

Konuralp Journal of Mathematics
Volume 5 No. 2 Pp. 78-86 (2017) ©KJM

DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC ${ }^{C G} g$ ON THE (1,1)-TENSOR BUNDLE $T_{1}^{1}(M)$.

HAŞIM ÇAYIR AND MOHAMMAD NAZRUL ISLAM KHAN

Abstract

In this paper, we define the Cheeger-Gromoll metric in the $(1,1)$ -tensor bundle $T_{1}^{1}(M)$, which is completely determined by its action on vector fields of type X^{H} and ω^{V}. Later, we obtain the covarient and Lie derivatives applied to the Cheeger-Gromoll metric with respect to the horizontal and vertical lifts of vector and kovector fields, respectively.

1. Introduction

Let M be a differentiable manifold of class C^{∞} and finite dimension n. Then the set $T_{1}^{1}(M)=\cup_{P \in M} T_{1}^{1}(P)$ is, by definition, the tensor bundle of type $(1,1)$ over M, where \cup denotes the disjoint union of the tensor spaces $T_{1}^{1}(P)$ for all $P \in M$. For any point \tilde{P} of $T_{1}^{1}(M)$ such that $\tilde{P} \in T_{1}^{1}(M)$, the surjective correspondence $\tilde{P} \rightarrow P$ determines the natural projection $\pi: T_{1}^{1}(M) \rightarrow M$. The projection π defines the natural differentiable manifold structure of $T_{1}^{1}(M)$, that is, $T_{1}^{1}(M)$ is a $C^{\infty}-$ manifold of dimension $n+n^{2}$. If x^{j} are local coordinates in a neighborhood U of $P \in M$, then a tensor t at P which is an element of $T_{1}^{1}(M)$ is expressible in the form $\left(x^{j}, t_{j}^{i}\right)$, where t_{j}^{i} are components of t with respect to the natural base. We may consider $\left(x^{j}, t_{j}^{i}\right)=\left(x^{j}, x^{\bar{j}}\right)=\left(x^{J}\right), j=1, \ldots, n, \bar{j}=n+1, \ldots, n+n^{2}, J=1, \ldots, n+n^{2}$ as local coordinates in a neighborhood $\pi^{-1}(U)$.

Let $X=X^{i} \frac{\partial}{\partial x^{i}}$ and $A=A_{j}^{i} \frac{\partial}{\partial x^{i}} \otimes d x^{j}$ be the local expressions in U of a vector field X and a $(1,1)$ tensor field A on M, respectively. Then the vertical lift A^{V} of A and the horizontal lift X^{H} of X are given, with respect to the induced coordinates, by

$$
\begin{equation*}
{ }^{V} A=\binom{{ }^{V} A^{j}}{{ }^{V} A^{\bar{j}}}=\binom{0}{A_{j}^{i}} \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
{ }^{H} X=\binom{{ }^{H} X^{j}}{{ }^{H} X^{\bar{j}}}=\binom{X^{j}}{X^{s}\left(\Gamma_{s j}^{m} t_{m}^{i}-\Gamma_{s m}^{i} t_{j}^{m}\right)} \tag{1.2}
\end{equation*}
$$

\]

where $\Gamma_{i j}^{h}$ are the coefficient of the connection ∇ on M [9].
Let $\varphi \in \Im_{1}^{1}(M)$. The global vector fields $\gamma \varphi$ and $\tilde{\gamma} \varphi \in \Im_{0}^{1}\left(\Im_{1}^{1}(M)\right)$ are respectively defined by

$$
\gamma \varphi=\binom{0}{t_{j}^{m} \varphi_{m}^{i}}, \tilde{\gamma} \varphi=\binom{0}{t_{m}^{i} \varphi_{j}^{m}}
$$

with respect to the coordinates $\left(x^{i}, x^{\bar{j}}\right)$ in $T_{1}^{1}(M)$, where φ_{j}^{i} are the components of φ [9].

The Lie bracket operation of vertical and horizontal vector fields on $T_{1}^{1}(M)$ is given by

$$
\begin{align*}
{\left[{ }^{H} X,{ }^{H} Y\right] } & ={ }^{H}[X, Y]+(\tilde{\gamma}-\gamma) R(X, Y) \tag{1.3}\\
{\left[{ }^{H} X,{ }^{V} A\right] } & ={ }^{V}\left(\nabla_{X} A\right) \\
{\left[{ }^{V} A,{ }^{V} B\right] } & =0
\end{align*}
$$

for any $X, Y \in \Im_{0}^{1}(M)$ and $A, B \in \Im_{1}^{1}(M)$, where R is the curvature tensor field of the connection ∇ on M defined by $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$ and $(\tilde{\gamma}-\gamma) R(X, Y)=\left({ }_{t_{m}^{i} R_{k l j}^{m} X^{k} Y^{l}-t_{j}^{m} R_{k l m}^{i} X^{k} Y^{l}}\right)$ (for details, see $[7,17]$ and for sufraces $[3,4])$.
1.1. Cheeger-Gromoll type metric on the (1, 1)-tensor bundle. An ndimensional manifold M in which a $(1,1)$ tensor field φ satisfying $\varphi^{2}=i d, \varphi \neq \pm i d$ is given is called an almost product manifold. A Riemannian almost product manifold (M, φ, g) is a manifold M with an almost product structure φ and a Riemannian metric g such that $[1,2,10,11]$

$$
\begin{equation*}
g(\varphi X, Y)=g(X, \varphi Y) \tag{1.4}
\end{equation*}
$$

for all $X, Y \in \Im_{0}^{1}(M)$. Also, the condition (3.1) is referred to as purity condition for g with respect to $\varphi[9]$. The almost product structure φ is integrable, i.e. the Nijenhuis tensor N_{φ} determined by

$$
N_{\varphi}(X, Y)=[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+[X, Y]
$$

for all $X, Y \in \Im_{0}^{1}(M)$ is zero then the Riemannian almost product manifold. (M, φ, g) is called a Riemannian product manifold. A locally decomposable Riemannian manifold can be defined as a triple (M, φ, g) which consists of a smooth manifold M endowed with an almost product structure φ and a pure metric g such that $\nabla \varphi=0$, where ∇ is the Levi-Civita connectian of $g[9]$.

Definition 1.1. Let $T_{1}^{1}(M)$ be the $(1,1)$-tensor bundle over a Riemannian manifold (M, g). For each $P \in M$, the extension of scalar product g (marked by G) is defined on the tensor space $\pi^{-1}(P)=T_{1}^{1}(P)$ by $G(A, B)=g_{i j} g^{j l} A_{j}^{i} B_{l}^{t}$ for all $A, B \in \Im_{1}^{1}(P)$. The Cheeger-Gromoll type metric ${ }^{C G} g$ is defined on $T_{1}^{1}(M)$ by the following three equations:

$$
\begin{equation*}
{ }^{C G} g\left(X^{H}, Y^{H}\right)=(g(X, Y))^{V} \tag{1.5}
\end{equation*}
$$

$$
\begin{gather*}
{ }^{C G} g\left(A^{V}, Y^{H}\right)=0 \tag{1.6}\\
{ }^{C G} g\left(A^{V}, B^{V}\right)=\frac{1}{\alpha}(G(A, B)+G(A, t) G(B, t))^{V} \tag{1.7}
\end{gather*}
$$

for any $X, Y \in \Im_{0}^{1}(M)$ and $A, B \in \Im_{1}^{1}(M)$, where $r^{2}=G(t, t)=g_{i t} g^{j l} t_{j}^{i} t_{l}^{t}$ and $\alpha=1+r^{2}[9]$.

2. Main Results

Definition 2.1. Let M be an n-dimensional diferentiable manifold. Differantial transformation of algebra $T(M)$, defined by

$$
D=\nabla_{X}: T(M) \rightarrow T(M), \quad X \in \Im_{0}^{1}(M)
$$

is called as covariant derivation with respect to vector field X if

$$
\begin{align*}
\nabla_{f X+g Y} t & =f \nabla_{X} t+g \nabla_{Y} t \tag{2.1}\\
\nabla_{X} f & =X f
\end{align*}
$$

where $\forall f, g \in \Im_{0}^{0}(M), \forall X, Y \in \Im_{0}^{1}(M), \forall t \in \Im(M)$ (see [13], p.123).
On the other hand, a transformation defined by

$$
\nabla: \Im_{0}^{1}(M) \times \Im_{0}^{1}(M) \rightarrow \Im_{0}^{1}(M)
$$

is called as an affin connection (see for details $[13,16]$).
Definition 2.2. The horizontal lift ${ }^{H} \nabla$ of any connection ∇ on the tensor bundle $T_{1}^{1}(M)$ is defined by

$$
\begin{align*}
&{ }^{H} \nabla_{V_{A}}{ }^{V} B=0,{ }^{H} \nabla_{V_{A}}{ }^{H} Y=0, \tag{2.2}\\
&{ }^{H} \nabla_{H}{ }^{H}
\end{align*}{ }^{V} B={ }^{V}\left(\nabla_{X} B\right),{ }^{H} \nabla_{H_{X}}{ }^{H} Y={ }^{H}\left(\nabla_{X} Y\right) .
$$

for all vector fields $X, Y \in \Im_{0}^{1}(M)$ and $A, B \in \Im_{1}^{1}(M)$ (see [8, 14, 15, 17]).
Theorem 2.1. Let ${ }^{C G} g$ be the Cheeger-Gromoll type metric ${ }^{C G} g$ defined by (1.5),(1.6),(1.7) and the horizontal lift ${ }^{H} \nabla$ of any connection ∇ on the tensor bundle $T_{1}^{1}(M)$ is defined by (2.2). From Definintion 1.1 and Definintion 2.1, we get the following
results
i) $\left({ }^{H} \nabla_{V_{C}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{V} B\right)=0$,
ii) $\left({ }^{H} \nabla_{V_{C}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{H} Y\right)=0$,
iii) $\left({ }^{H} \nabla_{V_{C}}{ }^{C G} g\right)\left({ }^{H} X, B^{V}\right)=0$,
iv) $\left({ }^{H} \nabla_{V_{C}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{H} Y\right)=0$,
v) $\left({ }^{H} \nabla_{H}{ }_{Z}^{C G} g\right)\left({ }^{V} A,{ }^{H} Y\right)=0$,
vi) $\left({ }^{H} \nabla_{H Z}{ }^{C G} g\right)\left({ }^{H} X,{ }^{V} B\right)=0$,
vii) $\left({ }^{H} \nabla_{H}{ }_{Z}{ }^{C G} g\right)\left({ }^{H} X,{ }^{H} Y\right)=V^{V}\left(\left(\nabla_{Z} g\right)(X, Y)\right)$,
viii) $\left({ }^{H} \nabla_{H_{Z}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{V} B\right)={ }^{V}\left(\nabla_{Z} \frac{1}{\alpha}\right)^{V}(G(A, B)+G(A, t) G(B, t))$
$+\frac{1}{\alpha}^{V}\left(\left(\nabla_{Z} G\right)(A, B)\right)+\frac{1}{\alpha}^{V}\left(\nabla_{Z}(G(A, t) G(B, t))\right)$
$-\frac{1}{\alpha}^{V}\left(G\left(\left(\nabla_{Z} A\right), t\right) G(B, t)\right)$
$-\frac{1}{\alpha}^{V}\left(G(A, t) G\left(\left(\nabla_{Z} B\right), t\right)\right)$,
where the vertical lift ${ }^{V} A \in \Im_{0}^{1}\left(T_{1}^{1} M\right)$ of $A \in \Im_{1}^{1}(M)$ and the horizontal lifts ${ }^{H} X \in \Im_{0}^{1}\left(T_{1}^{1} M\right)$ of $X \in \Im_{0}^{1}(M)$ defined by (1.1) and (1.2), respectively.

Proof. i)

$$
\begin{aligned}
\left({ }^{H} \nabla_{V_{C}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{V} B\right)= & { }^{H} \nabla_{V_{C}}{ }^{C G} g\left({ }^{V} A,{ }^{V} B\right)-{ }^{C G} g\left({ }^{H} \nabla_{V_{C}}{ }^{V} A,{ }^{V} B\right) \\
& -{ }^{C G} g\left({ }^{V} A,{ }^{H} \nabla_{V_{C}}{ }^{V} B\right) \\
= & { }^{H} \nabla_{V_{C}} \frac{1}{\alpha}(G(A, B)+G(A, t) G(B, t)) \\
= & 0
\end{aligned}
$$

ii)

$$
\begin{aligned}
\left({ }^{H} \nabla_{V_{C}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{H} Y\right)= & { }^{H} \nabla_{V_{C}}{ }^{C G} g\left({ }^{V} A,{ }^{H} Y\right)-{ }^{C G} g\left({ }^{H} \nabla_{V_{C}}{ }^{V} A,{ }^{H} Y\right) \\
& -{ }^{C G} g\left({ }^{V} A,{ }^{H} \nabla_{V_{C}}{ }^{H} Y\right) \\
= & -{ }^{C G} g\left({ }^{V} A,{ }^{H} \nabla_{V_{C}}{ }^{H} Y\right) \\
= & 0
\end{aligned}
$$

iii)

$$
\begin{aligned}
\left({ }^{H} \nabla_{V_{C}}{ }^{C G} g\right)\left({ }^{H} X, B^{V}\right)= & { }^{H} \nabla_{V_{C}}{ }^{C G} g\left({ }^{H} X,{ }^{V} B\right)-{ }^{C G} g\left({ }^{H} \nabla_{V_{C}}{ }^{H} X,{ }^{V} B\right) \\
& -{ }^{C G} g\left({ }^{H} X,{ }^{H} \nabla_{V_{C}}{ }^{V} B\right) \\
= & -{ }^{C G} g\left({ }^{H} \nabla_{V_{C}}{ }^{H} X,{ }^{V} B\right) \\
= & 0
\end{aligned}
$$

iv)

$$
\begin{aligned}
\left({ }^{H} \nabla_{V_{C}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{H} Y\right)= & { }^{H} \nabla_{V_{C}}{ }^{C G} g\left({ }^{H} X,{ }^{H} Y\right)-{ }^{C G} g\left({ }^{H} \nabla_{v_{C}}{ }^{H} X,{ }^{H} Y\right) \\
& -{ }^{C G} g\left({ }^{H} X,{ }^{H} \nabla_{v_{C}}{ }^{H} Y\right) \\
= & { }^{H} \nabla_{v_{C}}{ }^{V}(g(X, Y)) \\
= & { }^{V} C^{V}(g(X, Y)) \\
= & 0
\end{aligned}
$$

v)

$$
\begin{aligned}
\left({ }^{H} \nabla_{H_{Z}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{H} Y\right)= & { }^{H} \nabla_{H_{Z}}{ }^{C G} g\left({ }^{V} A,{ }^{H} Y\right)-{ }^{C G} g\left({ }^{H} \nabla_{H_{Z}}{ }^{V} A,{ }^{H} Y\right) \\
& -{ }^{C G} g\left({ }^{V} A,{ }^{H} \nabla^{H} Z{ }^{H} Y\right) \\
= & { }^{C G} g\left({ }^{V}\left(\nabla_{Z} A\right),{ }^{H} Y\right)-{ }^{C G} g\left({ }^{V} A,{ }^{H}\left(\nabla_{Z} Y\right)\right) \\
= & 0
\end{aligned}
$$

$v i)$

$$
\begin{aligned}
\left({ }^{H} \nabla_{H_{Z}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{V} B\right)= & { }^{H} \nabla_{H_{Z}}{ }^{C G} g\left({ }^{H} X,{ }^{V} B\right)-{ }^{C G} g\left({ }^{H} \nabla_{H_{Z}}{ }^{H} X,{ }^{V} B\right) \\
& -{ }^{C G} g\left({ }^{H} X,{ }^{H} \nabla_{H}{ }^{V} B\right) \\
= & -{ }^{C G} g\left({ }^{H}\left(\nabla_{Z} X\right),{ }^{V} B\right)-{ }^{C G} g\left({ }^{H} X,{ }^{V}\left(\nabla_{Z} B\right)\right) \\
= & 0
\end{aligned}
$$

vii)

$$
\begin{aligned}
\left({ }^{H} \nabla_{{ }_{H}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{H} Y\right)= & { }^{H} \nabla_{{ }_{H}}{ }^{C G} g\left({ }^{H} X,{ }^{H} Y\right)-{ }^{C G} g\left({ }^{H} \nabla_{{ }_{H}} Z^{H} X,{ }^{H} Y\right) \\
& -{ }^{C G} g\left({ }^{H} X,{ }^{H} \nabla_{H}{ }^{H} Y\right) \\
= & { }^{H} \nabla_{H}{ }_{Z}{ }^{V}(g(X, Y))-C G \\
& -{ }^{C G} g\left({ }^{H}\left(\nabla_{Z} X\right),{ }^{H} Y\right) \\
& \left.-{ }^{H}\left(\nabla_{Z} Y\right)\right) \\
= & { }^{V}\left(\nabla_{Z} g(X, Y)\right)-{ }^{V}\left(g\left(\left(\nabla_{Z} X\right), Y\right)\right)-{ }^{V}\left(g\left(X,\left(\nabla_{Z} Y\right)\right)\right) \\
= & { }^{V}\left(\left(\nabla_{Z} g\right)(X, Y)\right)
\end{aligned}
$$

viii)

$$
\begin{aligned}
\left({ }^{H} \nabla_{H}{ }_{Z}{ }^{C G} g\right)\left({ }^{V} A,{ }^{V} B\right)= & { }^{H} \nabla_{H_{Z}}{ }^{C G} g\left({ }^{V} A,{ }^{V} B\right)-{ }^{C G} g\left({ }^{H} \nabla_{H_{Z}}{ }^{V} A,{ }^{V} B\right) \\
& -{ }^{C G} g\left({ }^{V} A,{ }^{H} \nabla_{H}{ }^{V} B\right) \\
= & { }^{H} \nabla^{H} Z \\
& \frac{1}{\alpha}^{V}(G(A, B)+G(A, t) G(B, t)) \\
& -{ }^{C G} g\left({ }^{V}\left(\nabla_{Z} A\right){ }^{V} B\right)-{ }^{C G} g\left({ }^{V} A,^{V}\left(\nabla_{Z} B\right)\right) \\
= & { }^{V}\left(\nabla_{Z} \frac{1}{\alpha}\right)^{V}(G(A, B)+G(A, t) G(B, t)) \\
& +\frac{1}{\alpha}{ }^{V}\left(\nabla_{Z}(G(A, B)+G(A, t) G(B, t))\right) \\
& -\frac{1}{\alpha}{ }^{V}\left(G\left(\left(\nabla_{Z} A\right), B\right)+G\left(\left(\nabla_{Z} A\right), t\right) G(B, t)\right) \\
& -\frac{1}{\alpha}{ }^{V}\left(G\left(A,\left(\nabla_{Z} B\right)\right)+G(A, t) G\left(\left(\nabla_{Z} B\right), t\right)\right) \\
= & { }^{V}\left(\nabla_{Z} \frac{1}{\alpha}\right)^{V}(G(A, B)+G(A, t) G(B, t)) \\
& +\frac{1}{\alpha}{ }^{V}\left(\left(\nabla_{Z} G\right)(A, B)\right)+\frac{1}{\alpha}{ }^{V}\left(\nabla_{Z}(G(A, t) G(B, t))\right) \\
& -\frac{1}{\alpha}{ }^{V}\left(G\left(\left(\nabla_{Z} A\right), t\right) G(B, t)\right)-\frac{1}{\alpha}{ }^{V}\left(G(A, t) G\left(\left(\nabla_{Z} B\right), t\right)\right)
\end{aligned}
$$

Definition 2.3. Let M be an n-dimensional differentiable manifold. Differential transformation $D=L_{X}$ is called as Lie derivation with respect to vector field $X \in \Im_{0}^{1}(M)$ if

$$
\begin{align*}
L_{X} f & =X f, \forall f \in \Im_{0}^{0}(M) \tag{2.3}\\
L_{X} Y & =[X, Y], \forall X, Y \in \Im_{0}^{1}(M)
\end{align*}
$$

[$X, Y]$ is called by Lie bracked. The Lie derivative $L_{X} F$ of a tensor field F of type $(1,1)$ with respect to a vector field X is defined by $[5,6,12,18]$

$$
\begin{equation*}
\left(L_{X} F\right) Y=[X, F Y]-F[X, Y] \tag{2.4}
\end{equation*}
$$

Definition 2.4. The bracket operation of vertical and horizontal vector fields is given by the formulas

$$
\left\{\begin{array}{l}
{\left[{ }^{V} A,{ }^{V} B\right]=0} \tag{2.5}\\
{\left[{ }^{H} X,{ }^{V} A\right]={ }^{V}\left(\nabla_{X} A\right)} \\
\left.{ }^{H} X,{ }^{H} Y\right]={ }^{H}[X, Y]+(\tilde{\gamma}-\gamma) R(X, Y)
\end{array}\right.
$$

where R denotes the curvature tensor field of the connection ∇, and $\tilde{\gamma}-\gamma: \varphi \rightarrow$ $\Im_{0}^{1}\left(T_{1}^{1}(M)\right)$ is the operator defined by

$$
(\tilde{\gamma}-\gamma) \varphi=\binom{0}{t_{m}^{i} \varphi_{j}^{m}-t_{j}^{m} \varphi_{m}^{i}}
$$

for any $\varphi \in \Im_{1}^{1}(M)$ [17].

Theorem 2.2. Let ${ }^{C G} g$ be the Cheeger-Gromoll type metric ${ }^{C G} g$ defined by (1.5),(1.6),(1.7) and L_{X} the operator Lie derivation with respect to X. From Definintion 2.3 and Definintion 2.4, we get the following results
i) $\left(L_{V_{C}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{V} B\right)=0$
ii) $\left(L_{V_{C}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{H} Y\right)=0$
iii) $\left(L_{H_{Z}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{H} Y\right)=-{ }^{C G} g\left({ }^{V} A,(\tilde{\gamma}-\gamma) R(Z, Y)\right)$
iv) $\left(L_{H}{ }_{Z}{ }^{C G} g\right)\left({ }^{H} X,{ }^{V} B\right)=-{ }^{C G} g\left((\tilde{\gamma}-\gamma) R(Z, X),{ }^{V} B\right)$
v) $\left(L_{V_{C}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{H} Y\right)=\frac{1}{\alpha}^{V}\left(G\left(A,\left(\nabla_{Y} C\right)\right)+G(A, t) G\left(\left(\nabla_{Y} C\right), t\right)\right)$
vi) $\left(L_{V_{C}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{V} B\right)=\frac{1}{\alpha}^{V}\left(G\left(\left(\nabla_{X} C\right), B\right)+G\left(\left(\nabla_{X} C\right), t\right) G(B, t)\right)$
vii) $\left(L_{H_{Z}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{H} Y\right)={ }^{V}\left(\left(L_{Z} g\right)(X, Y)\right)-{ }^{C G} g\left((\tilde{\gamma}-\gamma) R(Z, X),{ }^{H} Y\right)$

$$
-{ }^{C G} g\left({ }^{H} X,(\tilde{\gamma}-\gamma) R(Z, Y)\right)
$$

viii) $\left(L_{H_{Z}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{V} B\right)={ }^{V}\left(\nabla_{Z} \frac{1}{\alpha}\right)^{V}(G(A, B)+G(A, t) G(B, t))$
$+\frac{1}{\alpha}^{V}\left(\left(\nabla_{Z} G\right)(A, B)\right)+\frac{1}{\alpha}^{V}\left(\nabla_{Z}(G(A, t) G(B, t))\right)$
$-\frac{1}{\alpha}^{V}\left(G(A, t) G\left(\left(\nabla_{Z} B\right), t\right)\right)$
$-\frac{1}{\alpha}^{V}\left(G\left(\left(\nabla_{Z} A\right), t\right) G(B, t)\right)$
where the vertical lift ${ }^{V} A \in \Im_{0}^{1}\left(T_{1}^{1} M\right)$ of $A \in \Im_{1}^{1}(M)$ and the horizontal lifts ${ }^{H} X \in \Im_{0}^{1}\left(T_{1}^{1} M\right)$ of $X \in \Im_{0}^{1}(M)$ defined by (1.1) and (1.2), respectively.
Proof. i)

$$
\begin{aligned}
\left(L_{V_{C}}^{C G} g\right)\left({ }^{V} A,{ }^{V} B\right) & =L_{V}{ }^{C G} g\left({ }^{V} A,{ }^{V} B\right)-{ }^{C G} g\left(L_{V_{C}}{ }^{V} A,{ }^{V} B\right)-{ }^{C G} g\left({ }^{V} A, L_{V_{C}}{ }^{V} B\right) \\
& =0
\end{aligned}
$$

ii)

$$
\begin{aligned}
\left(L_{V_{C}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{H} Y\right) & =L_{V_{C}}{ }^{C G} g\left({ }^{H} X,{ }^{H} Y\right)-{ }^{C G} g\left(L_{V_{C}}{ }^{H} X,{ }^{H} Y\right)-{ }^{C G} g\left({ }^{H} X, L_{V_{C}}{ }^{H} Y\right) \\
& =L_{V_{C}}{ }^{V}(g(X, Y))+{ }^{C G} g\left({ }^{V}\left(\nabla_{X} C\right),{ }^{H} Y\right)+{ }^{C G} g\left({ }^{H} X,{ }^{V}\left(\nabla_{Y} C\right)\right) \\
& ={ }^{V} C^{V}(g(X, Y)) \\
& =0
\end{aligned}
$$

iii)

$$
\begin{aligned}
\left(L_{H}{ }_{Z}^{C G} g\right)\left({ }^{V} A,{ }^{H} Y\right) & =L_{H_{Z}}{ }^{C G} g\left({ }^{V} A,{ }^{H} Y\right)-{ }^{C G} g\left(L_{H} Z{ }^{V} A,{ }^{H} Y\right)-{ }^{C G} g\left({ }^{V} A, L_{H}{ }^{H}{ }^{H} Y\right) \\
& =-{ }^{C G} g\left({ }^{V}\left(\nabla_{Z} A\right),{ }^{H} Y\right)-{ }^{C G} g\left({ }^{V} A,{ }^{H}[Z, Y]+(\tilde{\gamma}-\gamma) R(Z, Y)\right) \\
& =-{ }^{C G} g\left({ }^{V} A,{ }^{H}\left(L_{Z} Y\right)\right)-{ }^{C G} g\left({ }^{V} A,(\tilde{\gamma}-\gamma) R(Z, Y)\right) \\
& =-{ }^{C G} g\left({ }^{V} A,(\tilde{\gamma}-\gamma) R(Z, Y)\right)
\end{aligned}
$$

iv)

$$
\begin{aligned}
\left(L_{H}{ }_{Z}^{C G} g\right)\left({ }^{H} X,{ }^{V} B\right) & =L_{H}{ }^{C G} g\left({ }^{H} X,{ }^{V} B\right)-{ }^{C G} g\left(L_{H}{ }^{H} X,{ }^{V} B\right)-{ }^{C G} g\left({ }^{H} X, L_{H}{ }_{Z}{ }^{V} B\right) \\
& =-{ }^{C G} g\left({ }^{H}[Z, X]+(\tilde{\gamma}-\gamma) R(Z, X),{ }^{V} B\right)-{ }^{C G} g\left({ }^{H} X,{ }^{V}\left(\nabla_{Z} B\right)\right) \\
& =-{ }^{C G} g\left((\tilde{\gamma}-\gamma) R(Z, X),{ }^{V} B\right)
\end{aligned}
$$

DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS ... 85
v)

$$
\begin{aligned}
\left(L_{V_{C}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{H} Y\right) & =L_{V_{C}}{ }^{C G} g\left({ }^{V} A,{ }^{H} Y\right)-{ }^{C G} g\left(L_{V_{C}}{ }^{V} A,{ }^{H} Y\right)-{ }^{C G} g\left({ }^{V} A, L_{V_{C}}{ }^{H} Y\right) \\
& ={ }^{C G} g\left({ }^{V} A,{ }^{V}\left(\nabla_{Y} C\right)\right) \\
& \left.=\frac{1^{V}}{\alpha}\left(G\left(A,\left(\nabla_{Y} C\right)\right)+G(A, t) G\left(\left(\nabla_{Y} C\right), t\right)\right)\right)
\end{aligned}
$$

vi)

$$
\begin{aligned}
\left(L_{V_{C}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{V} B\right) & =L_{V_{C}}{ }^{C G} g\left({ }^{H} X,{ }^{V} B\right)-{ }^{C G} g\left(L_{V_{C}}{ }^{H} X,{ }^{V} B\right)-{ }^{C G} g\left({ }^{H} X, L_{V_{C}}{ }^{V} B\right) \\
& =+{ }^{C G} g\left({ }^{V}\left(\nabla_{X} C\right),{ }^{V} B\right) \\
& =\frac{1}{\alpha}{ }^{V}\left(G\left(\left(\nabla_{X} C\right), B\right)+G\left(\left(\nabla_{X} C\right), t\right) G(B, t)\right)
\end{aligned}
$$

vii)

$$
\begin{aligned}
\left(L_{H_{Z}}{ }^{C G} g\right)\left({ }^{H} X,{ }^{H} Y\right)= & L_{H_{Z}}{ }^{C G} g\left({ }^{H} X,{ }^{H} Y\right)-{ }^{C G} g\left(L_{H_{Z}}{ }^{H} X,{ }^{H} Y\right)-{ }^{C G} g\left({ }^{H} X, L_{H_{Z}}{ }^{H} Y\right) \\
= & { }^{H} Z^{V}(g(X, Y))-{ }^{C G} g\left({ }^{H}[Z, X]+(\tilde{\gamma}-\gamma) R(Z, X),{ }^{H} Y\right) \\
& -{ }^{C G} g\left({ }^{H} X,{ }^{H}[Z, Y]+(\tilde{\gamma}-\gamma) R(Z, Y)\right) \\
= & { }^{V}\left(L_{Z} g(X, Y)\right)-{ }^{V}\left(g\left(\left(L_{Z} X\right), Y\right)\right)-{ }^{V}\left(g\left(X,\left(L_{Z} Y\right)\right)\right) \\
& -{ }^{C G} g\left((\tilde{\gamma}-\gamma) R(Z, X),{ }^{H} Y\right)-{ }^{C G} g\left({ }^{H} X,(\tilde{\gamma}-\gamma) R(Z, Y)\right) \\
= & { }^{V}\left(\left(L_{Z} g\right)(X, Y)\right)-{ }^{C G} g\left((\tilde{\gamma}-\gamma) R(Z, X),{ }^{H} Y\right) \\
& -{ }^{C G} g\left({ }^{H} X,(\tilde{\gamma}-\gamma) R(Z, Y)\right)
\end{aligned}
$$

viii)

$$
\begin{aligned}
\left(L_{H_{Z}}{ }^{C G} g\right)\left({ }^{V} A,{ }^{V} B\right)= & L_{H}{ }_{Z}{ }^{C G} g\left({ }^{V} A,{ }^{V} B\right)-{ }^{C G} g\left(L_{H}{ }_{Z}{ }^{V} A,{ }^{V} B\right)-{ }^{C G} g\left({ }^{V} A, L_{H_{Z}}{ }^{V} B\right) \\
= & { }^{H} Z\left(\frac{1}{\alpha}{ }^{V}(G(A, B)+G(A, t) G(B, t))\right)^{C G} g\left({ }^{V}\left(\nabla_{Z} A\right),{ }^{V} B\right) \\
& -{ }^{C G} g\left({ }^{V} A,{ }^{V}\left(\nabla_{Z} B\right)\right. \\
= & { }^{V}\left(\nabla_{Z} \frac{1}{\alpha}\right)^{V}(G(A, B)+G(A, t) G(B, t)) \\
& +\frac{1}{\alpha}{ }^{V}\left(\nabla_{Z}(G(A, B)+G(A, t) G(B, t))\right) \\
& -\frac{1}{\alpha}{ }^{V}\left(G\left(\left(\nabla_{Z} A\right), B\right)+G\left(\left(\nabla_{Z} A\right), t\right) G(B, t)\right) \\
& -\frac{1}{\alpha}{ }^{V}\left(G\left(A,\left(\nabla_{Z} B\right)\right)+G(A, t) G\left(\left(\nabla_{Z} B\right), t\right)\right) \\
= & { }^{V}\left(\nabla_{Z} \frac{1}{\alpha}\right)^{V}(G(A, B)+G(A, t) G(B, t))+\frac{1}{\alpha}{ }^{V}\left(\left(\nabla_{Z} G\right)(A, B)\right) \\
& +\frac{1}{\alpha}\left(\nabla_{Z}(G(A, t) G(B, t))\right)-\frac{1}{\alpha}{ }^{V}\left(G\left(\left(\nabla_{Z} A\right), t\right) G(B, t)\right) \\
& -\frac{1}{\alpha}{ }^{V}\left(G(A, t) G\left(\left(\nabla_{Z} B\right), t\right)\right)
\end{aligned}
$$

References

[1] Akyol, M. A., Sarı, R. and Aksoy, E., Semi-invariant -Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14, 1750074 (2017) DOI: http://dx.doi.org/10.1142/S0219887817500748.
[2] Akyol, M. A., Conformal anti-invariant submersions from cosymplectic manifolds, Hacet. J. Math. Stat. 46(2017), no.2, 177-192.
[3] Çakmak, A. and Tarakcı, Ö., Surfaces at a constant distance from the edge of regression on a surface of revolution in . Applied Mathematical Sciences, 10(2016), no.15, 707-719.
[4] Çakmak, A., Karacan, M.K., Kiziltug, S. and Yoon, D.W., Translatıon surfaces in the 3-dımensınal Galılean space satısfyıng . Bull. Korean Math. Soc. https://doi.org/10.4134/BKMS.b160442.
[5] Çayır, H. and Akdağ, K., Some notes on almost paracomplex structures associated with the diagonal lifts and operators on cotangent bundle, New Trends in Mathematical Sciences, 4(2016), no.4, 42-50.
[6] Çayır, H. and Köseoğlu, G., Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to X^{C} and X^{V} on Tangent Bundle $T(M)$, New Trends in Mathematical Sciences, 4(2016), no.1, 153-159.
[7] Cengiz, N. and Salimov, A. A., Complete lifts of derivations to tensor bundles, Bol. Soc. Mat. Mexicana (3) 8(2002), no.1, 75-82.
[8] Gancarzewicz, J. and Rahmani, N., Relevent horizontal des connexions linearies au fibre vectoriel associe avec le fibre principal des repres lineaires, Annales Polinici Math., 48(1988), 281-289.
[9] Gezer, A. and Altunbas, M., On the $(1,1)$ - tensor bundle with Cheeger-Grommol type metric, Proc. Indian Acad. Sci.(Math Sci.) 125(2015), no.4, 569-576.
[10] Gündüzalp, Y., Slant submersions from almost paracontact Riemannian manifolds, product Riemannian manifolds, Kuwait Journal of Science, 42(2015), no.1, 17-29.
[11] Gündüzalp, Y., Semi-slant submersions from almost product Riemannian manifolds, DEMONSTRATIO MATHEMATICA, 49(2016), no.4.
[12] Khan, M. N. I., and Jun, J.B., Lorentzian Almost r-para-contact Structure in Tangent Bundle, Journal of the Chungcheong Mathematical Society, 27(2014), no.1, 29-34.
[13] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry-Volume I, John Wiley \& Sons, Inc, New York, 1963.
[14] Lai, K. F. and Mok, K. P., On the differential geometry of the (1, 1) - tensor bundle, Tensor (New Series), 63(2002), no.1, 15-27.
[15] Ledger, A. J. and Yano, K., Almost complex structures on the tensor bundles, J. Diff. Geom., 1(1967), 355-368.
[16] Salimov, A.A., Tensor Operators and Their applications, Nova Science Publ., New York, 2013.
[17] Salimov, A. and Gezer, A., On the geometry of the $(1,1)$-tensor bundle with Sasaki type metric, Chin. Ann. Math. Ser. B 32(2011), no.3, 369-386.
[18] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973.
Department of Mathematics, Faculty of Arts and Sciences,, Giresun University, 28100, Giresun, Turkey.

E-mail address: hasim.cayir@giresun.edu.tr
Department of Computer Science, College of Computer, Qassim University,, Buraidah51452, P.O. Box 6688, Saudi Arabia.

E-mail address: m.nazrul@qu.edu.sa

[^0]: Date: January 6, 2017 and, in revised form, May 31, 2017.
 2000 Mathematics Subject Classification. 15A72; 47B47; 53A45; 53C15.
 Key words and phrases. (1,1)-tensor bundle, Covarient Derivative, Lie Derivative, CheegerGromoll metric, Horizontal Lift, Vertical Lift.

 This study is supported by Giresun University Scientific Projects Office (GBAP)(Project No:FEN-BAP-A-160317-49, 2017).

