

∣∣∣∣∣∣
p

ds

s


1/p

.

From Minkowski inequality, we obtain

∥Twf∥Xp,ω
≤ sup

x∈R+

1

ω (x)

∫
x∈R+

 1

2 log h

xh∫
x/h

|f (ts)|p ds

s


1/p

|Kw (1, t)| dt
t

= sup
x∈R+

1

ω (x)

∫
x∈R+

 1

2 log h

xht∫
xt/h

|f (s)|p ds

s


1/p

|Kw (1, t)| dt
t

≤ ∥f∥Xp,ω
sup
x∈R+

1

ω (x)

∫
R+

ω (tx) |Kw (1, t)| dt
t

≤ 2 ∥f∥
Xp,ω

∫
R+

ω (t) |Kw (1, t)| dt
t

= 2 ∥f∥
Xp,ω

1 +

∫
R+

log2 t |Kw (1, t)| dt
t

 .

From (3.5) for j = 2, we get desired result. □

Our main results are following:

Theorem 3.2. Let Tw be defined by (3.7) and ΩX,ω (f ; δ) be defined (2.2). If f ∈ Xp,ω (loc) , then we
have

∥Twf − f∥Xp,ω
≤ PwΩX,ω

(
f ; (M2 (Kw))

1/2
)
,

where Pw := 1 +M2 (Kw) +
√
2
√
1 +M4 (Kw).

Proof. We attain

(Twf) (s)− f (s) =

∫
R+

Kw (s, t) (f (t)− f (s))
dt

t
.
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We conclude

∥Twf − f∥Xp,ω
= sup

x∈R+

∥Twf − f ;Xp,ω (xh, x/h)∥
ω (x)

= sup
x∈R+

1

ω (x)

 1

2 log h

xh∫
x/h

∣∣∣∣∣∣
∫
R+

(f (t)− f (s))Kw (s, t)
dt

t

∣∣∣∣∣∣
p

ds

s


1/p

≤
∫
R+

sup
x∈R+

1

ω (x)

 1

2 log h

xh∫
x/h

|(f (ts)− f (s))|p ds

s


1/p

|Kw (1, t)| dt
t

=

∫
R+

ΩX,ω (f ; |log t|)ω (t) |Kw (1, t)| dt
t
.

From (2.3), for any δ > 0, we can write

∥Twf − f∥Xp,ω
≤ ΩX,ω (f ; δ)

∫
R+

(
1 +

|log t|
δ

)
ω (t) |Kw (1, t)| dt

t
.

Using Cauchy-Schwarz inequality and (3.5), we obtain

∥Twf − f∥Xp,ω

≤ΩX,ω (f ; δ)

1 +M2 (Kw) +
1

δ

∫
R

log2 t |Kw (1, t)| dt
t

1/2∫
R

ω2 (t) |Kw (1, t)| dt
t

1/2


=ΩX,ω (f ; δ)

(
1 +M2 (Kw) +

√
2

δ
(M2 (Kw))

1/2
√
1 +M4 (Kw)

)
.

If we choose δ = (M2 (Kw))
1/2, then we have desired result. □

The global smoothness preservation property of the operator Twf is following:

Theorem 3.3. Let Tw be defined by (3.7) and let ΩX,ω (f ; δ) be defined (2.2). If f ∈ Xp,ω (loc) and
δ > 0, then we get

ΩX,ω (Twf ; δ) ≤ 2 (M0 (Kw) +M2 (Kw)) ΩX,ω (f ; δ) .

Proof. We have

Jt (x) : =
∥Twf (·z)− Twf (·) ;Xp,ω (xh, x/h)∥

ω (x)ω (z)

=

 1

2 log h

xh∫
x/h

|Twf (uz)− Twf (u)|p

ω (x)ω (z)

du

u


1/p

=

 1

2 log h

xh∫
x/h

∣∣∣∣∣∣
∫
R+

[f(uzt)− f (tu)]

ω (x)ω (z)
Kw (1, t)

dt

t

∣∣∣∣∣∣
p

du

u


1/p
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≤
∫
R+

 1

2 log h

xh∫
x/h

∣∣∣∣ [f (uzt)− f (ut)]

ω (x)ω (z)

∣∣∣∣p du

u


1/p

|Kw (1, t)| dt
t
.

Using the inequality ω (xt) ≤ 2ω (x)ω (t), Minkowski’s integral inequality for two dimensional
spaces and identity (3.5) for j = 2, we gain

Jt (x) ≤
∫
R+

 1

2 log h

xh∫
x/h

∣∣∣∣ [f (uzt)− f (ut)]

ω (x)ω (z)

∣∣∣∣p du

u


1/p

|Kw (1, t)| dt
t

=

∫
R+

 1

2 log h

txh∫
tx/h

∣∣∣∣ ω (xt)

ω (x)ω (xt)ω (z)
[f (vz)− f (v)]

∣∣∣∣p dv

v


1/p

|Kw (1, t)| dt
t
.

Then, we have

ΩX,ω (Twf ; δ) ≤ 2ΩX,ω (f ; δ)

∫
R+

ω (t) |Kw (1, t)| dt
t

= 2 (M0 (Kw) +M2 (Kw)) ΩX,ω (f ; δ) .

Hence, the proof is fulfilled. □

4. ITERATIONS OF Tw

Given the function K we define for every n ∈ N the iterated kernel of order n of K as in [12],
in the following way: for n = 2,

K2 (s, t) :=

∫
R+

K (s, z)K (z, t)
dz

z

and for n > 2

Kn (s, t) :=

∫
R+

K (s, z)Kn−1 (z, t)
dz

z
.

Similarly, endowed the function Kw, we define for every n ∈ N, the iterated kernel of order n
of Kw in the following way: for n = 2,

K2
w (s, t) :=

∫
R+

Kw (s, z)Kw (z, t)
dz

z

and for n > 2

Kn
w (s, t) :=

∫
R+

Kw (s, z)Kn−1
w (z, t)

dz

z
.

We gain for every n ∈ N ∫
R+

Kn
w (s, t)

dt

t
= 1.

Also, we have

mj (K
n
w) =

1

wj
mj (K

n)
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and
Mj (K

n
w) =

1

wj
Mj (K

n) , j ∈ N.

In the same method, let us consider n−iterations of Tw defined by

(4.8) (Tn
wf) (s) =

∫
R+

Kn
w (s, t) f (t)

dt

t
.

We start with the following

Theorem 4.4. Tn
w be defined by (4.8). If f ∈ Xp,ω (loc), then we have, for every n ∈ N

∥Tn
wf − f∥Xp,ω

≤ Pw

[
n−1∑
k=0

[2 (1 +M2 (Kw))]
k

]
ΩX,ω

(
f ; (M2 (Kw))

1/2
)
,

where Pw is as in Theorem 3.2.

Proof. For n = 2, we obtain

T 2
wf (u)− f (u) = Tw (Twf) (u)− (Twf) (u) + (Twf) (u)− f (u) .

Using Theorem 3.2, we have∥∥T 2
wf − f

∥∥
Xp,ω

≤ PwΩX,ω

(
Twf ; (M2 (Kw))

1/2
)
+ PwΩX,ω

(
f ; (M2 (Kw))

1/2
)
.

Using Theorem 3.3, we achieve∥∥T 2
wf − f

∥∥
Xp,ω

≤ Pw [2 (1 +M2 (Kw)) + 1]ΩX,ω

(
f ; (M2 (Kw))

1/2
)
.

By induction, we gain

∥Tn
wf − f∥Xp,ω

≤ Pw

[
n−1∑
k=0

[2 (1 +M2 (Kw))]
k

]
ΩX,ω

(
f ; (M2 (Kw))

1/2
)
.

□

Now, we can denote following result which expresses the difference of n−iterations and
itself of Tw.

Corollary 4.1. Tn
w be defined by (4.8) and Tw be defined by (3.7). If f ∈ Xp,ω (loc), then we get, for

every n ∈ N

∥Tn
wf − Twf∥Xp,ω

≤ Pw

[
n−1∑
k=1

[2 (1 +M2 (Kw))]
k

]
ΩX,ω

(
f ; (M2 (Kw))

1/2
)
,

where Pw is as in Theorem 3.2.

5. APPLICATION

This section is allocated to some example. The results obtained in the previous sections
can be applied to the Gauss-Weierstrass operators. The recent results related to the Gauss-
Weierstrass operators also can be found in [1]. Let K : R+ × R → R+ be a function defined
by

K (s, t) =
1

2
√
π
exp

(
−
(
1

2
log

t

s

)2
)
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(See [22]). It is easy to check that ∫
R

K (s, t)
dt

t
= 1.

The Mellin-Fejer kernel generated by K is given by

Kw (s, t) =
w

2
√
π
exp

(
−
(
w

2
log

t

s

)2
)
.

The corresponding Mellin-Gauss-Weierstrass operator is given by

(Gwf) (s) =
w

2
√
π

∫
R+

exp

(
−
(
w

2
log

t

s

)2
)
f (t)

dt

t
.

If j is even, we get the moment of order 2j of the function Gw

(5.9) mj (K) = Mj (K) = 2j/2 (j − 1)!!,

where in the case n!! = 3.5...n with n is odd. For the n-iterated kernels, we have the formula

Gn
w (s, t) =

w

2
√
n
√
π
exp

(
−
(

w

2
√
n
log

s

t

)2
)

(see [12]). We have by Theorem 3.2 and (5.9), the following:

Corollary 5.2. Let ΩX,ω (f ; δ) be defined (2.2). If f ∈ Xp,ω (loc) , then we get

∥Gwf − f∥Xp,ω
≤ PwΩX,ω

(
f ;

√
2

w

)
,

where Pw := 1 + 2
w2 +

√
2
√
1 + 12

w4 .

We have by Theorem 4.4 and (5.9), the following:

Corollary 5.3. If f ∈ Xp,ω (loc) , then we get

∥Gn
wf − f∥Xp,ω

≤

(
1 +

2

w2
+
√
2

√
1 +

12

w4

)[
n−1∑
k=0

[
2

(
1 +

2

w2

)]k]
Ωp,ω

(
f ;

√
2

w

)
.
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