DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC ^{CG}g ON THE (1,1)-TENSOR BUNDLE $T_1^1(M)$.

HAŞIM ÇAYIR AND MOHAMMAD NAZRUL ISLAM KHAN

ABSTRACT. In this paper, we define the Cheeger-Gromoll metric in the (1,1) —tensor bundle $T_1^1(M)$, which is completely determined by its action on vector fields of type X^H and ω^V . Later, we obtain the covarient and Lie derivatives applied to the Cheeger-Gromoll metric with respect to the horizontal and vertical lifts of vector and kovector fields, respectively.

1. Introduction

Let M be a differentiable manifold of class C^{∞} and finite dimension n. Then the set $T_1^1(M) = \bigcup_{P \in M} T_1^1(P)$ is, by definition, the tensor bundle of type (1,1) over M, where \cup denotes the disjoint union of the tensor spaces $T_1^1(P)$ for all $P \in M$. For any point \tilde{P} of $T_1^1(M)$ such that $\tilde{P} \in T_1^1(M)$, the surjective correspondence $\tilde{P} \to P$ determines the natural projection $\pi: T_1^1(M) \to M$. The projection π defines the natural differentiable manifold structure of $T_1^1(M)$, that is, $T_1^1(M)$ is a C^{∞} - manifold of dimension $n+n^2$. If x^j are local coordinates in a neighborhood U of $P \in M$, then a tensor t at P which is an element of $T_1^1(M)$ is expressible in the form (x^j,t^i_j) , where t^i_j are components of t with respect to the natural base. We may consider $(x^j,t^i_j)=(x^j,x^{\bar{j}})=(x^J),j=1,...,n,\bar{j}=n+1,...,n+n^2,J=1,...,n+n^2$ as local coordinates in a neighborhood $\pi^{-1}(U)$.

as local coordinates in a neighborhood $\pi^{-1}(U)$. Let $X = X^i \frac{\partial}{\partial x^i}$ and $A = A^i_j \frac{\partial}{\partial x^i} \otimes dx^j$ be the local expressions in U of a vector field X and a (1,1) tensor field A on M, respectively. Then the vertical lift A^V of A and the horizontal lift X^H of X are given, with respect to the induced coordinates, by

$$(1.1) ^{V}A = \begin{pmatrix} ^{V}A^{j} \\ ^{V}A^{\bar{j}} \end{pmatrix} = \begin{pmatrix} 0 \\ A^{i}_{j} \end{pmatrix}$$

Date: January 6, 2017 and, in revised form, May 31, 2017.

²⁰⁰⁰ Mathematics Subject Classification. 15A72; 47B47; 53A45; 53C15.

Key words and phrases. (1,1)—tensor bundle, Covarient Derivative, Lie Derivative, Cheeger-Gromoll metric, Horizontal Lift, Vertical Lift.

This study is supported by Giresun University Scientific Projects Office (GBAP)(Project No:FEN-BAP-A-160317-49, 2017).

and

$$(1.2) {}^{H}X = \begin{pmatrix} {}^{H}X^{j} \\ {}^{H}X^{\bar{j}} \end{pmatrix} = \begin{pmatrix} X^{j} \\ X^{s}(\Gamma^{m}_{sj}t^{i}_{m} - \Gamma^{i}_{sm}t^{m}_{j}) \end{pmatrix}$$

where Γ_{ij}^h are the coefficient of the connection ∇ on M [9].

Let $\varphi \in \mathfrak{S}^1_1(M)$. The global vector fields $\gamma \varphi$ and $\tilde{\gamma} \varphi \in \mathfrak{S}^1_0(\mathfrak{S}^1_1(M))$ are respectively defined by

$$\gamma\varphi=\left(\begin{array}{c}0\\t_j^m\varphi_m^i\end{array}\right),\tilde{\gamma}\varphi=\left(\begin{array}{c}0\\t_m^i\varphi_j^m\end{array}\right)$$

with respect to the coordinates $(x^i, x^{\bar{j}})$ in $T_1^1(M)$, where φ_j^i are the components of φ [9].

The Lie bracket operation of vertical and horizontal vector fields on $T_1^1(M)$ is given by

(1.3)
$$\begin{bmatrix} {}^{H}X, {}^{H}Y \end{bmatrix} = {}^{H}[X, Y] + (\tilde{\gamma} - \gamma)R(X, Y)$$

$$\begin{bmatrix} {}^{H}X, {}^{V}A \end{bmatrix} = {}^{V}(\nabla_{X}A)$$

$$[{}^{V}A, {}^{V}B] = 0$$

for any $X,Y \in \mathfrak{F}_0^1(M)$ and $A,B \in \mathfrak{F}_1^1(M)$, where R is the curvature tensor field of the connection ∇ on M defined by $R(X,Y) = [\nabla_X,\nabla_Y] - \nabla_{[X,Y]}$ and $(\tilde{\gamma} - \gamma) R(X,Y) = \begin{pmatrix} i_m R_{klj}^m X^k Y^l - i_j^m R_{klm}^i X^k Y^l \end{pmatrix}$ (for details, see [7, 17] and for sufraces [3, 4]).

1.1. Cheeger-Gromoll type metric on the (1, 1)-tensor bundle. An n-dimensional manifold M in which a (1,1) tensor field φ satisfying $\varphi^2 = id$, $\varphi \neq \pm id$ is given is called an almost product manifold. A Riemannian almost product manifold (M, φ, g) is a manifold M with an almost product structure φ and a Riemannian metric g such that [1, 2, 10, 11]

$$(1.4) g(\varphi X, Y) = g(X, \varphi Y)$$

for all $X, Y \in \mathfrak{F}^1_0(M)$. Also, the condition (3.1) is referred to as purity condition for g with respect to φ [9]. The almost product structure φ is integrable, i.e. the Nijenhuis tensor N_{φ} determined by

$$N_{\omega}(X,Y) = [\varphi X, \varphi Y] - \varphi [\varphi X, Y] - \varphi [X, \varphi Y] + [X, Y]$$

for all $X,Y\in \Im^1_0(M)$ is zero then the Riemannian almost product manifold. (M,φ,g) is called a Riemannian product manifold. A locally decomposable Riemannian manifold can be defined as a triple (M,φ,g) which consists of a smooth manifold M endowed with an almost product structure φ and a pure metric g such that $\nabla \varphi = 0$, where ∇ is the Levi-Civita connection of g [9].

Definition 1.1. Let $T_1^1(M)$ be the (1,1)-tensor bundle over a Riemannian manifold (M,g). For each $P \in M$, the extension of scalar product g (marked by G) is defined on the tensor space $\pi^{-1}(P) = T_1^1(P)$ by $G(A,B) = g_{ij}g^{jl}A_j^iB_l^t$ for all $A,B \in \Im_1^1(P)$. The Cheeger-Gromoll type metric ^{CG}g is defined on $T_1^1(M)$ by the following three equations:

(1.5)
$${}^{CG}g(X^H, Y^H) = (g(X, Y))^V$$

(1.6)
$${}^{CG}g(A^V, Y^H) = 0$$

(1.7)
$${}^{CG}g(A^V, B^V) = \frac{1}{\alpha} (G(A, B) + G(A, t)G(B, t))^V$$

for any $X,Y\in \mathfrak{F}^1_0(M)$ and $A,B\in \mathfrak{F}^1_1(M)$, where $r^2=G(t,t)=g_{it}g^{jl}t^i_jt^t_l$ and $\alpha=1+r^2$ [9].

2. Main Results

Definition 2.1. Let M be an n-dimensional differentiable manifold. Differential transformation of algebra T(M), defined by

$$D = \nabla_X : T(M) \to T(M), \ X \in \mathfrak{F}_0^1(M)$$

is called as covariant derivation with respect to vector field X if

(2.1)
$$\nabla_{fX+gY}t = f\nabla_X t + g\nabla_Y t,$$
$$\nabla_X f = Xf,$$

where $\forall f, g \in \mathfrak{F}_0^0(M), \forall X, Y \in \mathfrak{F}_0^1(M), \forall t \in \mathfrak{F}(M)$ (see [13], p.123). On the other hand, a transformation defined by

$$\nabla: \Im_0^1(M) \times \Im_0^1(M) \to \Im_0^1(M)$$

is called as an affin connection (see for details [13, 16]).

Definition 2.2. The horizontal lift ${}^H\nabla$ of any connection ∇ on the tensor bundle $T_1^1(M)$ is defined by

(2.2)
$${}^{H}\nabla_{VA}{}^{V}B = 0, {}^{H}\nabla_{VA}{}^{H}Y = 0, \\ {}^{H}\nabla_{HX}{}^{V}B = {}^{V}(\nabla_{X}B), {}^{H}\nabla_{HX}{}^{H}Y = {}^{H}(\nabla_{X}Y)$$

for all vector fields $X, Y \in \Im_0^1(M)$ and $A, B \in \Im_1^1(M)$ (see [8, 14, 15, 17]).

Theorem 2.1. Let ${}^{CG}g$ be the Cheeger-Gromoll type metric ${}^{CG}g$ defined by (1.5),(1.6),(1.7) and the horizontal lift ${}^{H}\nabla$ of any connection ∇ on the tensor bundle $T_1^1(M)$ is defined by (2.2). From Definition 1.1 and Definition 2.1, we get the following

results

$$\begin{array}{rcl} i) & ({}^H\nabla_{^VC}{}^{CG}g)(^VA, {}^VB) & = & 0, \\ ii) & ({}^H\nabla_{^VC}{}^{CG}g)(^VA, {}^HY) & = & 0, \\ iii) & ({}^H\nabla_{^VC}{}^{CG}g)(^HX, B^V) & = & 0, \\ iv) & ({}^H\nabla_{^VC}{}^{CG}g)(^HX, {}^HY) & = & 0, \\ v) & ({}^H\nabla_{^HZ}{}^{CG}g)(^VA, {}^HY) & = & 0, \\ vi) & ({}^H\nabla_{^HZ}{}^{CG}g)(^HX, {}^VB) & = & 0, \\ vii) & ({}^H\nabla_{^HZ}{}^{CG}g)(^HX, {}^HY) & = & {}^V((\nabla_Zg)(X,Y)), \\ viii) & ({}^H\nabla_{^HZ}{}^{CG}g)(^VA, {}^VB) & = & {}^V(\nabla_Z\frac{1}{\alpha})^V(G(A,B) + G(A,t)G(B,t)) \\ & & + \frac{1}{\alpha}^V((\nabla_ZG)(A,B)) + \frac{1}{\alpha}^V(\nabla_Z(G(A,t)G(B,t))) \\ & & - \frac{1}{\alpha}^V(G((\nabla_ZA),t)G(B,t)), \end{array}$$

where the vertical lift ${}^VA \in \Im_0^1(T_1^1M)$ of $A \in \Im_1^1(M)$ and the horizontal lifts ${}^HX \in \Im_0^1(T_1^1M)$ of $X \in \Im_0^1(M)$ defined by (1.1) and (1.2), respectively.

Proof. i)

$$({}^{H}\nabla_{{}^{V}C}{}^{CG}g)({}^{V}A, {}^{V}B) = {}^{H}\nabla_{{}^{V}C}{}^{CG}g({}^{V}A, {}^{V}B) - {}^{CG}g({}^{H}\nabla_{{}^{V}C}{}^{V}A, {}^{V}B) - {}^{CG}g({}^{V}A, {}^{H}\nabla_{{}^{V}C}{}^{V}B)$$

$$= {}^{H}\nabla_{{}^{V}C}\frac{1}{\alpha}{}^{V}(G(A,B) + G(A,t)G(B,t))$$

$$= 0$$

ii)

$$\begin{array}{ll} (^{H}\nabla_{^{V}C}{^{CG}}g)(^{V}A,^{H}Y) & = & ^{H}\nabla_{^{V}C}{^{CG}}g(^{V}A,^{H}Y) - ^{CG}g(^{H}\nabla_{^{V}C}{^{V}A},^{H}Y) \\ & - ^{CG}g(^{V}A,^{H}\nabla_{^{V}C}{^{H}Y}) \\ & = & - ^{CG}g(^{V}A,^{H}\nabla_{^{V}C}{^{H}Y}) \\ & = & 0 \end{array}$$

iii)

$$({}^{H}\nabla_{{}^{V}C} {}^{CG}g)({}^{H}X, B^{V}) = {}^{H}\nabla_{{}^{V}C} {}^{CG}g({}^{H}X, {}^{V}B) - {}^{CG}g({}^{H}\nabla_{{}^{V}C} {}^{H}X, {}^{V}B) - {}^{CG}g({}^{H}X, {}^{H}\nabla_{{}^{V}C} {}^{V}B)$$

$$= -{}^{CG}g({}^{H}\nabla_{{}^{V}C} {}^{H}X, {}^{V}B)$$

$$= 0$$

iv)

$$({}^{H}\nabla_{{}^{V}C}{}^{CG}g)({}^{H}X, {}^{H}Y) = {}^{H}\nabla_{{}^{V}C}{}^{CG}g({}^{H}X, {}^{H}Y) - {}^{CG}g({}^{H}\nabla_{{}^{V}C}{}^{H}X, {}^{H}Y) - {}^{CG}g({}^{H}X, {}^{H}\nabla_{{}^{V}C}{}^{H}Y)$$

$$= {}^{H}\nabla_{{}^{V}C}{}^{V}(g(X,Y))$$

$$= {}^{V}C^{V}(g(X,Y))$$

$$= 0$$

v)

$$({}^{H}\nabla_{^{H}Z}{}^{CG}g)({}^{V}A, {}^{H}Y) = {}^{H}\nabla_{^{H}Z}{}^{CG}g({}^{V}A, {}^{H}Y) - {}^{CG}g({}^{H}\nabla_{^{H}Z}{}^{V}A, {}^{H}Y) - {}^{CG}g({}^{V}A, {}^{H}\nabla_{^{H}Z}{}^{H}Y)$$

$$= {}^{CG}g({}^{V}(\nabla_{Z}A), {}^{H}Y) - {}^{CG}g({}^{V}A, {}^{H}(\nabla_{Z}Y))$$

$$= 0$$

vi)

$$\begin{split} (^{H}\nabla_{^{H}Z}{^{CG}}g)(^{H}X,^{V}B) & = \ ^{H}\nabla_{^{H}Z}{^{CG}}g(^{H}X,^{V}B) - ^{CG}g(^{H}\nabla_{^{H}Z}{^{H}X},^{V}B) \\ & - ^{CG}g(^{H}X,^{H}\nabla_{^{H}Z}{^{V}B}) \\ & = \ ^{CG}g(^{H}(\nabla_{Z}X),^{V}B) - ^{CG}g(^{H}X,^{V}(\nabla_{Z}B)) \\ & = \ 0 \end{split}$$

vii)

$$\begin{split} (^{H}\nabla_{^{H}Z}{^{CG}}g)(^{H}X,^{H}Y) & = \ ^{H}\nabla_{^{H}Z}{^{CG}}g(^{H}X,^{H}Y) - ^{CG}g(^{H}\nabla_{^{H}Z}{^{H}X},^{H}Y) \\ & - ^{CG}g(^{H}X,^{H}\nabla_{^{H}Z}{^{H}Y}) \\ & = \ ^{H}\nabla_{^{H}Z}{^{V}}(g(X,Y)) - ^{CG}g(^{H}(\nabla_{Z}X),^{H}Y) \\ & - ^{CG}g(^{H}X,^{H}(\nabla_{Z}Y)) \\ & = \ ^{V}(\nabla_{Z}g(X,Y)) - ^{V}(g((\nabla_{Z}X),Y)) - ^{V}(g(X,(\nabla_{Z}Y))) \\ & = \ ^{V}((\nabla_{Z}g)(X,Y)) \end{split}$$

viii)

$$({}^{H}\nabla_{^{H}Z}{}^{CG}g)({}^{V}A, {}^{V}B) = {}^{H}\nabla_{^{H}Z}{}^{CG}g({}^{V}A, {}^{V}B) - {}^{CG}g({}^{H}\nabla_{^{H}Z}{}^{V}A, {}^{V}B) \\ - {}^{CG}g({}^{V}A, {}^{H}\nabla_{^{H}Z}{}^{V}B)$$

$$= {}^{H}\nabla_{^{H}Z}\frac{1}{\alpha}{}^{V}(G(A,B) + G(A,t)G(B,t)) \\ - {}^{CG}g({}^{V}(\nabla_{Z}A), {}^{V}B) - {}^{CG}g({}^{V}A, {}^{V}(\nabla_{Z}B))$$

$$= {}^{V}(\nabla_{Z}\frac{1}{\alpha}){}^{V}(G(A,B) + G(A,t)G(B,t)) \\ + \frac{1}{\alpha}{}^{V}(\nabla_{Z}(G(A,B) + G(A,t)G(B,t))) \\ - \frac{1}{\alpha}{}^{V}(G((\nabla_{Z}A),B) + G((\nabla_{Z}A),t)G(B,t))$$

$$= {}^{V}(\nabla_{Z}\frac{1}{\alpha}){}^{V}(G(A,B) + G(A,t)G((\nabla_{Z}B),t))$$

$$= {}^{V}(\nabla_{Z}\frac{1}{\alpha}){}^{V}(G(A,B) + G(A,t)G(B,t)) \\ + \frac{1}{\alpha}{}^{V}((\nabla_{Z}G)(A,B)) + \frac{1}{\alpha}{}^{V}(\nabla_{Z}(G(A,t)G(B,t))) \\ - \frac{1}{\alpha}{}^{V}(G((\nabla_{Z}A),t)G(B,t)) - \frac{1}{\alpha}{}^{V}(G(A,t)G((\nabla_{Z}B),t))$$

Definition 2.3. Let M be an n-dimensional differentiable manifold. Differential transformation $D = L_X$ is called as Lie derivation with respect to vector field $X \in \mathfrak{F}_0^1(M)$ if

(2.3)
$$L_X f = Xf, \forall f \in \mathfrak{F}_0^0(M),$$
$$L_X Y = [X, Y], \forall X, Y \in \mathfrak{F}_0^1(M).$$

[X,Y] is called by Lie bracked. The Lie derivative L_XF of a tensor field F of type (1,1) with respect to a vector field X is defined by [5, 6, 12, 18]

$$(2.4) (L_X F)Y = [X, FY] - F[X, Y].$$

Definition 2.4. The bracket operation of vertical and horizontal vector fields is given by the formulas

(2.5)
$$\begin{cases} [{}^{V}A, {}^{V}B] = 0, \\ [{}^{H}X, {}^{V}A] = {}^{V}(\nabla_{X}A), \\ [{}^{H}X, {}^{H}Y] = {}^{H}[X, Y] + (\tilde{\gamma} - \gamma)R(X, Y), \end{cases}$$

where R denotes the curvature tensor field of the connection ∇ , and $\tilde{\gamma} - \gamma : \varphi \to \Im_0^1(T_1^1(M))$ is the operator defined by

$$(\tilde{\gamma} - \gamma)\varphi = \begin{pmatrix} 0 \\ t_m^i \varphi_j^m - t_j^m \varphi_m^i \end{pmatrix}$$

for any $\varphi \in \mathfrak{J}^1_1(M)$ [17].

Theorem 2.2. Let ${}^{CG}g$ be the Cheeger-Gromoll type metric ${}^{CG}g$ defined by (1.5),(1.6),(1.7) and L_X the operator Lie derivation with respect to X. From Definition 2.3 and Definition 2.4, we get the following results

$$i) (L_{VC}{}^{CG}g)(^{V}A, ^{V}B) = 0$$

$$ii) (L_{VC}{}^{CG}g)(^{H}X, ^{H}Y) = 0$$

$$iii) (L_{HZ}{}^{CG}g)(^{V}A, ^{H}Y) = -\frac{C^{G}}{g}(^{V}A, (\tilde{\gamma} - \gamma)R(Z, Y))$$

$$iv) (L_{HZ}{}^{CG}g)(^{H}X, ^{V}B) = -\frac{C^{G}}{g}((\tilde{\gamma} - \gamma)R(Z, X), ^{V}B)$$

$$v) (L_{VC}{}^{CG}g)(^{V}A, ^{H}Y) = \frac{1}{\alpha}{}^{V}(G(A, (\nabla_{Y}C)) + G(A, t)G((\nabla_{Y}C), t))$$

$$vi) (L_{VC}{}^{CG}g)(^{H}X, ^{V}B) = \frac{1}{\alpha}{}^{V}(G((\nabla_{X}C), B) + G((\nabla_{X}C), t)G(B, t))$$

$$vii) (L_{HZ}{}^{CG}g)(^{H}X, ^{H}Y) = {}^{V}((L_{Z}g)(X, Y)) - {}^{CG}g((\tilde{\gamma} - \gamma)R(Z, X), ^{H}Y) - {}^{CG}g(^{H}X, (\tilde{\gamma} - \gamma)R(Z, Y))$$

$$viii) (L_{HZ}{}^{CG}g)(^{V}A, ^{V}B) = {}^{V}(\nabla_{Z}\frac{1}{\alpha})^{V}(G(A, B) + G(A, t)G(B, t))$$

$$+ \frac{1}{\alpha}{}^{V}((\nabla_{Z}G)(A, B)) + \frac{1}{\alpha}{}^{V}(\nabla_{Z}(G(A, t)G(B, t)))$$

$$- \frac{1}{\alpha}{}^{V}(G(A, t)G((\nabla_{Z}B), t))$$

$$- \frac{1}{\alpha}{}^{V}(G((\nabla_{Z}A), t)G(B, t))$$

where the vertical lift ${}^VA \in \Im_0^1(T_1^1M)$ of $A \in \Im_1^1(M)$ and the horizontal lifts ${}^HX \in \Im_0^1(T_1^1M)$ of $X \in \Im_0^1(M)$ defined by (1.1) and (1.2), respectively.

$$(L_{VC}{}^{CG}g)(^{V}A, ^{V}B) = L_{VC}{}^{CG}g(^{V}A, ^{V}B) - {}^{CG}g(L_{VC}{}^{V}A, ^{V}B) - {}^{CG}g(^{V}A, L_{VC}{}^{V}B)$$

$$= 0$$

$$\begin{array}{lll} (L_{^{V}C}{^{CG}}g)(^{H}X,^{H}Y) & = & L_{^{V}C}{^{CG}}g(^{H}X,^{H}Y) - ^{CG}g(L_{^{V}C}{^{H}X},^{H}Y) - ^{CG}g(^{H}X,L_{^{V}C}{^{H}Y}) \\ & = & L_{^{V}C}{^{V}}(g(X,Y)) + ^{CG}g(^{V}(\nabla_{X}C),^{H}Y) + ^{CG}g(^{H}X,^{V}(\nabla_{Y}C)) \\ & = & ^{V}C^{V}(g(X,Y)) \\ & = & 0 \end{array}$$

$$\begin{array}{lll} (L_{^HZ}{^{CG}}g)(^VA,^HY) & = & L_{^HZ}{^{CG}}g(^VA,^HY) - ^{CG}g(L_{^HZ}{^VA},^HY) - ^{CG}g(^VA,L_{^HZ}{^HY}) \\ & = & -^{CG}g(^V(\nabla_ZA),^HY) - ^{CG}g(^VA,^H[Z,Y] + (\tilde{\gamma} - \gamma)R(Z,Y)) \\ & = & -^{CG}g(^VA,^H(L_ZY)) - ^{CG}g(^VA,(\tilde{\gamma} - \gamma)R(Z,Y)) \\ & = & -^{CG}g(^VA,(\tilde{\gamma} - \gamma)R(Z,Y)) \end{array}$$

$$\begin{array}{lll} (L_{^{_{\mathit{H}}}Z}{^{_{\mathit{CG}}}}g)(^{^{_{\mathit{H}}}}X,^{^{_{\mathit{V}}}}B) & = & L_{^{_{\mathit{H}}}Z}{^{_{\mathit{CG}}}}g(^{^{_{\mathit{H}}}}X,^{^{_{\mathit{V}}}}B) - ^{^{_{\mathit{CG}}}}g(L_{^{_{\mathit{H}}}Z}{^{^{_{\mathit{H}}}}}X,^{^{_{\mathit{V}}}}B) - ^{^{_{\mathit{CG}}}}g(^{^{_{\mathit{H}}}}X,L_{^{_{\mathit{H}}}Z}{^{^{_{\mathit{V}}}}}B) \\ & = & -^{^{_{\mathit{CG}}}}g(^{^{_{\mathit{H}}}}[Z,X] + (\tilde{\gamma} - \gamma)R(Z,X),^{^{_{\mathit{V}}}}B) - ^{^{_{\mathit{CG}}}}g(^{^{_{\mathit{H}}}}X,^{^{_{\mathit{V}}}}(\nabla_Z B)) \\ & = & -^{^{_{\mathit{CG}}}}g((\tilde{\gamma} - \gamma)R(Z,X),^{^{_{\mathit{V}}}}B) \end{array}$$

$$(L_{VC}{}^{CG}g)({}^{V}A, {}^{H}Y) = L_{VC}{}^{CG}g({}^{V}A, {}^{H}Y) - {}^{CG}g(L_{VC}{}^{V}A, {}^{H}Y) - {}^{CG}g({}^{V}A, L_{VC}{}^{H}Y)$$

$$= {}^{CG}g({}^{V}A, {}^{V}(\nabla_{Y}C))$$

$$= \frac{1}{\alpha}{}^{V}(G(A, (\nabla_{Y}C)) + G(A, t)G((\nabla_{Y}C), t)))$$

vi)

$$(L_{VC}{}^{CG}g)({}^{H}X, {}^{V}B) = L_{VC}{}^{CG}g({}^{H}X, {}^{V}B) - {}^{CG}g(L_{VC}{}^{H}X, {}^{V}B) - {}^{CG}g({}^{H}X, L_{VC}{}^{V}B)$$

$$= + {}^{CG}g({}^{V}(\nabla_{X}C), {}^{V}B)$$

$$= \frac{1}{\alpha}{}^{V}(G((\nabla_{X}C), B) + G((\nabla_{X}C), t)G(B, t))$$

vii

viii)

$$(L_{HZ} \ ^{CG}g)(^{V}A, ^{V}B) = L_{HZ} \ ^{CG}g(^{V}A, ^{V}B) - ^{CG}g(L_{HZ} \ ^{V}A, ^{V}B) - ^{CG}g(^{V}A, L_{HZ} \ ^{V}B)$$

$$= \ ^{H}Z(\frac{1}{\alpha} \ ^{V}(G(A,B) + G(A,t)G(B,t)))^{CG}g(^{V}(\nabla_{Z}A), ^{V}B)$$

$$- \ ^{CG}g(^{V}A, ^{V}(\nabla_{Z}B))$$

$$= \ ^{V}(\nabla_{Z}\frac{1}{\alpha})^{V}(G(A,B) + G(A,t)G(B,t))$$

$$+ \frac{1}{\alpha} \ ^{V}(\nabla_{Z}(G(A,B) + G(A,t)G(B,t)))$$

$$- \frac{1}{\alpha} \ ^{V}(G((\nabla_{Z}A),B) + G((\nabla_{Z}A),t)G(B,t))$$

$$- \frac{1}{\alpha} \ ^{V}(G(A,(\nabla_{Z}B)) + G(A,t)G((\nabla_{Z}B),t))$$

$$= \ ^{V}(\nabla_{Z}\frac{1}{\alpha})^{V}(G(A,B) + G(A,t)G(B,t)) + \frac{1}{\alpha} \ ^{V}(\nabla_{Z}G(A,t)G(B,t))$$

$$+ \frac{1}{\alpha} \ ^{V}(\nabla_{Z}(G(A,t)G(B,t))) - \frac{1}{\alpha} \ ^{V}(G((\nabla_{Z}A),t)G(B,t))$$

$$- \frac{1}{\alpha} \ ^{V}(G(A,t)G((\nabla_{Z}B),t))$$

References

- Akyol, M. A., Sarı, R. and Aksoy, E., Semi-invariant -Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14, 175007 4 (2017) DOI: http://dx.doi.org/10.1142/S0219887817500748.
- [2] Akyol, M. A., Conformal anti-invariant submersions from cosymplectic manifolds, Hacet. J. Math. Stat. 46(2017), no.2, 177-192.
- [3] Çakmak, A. and Tarakcı, Ö., Surfaces at a constant distance from the edge of regression on a surface of revolution in . Applied Mathematical Sciences, 10(2016), no.15, 707-719.
- [4] Çakmak, A., Karacan, M.K., Kiziltug, S. and Yoon, D.W., Translation surfaces in the 3-dimensional Galilean space satisfying Bull. Korean Math. Soc. https://doi.org/10.4134/BKMS.b160442.
- [5] Çayır, H. and Akdağ, K., Some notes on almost paracomplex structures associated with the diagonal lifts and operators on cotangent bundle, New Trends in Mathematical Sciences, 4(2016), no.4, 42-50.
- [6] Çayır, H. and Köseoğlu, G., Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to X^C and X^V on Tangent Bundle T(M), New Trends in Mathematical Sciences, 4(2016), no.1, 153-159.
- [7] Cengiz, N. and Salimov, A. A., Complete lifts of derivations to tensor bundles, Bol. Soc. Mat. Mexicana (3) 8(2002), no.1, 75–82.
- [8] Gancarzewicz, J. and Rahmani, N., Relevent horizontal des connexions linearies au fibre vectoriel associe avec le fibre principal des repres lineaires, Annales Polinici Math., 48(1988), 281-289.
- [9] Gezer, A. and Altunbas, M., On the (1,1)—tensor bundle with Cheeger-Grommol type metric, Proc. Indian Acad. Sci.(Math Sci.) 125(2015), no.4, 569-576.
- [10] Gündüzalp, Y., Slant submersions from almost paracontact Riemannian manifolds, product Riemannian manifolds, Kuwait Journal of Science, 42(2015), no.1, 17-29.
- [11] Gündüzalp, Y., Semi-slant submersions from almost product Riemannian manifolds, DEMONSTRATIO MATHEMATICA, 49(2016), no.4.
- [12] Khan, M. N. I., and Jun, J.B., Lorentzian Almost r-para-contact Structure in Tangent Bundle, Journal of the Chungcheong Mathematical Society, 27(2014), no.1, 29-34.
- [13] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry-Volume I, John Wiley & Sons, Inc, New York, 1963.
- [14] Lai, K. F. and Mok, K. P., On the differential geometry of the (1,1)— tensor bundle, Tensor (New Series), 63(2002), no.1, 15-27.
- [15] Ledger, A. J. and Yano, K., Almost complex structures on the tensor bundles, J. Diff. Geom., 1(1967), 355-368.
- [16] Salimov, A.A., Tensor Operators and Their applications, Nova Science Publ., New York, 2013.
- [17] Salimov, A. and Gezer, A., On the geometry of the (1,1) -tensor bundle with Sasaki type metric, Chin. Ann. Math. Ser. B 32(2011), no.3, 369–386.
- [18] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973.

Department of Mathematics, Faculty of Arts and Sciences,, Giresun University, 28100, Giresun, Turkey.

E-mail address: hasim.cayir@giresun.edu.tr

Department of Computer Science, College of Computer, Qassim University,, Buraidah-51452, P.O. Box 6688, Saudi Arabia.

E-mail address: m.nazrul@qu.edu.sa