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ABSTRACT In the present work, an interesting mini-review of hidden attractors in dynamical systems with
associated nonlinear functions is carried out. Chaotic systems with nonlinear functions often possess hidden
attractors due to their inherent complexity. These attractors can arise in various mathematical models, such
as the Lorenz system, Rössler system, or Chua’s circuit. The identification and comprehension of hidden
attractors broaden our understanding of complex systems and provide new directions for future study and
technological development. The discovery and characterization of hidden attractors in chaotic systems have
profound implications for various scientific disciplines, including physics, biology, and engineering.
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INTRODUCTION

Bifurcation theory deals with the study of how certain behaviors
or patterns in a system change as its parameters vary (Dueñas
et al. 2023). One interesting phenomenon in this theory is the
concept of a hidden oscillation (Ye and Wang 2023). This refers to
a bounded back-and-forth movement that emerges in a system
without causing the stationary points (equilibrium states) of the
system to become unstable (Djorwe et al. 2023).

In nonlinear control theory, we focus on managing systems
that do not have a simple linear relationship between their input
and output (Gray et al. 2023). When we talk about the birth of
a hidden oscillation in a time-invariant control system (meaning
the system doesn’t change over time) with bounded states (the
system’s variables remain within certain limits), it implies reaching
a critical point in the parameter space (Kuznetsov 2020). At this
critical point, the stationary states of the system switch from being
locally stable (stable in the nearby region) to becoming globally
stable (Kuznetsov et al. 2020) (stable across the entire system).

In simpler terms, when a system has hidden movements or
vibrations that exist within a small part of its overall behavior, and
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these hidden motions draw in all the nearby movements, we call
it a hidden attractor (Djorwe et al. 2023). This means that even
though these movements may not be obvious at first glance, they
have a strong influence on the nearby motions of the system.

The study of hidden attractors gained further momentum in
the 21st century, with results obtained by researchers applying ad-
vanced analytical and computational techniques to uncover these
elusive phenomena (Wang et al. 2021; Gong et al. 2022; Kuznetsov
et al. 2023; Zaqueros-Martinez et al. 2023). Scientists have explored
various mathematical models and physical systems to identify
hidden attractors and understand their underlying mechanisms.

From a computational perspective, attractors can be classified
into two categories: self-excited attractors and hidden attractors.
Self-excited attractors can be easily localized using standard com-
putational procedures and standard analytical procedures (Yang
and Lai 2023). These attractors exhibit a transient process where a
trajectory, starting from a point on the unstable manifold near an
equilibrium, eventually reaches a state of oscillation (Lakshmanan
and Rajaseekar 2012). Examples of systems with self-excited at-
tractors include the Lorenz (Dubois et al. 2020), Rössler (Rybin
et al. 2021), and Chua oscillators (Njitacke et al. 2020). The pres-
ence of self-excited attractors can be readily identified due to the
observable oscillatory behavior.

In contrast, hidden attractors pose a greater challenge for local-
ization. In these systems, the basin of attraction does not intersect
with any small neighborhoods of equilibria (Cang et al. 2019). Hid-
den attractors can exhibit both chaotic and periodic behavior, such
as the coexistence of a stable stationary point and a stable limit
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cycle. Unlike self-excited attractors, the existence of hidden attrac-
tors in the phase space is not easily predictable. Therefore, special
procedures need to be developed to localize hidden attractors since
there are no analogous transient processes leading to their emer-
gence. If a hidden attractor is present in the dynamics of a system
and happens to be reached, the system (such as an airplane or
electronic circuit) can exhibit quasi-cyclic behavior (Zelinka 2016),
which can potentially result in disastrous consequences depend-
ing on the nature of the device. Traditionally, dynamical systems
without equilibrium points have been considered nonphysical or
mathematically incomplete. However, empirical evidence shows
that systems can possess hidden dynamical behavior without the
presence of an unstable equilibrium state (Dudkowski et al. 2016).

In short, hidden attractors represent a unique challenge in the
study of dynamical systems. Their existence is not easily pre-
dictable, and special procedures are required for their localization
(Campos et al. 2020). While systems with hidden attractors have
been viewed as nonphysical in the past, it is now evident that such
behavior can occur even without an unstable equilibrium state.

The discovery and characterization of hidden attractors in
chaotic systems have profound implications for various scientific
disciplines, including physics (Kingni et al. 2019; Kuznetsov et al.
2023), biology (Chen et al. 2020; Lin et al. 2020), and engineering
(Abdolmohammadi et al. 2018; Jasim et al. 2021). Hidden attractors
are also found in nonlinear systems with applications consider-
ing fuzzy control and synchronization, as the works reported by
(Tanaka et al. 1998; Zaqueros-Martinez et al. 2023)

In Section 2 of this short review, addressed the fascinating areas
of hidden chaotic attractors in nonlinear dynamical systems. we
explored the domain of hidden chaotic attractors without equilib-
ria. Then we discussed hidden chaotic attractors that coexist with
equilibria. We also ventured into the realm of hidden chaotic attrac-
tors that exhibit extreme multi-stability. Finally, we have studied
hidden chaotic attractors with multi-scroll, a class of hidden attrac-
tors characterized by their complex multidimensional structure.
Section 3, summarises the main discussion on these hidden chaotic
attractors, which make a valuable contribution to combining the
different studies for a better understanding of nonlinear dynamics.

HIDDEN ATTRACTORS IN NONLINEAR CHAOTIC DYNAMI-
CAL SYSTEMS

In nonlinear chaotic dynamical systems, the region in phase space
where a hidden attractor exerts its influence is not connected to
any unstable equilibrium point. This phenomenon can be seen in
systems where there are either no unstable equilibrium points at
all or only one stable equilibrium point, which is a specific instance
of having multiple stable equilibrium points. This characteristic
defines the nature of hidden attractors in such systems.

In this section, we discuss hidden attractors with different as-
pects.

Hidden attractor in chaotic dynamical systems

The idea of hidden attractors has been proposed in relation to the
identification of unforeseen attractors in Chua’s circuit. These un-
expected behaviors in the circuit’s dynamics have been discussed
in various studies (Wang et al. 2021; Wu et al. 2021; Kuznetsov et al.
2023).

We discuss hidden attractors in chaotic dynamical systems
with an interesting example of the classical Lorenz system (Mun-
muangsaen and Srisuchinwong 2018). The classical Lorenz system
is explained using three connected equations that represent simple

mathematical relationships:

ẋ = a(y − x),

ẏ = −xz + rx − y,

ż = xy − bz.

(1)

Figure 1 shows a newly discovered chaotic attractor represented
in red on a coordinate plane (x, y) with parameters a = 4, r = 29,
and b = 2. This attractor is revealed using the starting values
L1 = (x0, y0, z0) = (5, 5, 5). The figure also displays two point
attractors, one in blue and the other in pink. These point attractors
move towards stable equilibrium points S2 and S3, respectively.
The blue point attractor starts at L2 = (x0, y0, z0) = (0.1, 0, 0),
while the red point attractor starts and also in 3D is shown in
Figure 2. The Runge-Kutta method of order 4 (RK4) is a numerical
technique that is used to solve the nonlinear differential equations
(ODEs) of system (1) with time step size 0.01 and total number of
steps are 216.

Figure 1 Classical Lorenz system plotted on a coordinate plane
(x, y), a novel chaotic attractor, depicted in red, has emerged
alongside two distinct point attractors, represented in blue and
pink.

Figure 2 Classical Lorenz system plotted on coordinates (x, y, z),
a novel chaotic attractor, depicted in red, has emerged alongside
two distinct point attractors, represented in blue and pink.

Hidden chaotic attractors without equilibria
Hidden chaotic attractors without equilibria are a fascinating phe-
nomenon in the field of nonlinear dynamics. Unlike well-studied
chaotic systems with equilibria (such as the Lorenz system or the
Rössler system), these attractors do not have stable fixed points.
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Instead, they exhibit chaotic behavior with no underlying stable
states. The discovery and study of such systems have challenged
traditional notions of chaotic dynamics.

As an example, the Sprott case D system pioneered the investi-
gation of a dynamical system that does not have equilibria, along
with its various modifications (Wei 2011). The following is the
system that has hidden chaotic attractors without equilibria/fixed
points, as depicted in Figure 3.

ẋ = −y,

ẏ = x + z,

ż = 3y2 + xz.

(2)

Figure 3 Hidden chaotic attractor of the system (2) with no equi-
libria in system plotted on coordinates (x, y, z) with the initial
value (-1.6, 0.82, 1.9).

The chaotic system (2) has a single equilibrium point at
O(0, 0, 0). If we analyze the linearized version of the system at
this equilibrium point, the characteristic values (λ1, λ2, λ3) of the
Jacobian matrix are λ1 = 0 and λ2,3 = ±i.

Jafari and Sprott conducted a mathematical exploration to iden-
tify the most basic three-dimensional chaotic systems with hidden
attractor without equilibria (Jafari et al. 2013). The following is the
mathematical modeling and depicted in Figure 4.

The Runge-Kutta method of order 4 (RK4) is used for systems
(2) & (3) with time step size 0.01 and total number of steps are 216.

ẋ = −y,

ẏ = −x + z,

ż = −0.8x2 + z2 + 2.

(3)

This system incorporated quadratic nonlinear and the absence of
equilibria.

Many other researchers worked on hidden attractors that are
chaotic systems with no equilibrium. Pham et al. discussed a novel
autonomous system with a hidden attractor there is no equilibrium
point in this system (Pham et al. 2017). Although their proposed
system is simple with six terms, it exhibits complex behavior. Mov-
ing forward, Lai et al. have created a novel chaotic system and
designed both the model and the circuit itself (Lai et al. 2020). This
system behavuniquely way, it does not follow the usual patterns,
and it has a hidden attractor with no equilibrium. Furthermore,
Nag and Ghosh have developed an innovative 3D system that has
some unique features (Nag Chowdhury and Ghosh 2020). In this
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Figure 4 Hidden attractor of the system (3) without fixed-point
(a) in xy-plane, (b) in yz-plane and (c) in xz-plane with the initial
value (0, 2.3, 0).

system, there are certain hidden attractors with no equilibrium
that cannot be predicted or tracked by conventional methods. The
behavior of the system can be seen as a slow and steady trend by
looking at its changes over time.

Hidden chaotic attractors with equilibria

The study of hidden chaotic attractors with equilibria remains a
vibrant area of research. These systems exhibit a combination of
stable equilibria and chaotic behavior.

We consider Wang and Chen’s work as an example (Wang and
Chen 2012). They introduced a chaotic system that operates in
three dimensions. Within this system, there is a unique equilibrium
point p⋆ = (0.25, 0.0625,−0.096) as shown in Figure 5 & 6.

ẋ = yz + 0.006,

ẏ = x2 − y,

ż = 1 − 4x.

(4)

M. Molaie found twenty-three systems that have hidden attractors
with one equilibrium point (Molaie et al. 2013). We found another
fascinating example from one of those three-dimensional nonlinear
systems. Following is the system and It is illustrated in Figure
7. The Runge-Kutta method of order 4 (RK4) is used to solve the
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Figure 5 Hidden attractor of the system (4) with stable fixed-
point in 3D with the initial value (0, 0, 0).
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Figure 6 Hidden attractor of the system (4) with stable fixed-
point in different phase spaces with the initial value (0, 0, 0). (a)
in xy-axis, (b) in yz-axis, (c) in xz-axis.

nonlinear system (4) & (5) with time step size 0.01 and total number

of steps are 216.

ẋ = y,

ẏ = −x + yz,

ż = 2x − 2z + y2 − 0.3.

(5)
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Figure 7 Hidden attractor of the system (5) with fixed-point in
different phase spaces have initial value (0.9, 0, 0.7). (a) in xy-
axis, (b) in yz-axis, (c) in xz-axis.

Other chaotic systems with equilibrium points were also ex-
plained.

Gong et al. have developed a chaotic system that generates
both four-wing and single-wing hidden patterns, with only one
stable node-focus equilibrium point (Gong et al. 2020). In addition,
Cao and Zhao presented a unique chaotic system that exists in
four dimensions and exhibits various interesting behaviors (Cao
and Zhao 2021). The proposed system is characterized by three
quadratic nonlinearity terms and exhibits various types of hidden
attractors with equilibrium points. Further, Islam et al. studied
a three-dimensional chaotic system that makes a hidden chaotic
attractor with a line equilibrium in which a single non-bifurcation
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parameter is used to control the amplitude and frequency (Islam
et al. 2022).

Hidden chaotic attractor with extreme multi-stability
The study of multistability in the context of hidden chaotic attrac-
tors is crucial. Multistability with hidden attractors means that
a system may have more than one stable state and that these sta-
ble states may not be directly observable or predictable without a
detailed understanding of the underlying dynamics of the system.

The discovery of the hidden chaotic attractor with extreme
multistability is a proof of the elusive nature of complex dynamical
systems. It emerged in the late 20th century as researchers delved
deeper into nonlinear dynamics.

The fascinating example of such type of work derived by Jafari
(Jafari et al. 2018). They created a unique chaotic system with
five dimensions. It’s special because it has a hidden attractor and
shows extreme multi-stability. These traits are quite rare in existing
studies. The following is the mathematical model and illustration
shown in Figures 8 & 9. To solve this nonlinear system (6) & (7)
numerically with time step size 0.01 and total number of steps are
216 the Runge-Kutta method of order 4 (RK4) is used.

ẋ = y,

ẏ = z,

ż = w,

ẇ = 4v + 1.7xz + 0.5xw,

v̇ = y2 + 1.1xy + xz.

(6)

Let us consider another system as an example by Khalaf, A. J.
M. (Khalaf et al. 2020):

ẋ = y,

ẏ = z,

ż = w,

ẇ = −0.16w2 − 0.86w + v + 3.35xz − 0.36yz,

v̇ = 1.09y2 − 0.96y + 1.09xz − 1.92zw.

(7)

Khalaf Analyzed a new 5D chaotic system that reveals hidden
attractors with extreme multi-stability which is the modification of
Jafari (Jafari et al. 2018) work shown in Figure 10.

In recent findings, researchers worked with chaotic systems that
have hidden attractors with extreme multi-stability in nonlinear
dynamics. Ahmadi et al. presented a rare chaotic system with
extreme multistability and a unique equilibrium line (Ahmadi et al.
2020). Such systems are exceptionally rare. This newly developed
chaotic system falls into the category of dynamical systems with
hidden attractors. Its complete dynamical properties have been
thoroughly investigated. This discovery expands our understand-
ing of the hidden chaotic system’s behavior. Additionally, Huang
et al., derived a novel four-dimensional chaotic system from a
known three-dimensional chaotic system that exhibits extreme
multi-stability with an equilibrium point along a line (Huang et al.
2022). This system can generate innumerable symmetric and ho-
mogeneous attractors.

(a)

(b)

(c)

Figure 8 Strange attractor of the System (6) displays distinct
shapes in three distinct projections when started from initial
conditions (0,-5,-1,-4, 0).

Multi-scroll hidden chaotic attractors in nonlinear dynamics

Multi-scroll hidden chaotic attractors are a fascinating phe-
nomenon in nonlinear dynamical systems. Unlike traditional at-
tractors, these possess multiple basins of attraction, leading to
complex, unpredictable trajectories.

An interesting example of multi-scroll hidden attractors has
been derived by Xiaoyu Hu (Hu et al. 2017). They proposed the
following novel 5-dimensional chaotic system in which hidden
multi-scroll attractors and hidden multi-wing attractors can be
observed at different phase levels as shown in Figure 11. The
same as the previous RK4 method is used to solve the system (8)
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Figure 9 Strange attractor of the System (6) in 3D has initial con-
ditions (0,-5,-1,-4, 0).

(a)

(b)

(c)

Figure 10 Visualize chaotic trajectories of system (7) with initial
conditions (-1.44, 0.57, -0.82, -1.62, -0.75) through phase portrait
projections of strange attractors. (a) in XZ, (b) in YW, (c) in ZV.

numerically.

ẋ = ay,

ẏ = by − z + csin(2πdx),

ż = y − ez,

u̇ = −xy − (g + hϕ2)u + k,

ϕ̇ = u.

(8)

(a)

(b)

Figure 11 Hidden attractors of the system (8) with initial values
(x0, y0, z0, u0, ϕ0 = 0.2, 0, 0, 0.2), fascinating dynamics develop
over a transient simulation period of 3000-time units. In (a) x − y
phase plane reveals the presence of 4 scroll hidden attractors,
while in (b) y − u phase plane reveals the presence of eight butter-
fly wings hidden attractors.

In this given scenario, the system parameters have been defined
as follows: a = 0.25, b = 0.4, c = 2, d = 0.5, e = 0.5, g = 15, h = 0.01,
and k = 0.05.

Some notable researchers have contributed to the study of multi-
scroll hidden chaotic attractors. Escalante and Campos explored
hidden attractors in addition to self-excitation (Escalante-González
and Campos-Cantón 2019). First, a double-scroll attractor is gen-
erated from two equilibria connected by heteroclinic orbits. Hid-
den attractors arise when trajectories resembling these trajectories
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break apart on a larger scale, increasing the complexity of the sys-
tem. Pulido et al. have developed a method to generate dynamical
systems with unique patterns, which they call bidirectional mul-
tiscroll hidden attractors (Pulido-Luna et al. 2021). These special
attractors arise from piecewise linear systems, starting from their
rest states, and can have both unidirectional (1D) and bidirectional
(2D) lattice multiscroll patterns. This method opens up exciting
possibilities for the design of complex and fascinating dynamical
systems. In addition, Escalante and Campos have developed a
method to generate complex systems with multiple hidden attrac-
tors (Escalante-González and Campos 2022). They use a nonlin-
ear function to generate multiple self-excited attractors at specific
points. Each pair of self-excited attractors leads to a hidden attrac-
tor, and these pairs combine to form larger hidden attractors. The
number of self-excited attractors determines how many nested hid-
den attractors are created. These researchers have made significant
strides in uncovering and studying multi-scroll hidden chaotic
attractors, advancing our understanding of complex dynamical
systems.

CONCLUSION

In this short review paper, we have addressed the fascinating area
of hidden attractors in chaotic systems characterized by nonlinear
functions. Through an extensive survey of various papers, we
have discussed a variety of hidden chaotic attractors, each with
particular features and behaviors.

First, we explored the realm of hidden chaotic attractors with-
out equilibria. These fascinating phenomena challenge conven-
tional wisdom and show that chaotic behavior can manifest in
systems without stable equilibrium points. Moving forward, we
have examined hidden chaotic attractors that coexist with equi-
libria. Furthermore, we have ventured into the realm of hidden
chaotic attractors that exhibit extreme multiple stability. These
systems exhibit a remarkable richness of dynamical behavior. This
phenomenon has significant implications in the areas of control
and synchronization, as it introduces a variety of possible states
that the system can assume under different conditions. Lastly, we
explored multi-scroll hidden chaotic attractors, a class of attractors
characterized by their complex, multi-dimensional structure.

Collectively, this review underscores the profound importance
of hidden attractors in nonlinear dynamics. These elusive phenom-
ena challenge our conventional understanding of chaotic systems
and offer new perspectives and avenues for research. Moreover,
the diversity of hidden attractors discussed in this review provides
fertile ground for further exploration and application in various
scientific and engineering domains.

Acknowledgments

G.H.C. acknowledges the Fondo de Desarrollo Científico de Jalisco
para atender Retos Sociales (2022), for the approved project 10304-
2022. H.M.Z. acknowledges to the National Council of Humani-
ties, Science, and Technology (CONAHCYT), Grant Number CVU
1290273.

Availability of data and material

Not applicable.

Conflicts of interest

The authors declare that there is no conflict of interest regarding
the publication of this paper.

Ethical standard
The authors have no relevant financial or non-financial interests to
disclose.

LITERATURE CITED

Abdolmohammadi, H. R., A. J. M. Khalaf, S. Panahi, K. Rajagopal,
V.-T. Pham, et al., 2018 A new 4d chaotic system with hidden
attractor and its engineering applications: Analog circuit design
and field programmable gate array implementation. Pramana
90: 1–7.

Ahmadi, A., K. Rajagopal, F. E. Alsaadi, V.-T. Pham, F. E. Alsaadi,
et al., 2020 A novel 5d chaotic system with extreme multi-stability
and a line of equilibrium and its engineering applications: circuit
design and fpga implementation. Iranian Journal of Science and
Technology, Transactions of Electrical Engineering 44: 59–67.

Campos, E. et al., 2020 Multistable systems with hidden and self-
excited scroll attractors generated via piecewise linear systems.
Complexity 2020.

Cang, S., Y. Li, R. Zhang, and Z. Wang, 2019 Hidden and self-
excited coexisting attractors in a lorenz-like system with two
equilibrium points. Nonlinear Dynamics 95: 381–390.

Cao, H.-Y. and L. Zhao, 2021 A new chaotic system with different
equilibria and attractors. The European Physical Journal Special
Topics 230: 1905–1914.

Chen, H., S. He, A. D. Pano Azucena, A. Yousefpour, H. Jahan-
shahi, et al., 2020 A multistable chaotic jerk system with coexist-
ing and hidden attractors: Dynamical and complexity analysis,
fpga-based realization, and chaos stabilization using a robust
controller. Symmetry 12: 569.

Djorwe, P., J. Yves Effa, and S. G. Nana Engo, 2023 Hidden attrac-
tors and metamorphoses of basin boundaries in optomechanics.
Nonlinear Dynamics 111: 5905–5917.

Dubois, P., T. Gomez, L. Planckaert, and L. Perret, 2020 Data-
driven predictions of the lorenz system. Physica D: Nonlinear
Phenomena 408: 132495.

Dudkowski, D., S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A.
Leonov, et al., 2016 Hidden attractors in dynamical systems.
Physics Reports 637: 1–50.

Dueñas, J., C. Núñez, and R. Obaya, 2023 Bifurcation theory of
attractors and minimal sets in d-concave nonautonomous scalar
ordinary differential equations. Journal of Differential Equations
361: 138–182.

Escalante-González, R. and E. Campos, 2022 Multistable systems
with nested hidden and self-excited double scroll attractors. The
European Physical Journal Special Topics 231: 351–357.

Escalante-González, R. and E. Campos-Cantón, 2019 Coexistence
of hidden attractors and self-excited attractors through break-
ing heteroclinic-like orbits of switched systems. arXiv preprint
arXiv:1908.03789 .

Gong, L., R. Wu, and N. Zhou, 2020 A new 4d chaotic system
with coexisting hidden chaotic attractors. International Journal
of Bifurcation and Chaos 30: 2050142.

Gong, L.-H., H.-X. Luo, R.-Q. Wu, and N.-R. Zhou, 2022 New 4d
chaotic system with hidden attractors and self-excited attractors
and its application in image encryption based on rng. Physica A:
Statistical Mechanics and its Applications 591: 126793.

Gray, W. S., M. Palmstrøm, and A. Schmeding, 2023 Continuity
of formal power series products in nonlinear control theory.
Foundations of Computational Mathematics 23: 803–832.

Hu, X., C. Liu, L. Liu, Y. Yao, and G. Zheng, 2017 Multi-scroll
hidden attractors and multi-wing hidden attractors in a 5-
dimensional memristive system. Chinese Physics B 26: 110502.

150 | Zeeshan et al. CHAOS Theory and Applications



Huang, L., W. Yao, J. Xiang, and L. WANG, 2022 Extreme multi-
stability of a four-dimensional chaotic system with infinitely
many symmetric homogeneous attractors. 44: 390–399.

Islam, Y., C. Li, Y. Jiang, X. Ma, A. Akgul, et al., 2022 A hidden
chaotic attractor with an independent amplitude-frequency con-
troller. Complexity 2022.

Jafari, S., A. Ahmadi, A. J. M. Khalaf, H. R. Abdolmohammadi,
V.-T. Pham, et al., 2018 A new hidden chaotic attractor with
extreme multi-stability. AEU-International Journal of Electronics
and Communications 89: 131–135.

Jafari, S., J. Sprott, and S. M. R. H. Golpayegani, 2013 Elementary
quadratic chaotic flows with no equilibria. Physics Letters A 377:
699–702.

Jasim, B. H., K. H. Hassan, and K. M. Omran, 2021 A new 4-d
hyperchaotic hidden attractor system: Its dynamics, coexist-
ing attractors, synchronization and microcontroller implementa-
tion. International Journal of Electrical & Computer Engineering
(2088-8708) 11.

Khalaf, A. J. M., H. R. Abdolmohammadi, A. Ahmadi, L. Moysis,
C. Volos, et al., 2020 Extreme multi-stability analysis of a novel
5d chaotic system with hidden attractors, line equilibrium, per-
mutation entropy and its secure communication scheme. The
European Physical Journal Special Topics 229: 1175–1188.

Kingni, S. T., G. F. Kuiate, V. K. Tamba, V.-T. Pham, and D. V. Hoang,
2019 Self-excited and hidden attractors in an autonomous joseph-
son jerk oscillator: analysis and its application to text encryption.
Journal of Computational and Nonlinear Dynamics 14: 071004.

Kuznetsov, N., 2020 Theory of hidden oscillations and stability
of control systems. Journal of Computer and Systems Sciences
International 59: 647–668.

Kuznetsov, N., T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stanke-
vich, et al., 2023 Hidden attractors in chua circuit: mathematical
theory meets physical experiments. Nonlinear Dynamics 111:
5859–5887.

Kuznetsov, N. V., M. Y. Lobachev, M. V. Yuldashev, R. V. Yuldashev,
E. V. Kudryashova, et al., 2020 The birth of the global stability
theory and the theory of hidden oscillations. In 2020 European
Control Conference (ECC), pp. 769–774, IEEE.

Lai, Q., Z. Wan, and P. D. Kamdem Kuate, 2020 Modelling and
circuit realisation of a new no-equilibrium chaotic system with
hidden attractor and coexisting attractors. Electronics Letters 56:
1044–1046.

Lakshmanan, M. and S. Rajaseekar, 2012 Nonlinear dynamics: inte-
grability, chaos and patterns. Springer Science & Business Media.

Lin, H., C. Wang, and Y. Tan, 2020 Hidden extreme multistability
with hyperchaos and transient chaos in a hopfield neural net-
work affected by electromagnetic radiation. Nonlinear Dynamics
99: 2369–2386.

Molaie, M., S. Jafari, J. C. Sprott, and S. M. R. H. Golpayegani, 2013
Simple chaotic flows with one stable equilibrium. International
Journal of Bifurcation and Chaos 23: 1350188.

Munmuangsaen, B. and B. Srisuchinwong, 2018 A hidden chaotic
attractor in the classical lorenz system. Chaos, Solitons & Fractals
107: 61–66.

Nag Chowdhury, S. and D. Ghosh, 2020 Hidden attractors: A
new chaotic system without equilibria. The European Physical
Journal Special Topics 229: 1299–1308.

Njitacke, Z., T. Fozin, L. K. Kengne, G. Leutcho, E. M. Kengne,
et al., 2020 Multistability and its annihilation in the chua’s os-
cillator with piecewise-linear nonlinearity. Chaos Theory and
Applications 2: 77–89.

Pham, V.-T., C. Volos, S. Jafari, and T. Kapitaniak, 2017 Coexistence

of hidden chaotic attractors in a novel no-equilibrium system.
Nonlinear Dynamics 87: 2001–2010.

Pulido-Luna, J. R., J. A. López-Rentería, N. R. Cazarez-Castro,
and E. Campos, 2021 A two-directional grid multiscroll hidden
attractor based on piecewise linear system and its application in
pseudo-random bit generator. Integration 81: 34–42.

Rybin, V., A. Tutueva, T. Karimov, G. Kolev, D. Butusov, et al.,
2021 Optimizing the synchronization parameters in adaptive
models of rössler system. In 2021 10th Mediterranean Conference
on Embedded Computing (MECO), pp. 1–4, IEEE.

Tanaka, K., T. Ikeda, and H. O. Wang, 1998 A unified approach
to controlling chaos via an lmi-based fuzzy control system de-
sign. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications 45: 1021–1040.

Wang, N., G. Zhang, N. V. Kuznetsov, and H. Bao, 2021 Hidden
attractors and multistability in a modified chua’s circuit. Com-
munications in Nonlinear Science and Numerical Simulation 92:
105494.

Wang, X. and G. Chen, 2012 A chaotic system with only one stable
equilibrium. Communications in Nonlinear Science and Numer-
ical Simulation 17: 1264–1272.

Wei, Z., 2011 Dynamical behaviors of a chaotic system with no
equilibria. Physics Letters A 376: 102–108.

Wu, X., H. Wang, and S. He, 2021 Localization of hidden attrac-
tors in chua’s system with absolute nonlinearity and its fpga
implementation. Frontiers in Physics 9: 788329.

Yang, L. and Q. Lai, 2023 Construction and implementation of
discrete memristive hyperchaotic map with hidden attractors
and self-excited attractors. Integration p. 102091.

Ye, X. and X. Wang, 2023 Hidden oscillation and chaotic sea in a
novel 3d chaotic system with exponential function. Nonlinear
Dynamics pp. 1–10.

Zaqueros-Martinez, J., G. Rodriguez-Gomez, E. Tlelo-Cuautle, and
F. Orihuela-Espina, 2023 Fuzzy synchronization of chaotic sys-
tems with hidden attractors. Entropy 25: 495.

Zelinka, I., 2016 Evolutionary identification of hidden chaotic at-
tractors. Engineering Applications of Artificial Intelligence 50:
159–167.

How to cite this article: Zeeshan, H. M., Reátegui, R. J., García-
López, J. H., Bibi, S., and Cuellar, G. H. Hidden Attractors in
Chaotic Systems with Nonlinear Functions. Chaos Theory and Ap-
plications, 6(2), 144-151, 2024.

Licensing Policy: The published articles in CHTA are licensed
under a Creative Commons Attribution-NonCommercial 4.0 Inter-
national License.

CHAOS Theory and Applications 151

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

