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ABSTRACT. In this paper, we characterize the system of left translates {L(2k,l,m)g : k, l,m ∈ Z}, g ∈ L2(H), to
be a frame sequence or a Riesz sequence in terms of the twisted translates of the corresponding function gλ. Here,
H denotes the Heisenberg group and gλ the inverse Fourier transform of g with respect to the central variable. This
type of characterization for a Riesz sequence allows us to find some concrete examples. We also study the structure of
the oblique dual of the system of left translates {L(2k,l,m)g : k, l,m ∈ Z} on H. This result is also illustrated with an
example.
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1. INTRODUCTION

A closed subspace V ⊂ L2(R) is said to be a shift-invariant space if f ∈ V ⇒ Tkf ∈ V for
any k ∈ Z, where Txf(y) = f(y − x) denotes the translation operator. These spaces appear
in the study of multiresolution analyses in order to construct wavelets. We refer to [17, 18]
in this context. For ϕ ∈ L2(R), the shift-invariant space V (ϕ) = span{Tkϕ : k ∈ Z} is called a
principal shift-invariant space. Shift-invariant spaces are broadly applied in various fields such
as approximation theory, mathematical sampling theory, communication engineering, and so
on. Apart from this, shift-invariant spaces have also been explored in various group settings.

In [6], Bownik obtained a characterization of shift-invariant spaces on Rn by using range
functions. He derived equivalent conditions for a system of translates to be a frame sequence
or a Riesz sequence. Later, these results were studied on locally compact abelian groups in
[7, 8, 15, 16] and on non-abelian compact groups in [14, 20].

In recent years, problems in connection with frames, Riesz bases, wavelets, and shift-invariant
spaces on non-abelian groups, nilpotent Lie groups, especially the Heisenberg group, have
drawn the attention of several researchers globally (see, for example, [2, 3, 4, 5, 11, 19] in this
context).

In [12], Das et al. obtained characterization results for a shift-invariant system to be a frame
sequence or a Riesz sequence in terms of the Gramian and the dual Gramian, respectively,
on the Heisenberg group. Although the characterization results mentioned in this paper are
interesting from the theoretical point of view, they are not useful in obtaining concrete Riesz
sequences of system of translates. In this paper, we attempt to overcome this difficulty and try
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to obtain a characterization for the system of left translates on the Heisenberg group to form a
frame sequence or a Riesz sequence. This is done with the help of deriving such characteriza-
tions for λ-twisted translates on R2. Apart from this, we also study the problem of obtaining
oblique dual for a system of left translates on the Heisenberg group.

The structure of this paper is as follows. After introducing some background information
about frames and the Heisenberg group in Section 2, we consider systems of left translates and
their relation to frame and Riesz sequences on the Heisenberg group in Section 3. Obliques
duals of these systems of left translates are then investigated in Section 4.

2. BACKGROUND

To proceed, we require the following definitions and results from frame theory and har-
monic analysis on the Heisenberg group. In the former case, most of these can be found in, for
instance, [9], and in the latter case in, i.e., [13, 21].

0 ̸= H always denotes a separable Hilbert space.

Definition 2.1. A sequence {fk : k ∈ N} ⊂ H is said to be a frame for H if there exist constants
A,B > 0 satisfying

A∥f∥2 ≤
∑
k∈N

| ⟨f, fk⟩ |2 ≤ B∥f∥2, ∀ f ∈ H.(2.1)

If {fk : k ∈ N} is a frame for span{fk : k ∈ N}, then it is called a frame sequence.
A sequence {fk : k ∈ N} ⊂ H satisfying only the upper bound in the frame condition (2.1)

is called a Bessel sequence.

Definition 2.2. A sequence of the form {Uek : k ∈ N}, where {ek : k ∈ N} is an orthonormal basis
of H and U is a bounded invertible operator on H, is called a Riesz basis. If {fk : k ∈ N} is a Riesz
basis for span{fk : k ∈ N}, then it is called a Riesz sequence.

Equivalently, {fk : k ∈ N} is said to be a Riesz sequence if there exist constants A,B > 0
such that

A∥{ck}∥2ℓ2(N) ≤
∥∥∥∥∑

k∈N
ckfk

∥∥∥∥2 ≤ B∥{ck}∥2ℓ2(N)

for all finite sequences {ck} ∈ ℓ2(N).

Theorem 2.1. Let h ∈ L2(R). The system {Tkh : k ∈ Z} is a Riesz sequence with bounds A,B > 0 iff

A ≤
∑
k∈Z

|ĥ(λ+ k)|2 ≤ B for a.e. λ ∈ (0, 1].

Definition 2.3. The Gramian G associated with a Bessel sequence {fk : k ∈ N} is a bounded operator
on ℓ2(N) defined by

G{ck} :=

{∑
k∈N

〈
fk, fj

〉
ck

}
j∈N

.

It is well known that {fk : k ∈ N} is a Riesz sequence with bounds A,B > 0 iff

A∥{ck}∥2ℓ2(N) ≤
〈
G{ck}, {ck}

〉
≤ B∥{ck}∥2ℓ2(N).

Definition 2.4. Let {fk : k ∈ N} be a Riesz sequence in H. If

f =
∑
k∈N

⟨f, gk⟩fk, ∀ f ∈ span{fk : k ∈ Z}
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for some {gk : k ∈ N} ⊂ H, then {gk : k ∈ N} is called a generalized dual generator of {fk : k ∈ N}.
In addition, if {gk : k ∈ N} is a frame sequence, then {gk : k ∈ N} is called an oblique dual generator
of {fk : k ∈ N}.

Definition 2.5. Let {fk : k ∈ J} be a countable collection of elements in H and {αk}k∈J ∈ ℓ2(J).
Consider the system of equations

(2.2) ⟨f, fk⟩ = αk, ∀ k ∈ J.

Finding such an f ∈ H from (2.2) is known as the moment problem.

A moment problem may not have any solution at all or may have infinitely many solutions.
But if {fk : k ∈ J} is a Riesz sequence, then the moment problem has a unique solution f ∈
span{fk : k ∈ J}. For the existence of a solution of a moment problem, one has the following
result.

Lemma 2.1 ([10]). Let {fk : k = 1, 2, · · · , N} be a finite collection of vectors in H. Consider the
moment problem

⟨f, fk⟩ = δk,1 , k = 1, 2, · · · , N.

Then the following statements are equivalent:
(i) The moment problem has a solution f ∈ H.

(ii)
N∑

k=1

ckfk = 0, for some {ck} implies c1 = 0.

(iii) f1 /∈ span{f2, f3, · · · , fN}.

Definition 2.6. A closed subspace V ⊂ L2(R) is called a shift-invariant space if f ∈ V ⇒ Tkf ∈ V for
any k ∈ Z, where Tx denotes the translation operator Txf(y) = f(y − x). In particular, if ϕ ∈ L2(R),
then V (ϕ) = span {Tkϕ : k ∈ Z} is called a principal shift-invariant space.

For a study of frames, Riesz basis on H, and shift-invariant spaces on L2(R), we refer to [9].

Definition 2.7. Let χ denote the characteristic function of [0, 1]. For n ∈ N, set

B1 : [0, 1] → [0, 1], x 7→ χ(x);

Bn := Bn−1 ∗B1, n ≥ 2, n ∈ N.(2.3)

Then, Bn is called a (cardinal) polynomial B-spline of order n.

For more and detailed information about B-splines and their applications, the interested
reader may wish to consult any of the many references regarding B-splines.

The next stated result shows that cardinal B-splines form principal shift-invariant spaces.

Theorem 2.2 ([9, Theorem 9.2.6]). For each n ∈ N, the sequence {TkBn}k∈Z is a Riesz sequence.

The Heisenberg group H is a nilpotent Lie group whose underlying manifold is R × R × R
endowed with a group operation defined by

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ + 1
2 (x

′y − y′x)),

and where Haar measure is Lebesgue measure dx dy dt on R3. By the Stone–von Neumann the-
orem, every infinite dimensional irreducible unitary representation on H is unitarily equivalent
to the representation πλ given by

πλ(x, y, t)ϕ(ξ) = e2πiλte2πiλ(xξ+
1
2xy)ϕ(ξ + y)
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for ϕ ∈ L2(R) and λ ∈ R× := R\{0}. This representation πλ is called the Schrödinger represen-
tation of the Heisenberg group. For f, g ∈ L1(H), the group convolution of f and g is defined
by

f ∗ g(x, y, t) :=
∫
H
f
(
(x, y, t)(u, v, s)−1

)
g(u, v, s) du dv ds.(2.4)

Under this group convolution, L1(H) becomes a non-commutative Banach algebra. The group
Fourier transform of f ∈ L1(H) is defined by

(2.5) f̂(λ) =

∫
H
f(x, y, t) πλ(x, y, t) dxdydt, λ ∈ R×,

where the integral is a Bochner integral acting on the Hilbert space L2(R). The group Fourier
transform is an isometric isomorphism between L2(H) and L2(R×,B2; dµ), where dµ(λ) de-
notes Plancherel measure |λ|dλ and B2 is the Hilbert space of Hilbert-Schmidt operators on
L2(R) with inner product given by (T, S) := tr(TS∗). Thus, we can write (2.5) as

f̂(λ) =

∫
R2

fλ(x, y)πλ(x, y, 0) dxdy ,

where

fλ(x, y) :=

∫
R
f(x, y, t)e2πiλt dt.

Note that the function fλ(x, y) is the inverse Fourier transform of f with respect to the t vari-
able. For g ∈ L1(R2), let

Wλ(g) :=

∫
R2

g(x, y)πλ(x, y, 0) dxdy, for λ ∈ R×.

Using this operator, we can rewrite f̂(λ) as Wλ(f
λ). When f, g ∈ L2(H), one can show that

fλ, gλ ∈ L2(R2) and Wλ satisfies

(2.6)
〈
fλ, gλ

〉
L2(R2)

= |λ|
〈
Wλ(f

λ),Wλ(g
λ)
〉
B2
.

Now, define τ : L2(H) → L2((0, 1], ℓ2(Z,B2)) by

τf(λ) := {|λ− r|1/2f̂(λ− r)}r∈Z, ∀ f ∈ L2(H), λ ∈ (0, 1].

Then, τ is an isometric isomorphism between L2(H) and L2((0, 1], ℓ2(Z,B2)) (see [11, 12] in this
context). For (u, v, s) ∈ H, the left translation operator L(u,v,s) is defined by

L(u,v,s)f(x, y, t) := f((u, v, s)−1(x, y, t)), ∀ (x, y, t) ∈ H,

which is a unitary operator on L2(H). Using the definitions of the left translation operator and
the convolution, one can show that

(2.7) L(u,v,s)(f ∗ g) = (L(u,v,s)f) ∗ g.

For (u, v) ∈ R2 and λ ∈ R×, the λ-twisted translation operator (T t
(u,v))

λ is defined by

(T t
(u,v))

λF (x, y) := eπiλ(vx−uy)F (x− u, y − v), ∀ (x, y) ∈ R2,

which is also a unitary operator on L2(R2). It is easy to see that

(L(u,v,s)f)
λ = e2πisλ(T t

(u,v))
λfλ.(2.8)

For further properties of λ-twisted translation, we refer to [19].
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Recall that for a locally compact groupG, a lattice Γ inG is defined to be a discrete subgroup
of G which is co-compact. The standard lattice in H is taken to be Γ := {(2k, l,m) : k, l,m ∈ Z}.
For a study of analysis on the Heisenberg group we refer to [13, 21].

3. SYSTEM OF LEFT TRANSLATES AS A FRAME SEQUENCE AND A RIESZ SEQUENCE

Let g ∈ L2(H). In this section, we wish to obtain characterization results for the system
{L(2k,l,m)g : k, l,m ∈ Z} to form a frame sequence or a Riesz sequence in terms of the λ-twisted
translations gλ of g.

From Corollary 3 of [12], we know that {L(2k,l,m)g : k, l,m ∈ Z} is a frame sequence with
bounds A,B > 0 iff

A∥Φ(λ)∥2 ≤
∑
k,l∈Z

|⟨Φ(λ), τ(L(2k,l,0)g)(λ)⟩|2 ≤ B∥Φ(λ)∥2, ∀ Φ(λ) ∈ J(λ), for a.e. λ ∈ (0, 1],

(3.1)

where J(λ) := span{τ(L(2k,l,0)g)(λ) : k, l ∈ Z}. In order to prove that {L(2k,l,m)g : k, l,m ∈ Z}
is a frame sequence, it suffices to consider the class span{τ(L(2k,l,0)g)(λ) : k, l ∈ Z} instead
of J(λ). Thus, the required condition for the verification of frame sequence reduces to the
following two inequalities:

For any finite F ⊂ Z2 and any finite sequence {αk,l} ∈ ℓ2(Z2),

A

∥∥∥∥ ∑
(k,l)∈F

αk,lτ(L(2k,l,0)g)(λ)

∥∥∥∥2
ℓ2(Z,B2)

≤
∑
k,l∈Z

∣∣∣∣〈 ∑
(k′,l′)∈F

αk′,l′τ(L(2k′,l′,0)g)(λ), τ(L(2k,l,0)g)(λ)
〉∣∣∣∣2

≤B
∥∥∥∥ ∑

(k,l)∈F

αk,lτ(L(2k,l,0)g)(λ)

∥∥∥∥2
ℓ2(Z,B2)

, a.e. λ ∈ (0, 1].

Now, for k, k′, l, l′ ∈ Z,

⟨τ(L(2k′,l′,0)g)(λ), τ(L(2k,l,0)g)(λ)⟩ℓ2(Z,B2)

=
∑
r∈Z

|λ− r|
〈 ̂L(2k′,l′,0)g(λ− r), ̂L(2k,l,0)g(λ− r)

〉
B2

=
∑
r∈Z

|λ− r|
〈
Wλ−r

(
(L(2k′,l′,0)g)

λ−r
)
,Wλ−r

(
(L(2k,l,0)g)

λ−r
)〉

B2

=
∑
r∈Z

〈
(L(2k′,l′,0)g)

λ−r, (L(2k,l,0)g)
λ−r
〉
L2(R2)

=
∑
r∈Z

〈
(T t

(2k′,l′))
λ−rgλ−r, (T t

(2k,l))
λ−rgλ−r

〉
L2(R2)

=
∑
r∈Z

eπi(λ−r)(kl′−lk′)
〈(
T t
(2(k′−k),l′−l)

)λ−r
gλ−r, gλ−r

〉
L2(R2)

,(3.2)

where we used (2.6) and (2.8).
In the following theorem, we state a condition for the system {L(2k,l,m)g : k, l,m ∈ Z} to be

a frame sequence in terms of the λ-twisted translates of gλ on R2.
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Theorem 3.3. Let g ∈ L2(H). Then, the system {L(2k,l,m)g : k, l,m ∈ Z} is a frame sequence with
bounds A,B > 0 iff

A
∑
r∈Z

∥∥∥∥ ∑
(k′,l′)∈F

αk′,l′(T
t
(2k′,l′))

λ−rgλ−r

∥∥∥∥2
L2(R2)

≤
∑
k,l∈Z

∣∣∣∣ ∑
(k′,l′)∈F,r∈Z

αk′,l′e
πi(λ−r)(kl′−lk′)

〈
(T t

(2(k′−k),l′−l))
λ−rgλ−r, gλ−r

〉
L2(R2)

∣∣∣∣2

≤B
∑
r∈Z

∥∥∥∥ ∑
(k′,l′)∈F

αk′,l′(T
t
(2k′,l′))

λ−rgλ−r

∥∥∥∥2
L2(R2)

, a.e. λ ∈ (0, 1]

for any finite F ⊂ Z2 and any finite sequence {αk,l} ∈ ℓ2(Z2).

Proof. The system {L(2k,l,m)g : k, l,m ∈ Z} is a frame sequence with bounds A,B > 0 iff (3.1)
holds. Consider Φ(λ) :=

∑
(k,l)∈F

αk,lτ(L(2k,l,0)g)(λ), for some finite F ⊂ Z2 and a finite sequence

{αk,l} ∈ ℓ2(Z2). Then,

∥Φ(λ)∥2ℓ2(Z,B2)
=

∥∥∥∥ ∑
(k,l)∈F

αk,lτ(L(2k,l,0)g)(λ)

∥∥∥∥2
ℓ2(Z,B2)

=

∥∥∥∥{|λ− r|1/2
∑

(k,l)∈F

αk,l
̂L(2k,l,0)g(λ− r)

}
r∈Z

∥∥∥∥2
ℓ2(Z,B2)

=
∑
r∈Z

|λ− r|
∥∥∥∥ ∑

(k,l)∈F

αk,l
̂L(2k,l,0)g(λ− r)

∥∥∥∥2
B2

=
∑
r∈Z

|λ− r|
∥∥∥∥ ∑

(k,l)∈F

αk,lWλ−r

(
(L(2k,l,0)g)

λ−r
)∥∥∥∥2

B2

.

Employing (2.6) and (2.8), yields

∥Φ(λ)∥2ℓ2(Z,B2)
=
∑
r∈Z

∥∥∥∥ ∑
(k,l)∈F

αk,l(L(2k,l,0)g)
λ−r

∥∥∥∥2
L2(R2)

=
∑
r∈Z

∥∥∥∥ ∑
(k,l)∈F

αk,l(T
t
(2k,l))

λ−rgλ−r

∥∥∥∥2
L2(R2)

.(3.3)

On the other hand,

⟨Φ(λ), τ(L(2k,l,0)g)(λ)⟩ =
∑

(k′,l′)∈F

αk′,l′⟨τ(L(2k′,l′,0)g)(λ), τ(L(2k,l,0)g)(λ)⟩(3.4)

for k, l ∈ Z. Using (3.2) in (3.4), we obtain

⟨Φ(λ), τ(L(2k,l,0)g)(λ)⟩ =
∑

(k′,l′)∈F,r∈Z

αk′,l′e
πi(λ−r)(kl′−lk′)

〈(
T t
(2(k′−k),l′−l)

)λ−r
gλ−r, gλ−r

〉
L2(R2)

.

(3.5)

Employing (3.3) and (3.5) in (3.1), the required result follows. □
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Next, we aim to characterize the system of left translates {L(2k,l,m)g : k, l,m ∈ Z} to be
a Riesz sequence, again in terms of λ-twisted translates of gλ. To this end, we consider the
Gramian associated with the system {τ(L(2k,l,0)g)(λ) : k, l ∈ Z} and obtain an equivalent con-
dition for a Riesz sequence.

First, consider the Gramian associated with the system {τ(L(2k,l,0)g)(λ) : k, l ∈ Z}. For
g ∈ L2(H) and λ ∈ (0, 1], the Gramian of {τ(L(2k,l,0)g)(λ) : k, l ∈ Z} is defined by

G(λ) := H(λ)∗H(λ) : ℓ2(Z2) → ℓ2(Z2),

where H(λ) : ℓ2(Z2) → ℓ2(Z,B2) is given by

H(λ)
(
{ck,l}

)
:=

∑
k,l∈Z

ck,lτ(L(2k,l,0)g)(λ).

We obtain the following

Theorem 3.4. The system {L(2k,l,m)g : k, l,m ∈ Z} is a Riesz sequence iff there exists A,B > 0 such
that

A∥{ck,l}∥2ℓ2(Z2) ≤
∑

k,l,k′,l′∈Z

∑
r∈Z

ck,lck′,l′e
2πi(λ−r)(lk′−kl′)

〈(
T t
(2(k−k′),l−l′)

)λ−r
gλ−r, gλ−r

〉
L2(R2)

≤ B∥{ck,l}∥2ℓ2(Z2)(3.6)

for a.e. λ ∈ (0, 1] and for all {ck,l} ∈ ℓ2(Z2).

Proof. By Theorem 6 of [12], the system {L(2k,l,m)g : k, l,m ∈ Z} is a Riesz sequence iff there
exist A,B > 0 such that

A∥{ck,l}∥2ℓ2(Z2) ≤ ⟨G(λ){ck,l}, {ck,l}⟩ℓ2(Z2) ≤ B∥{ck,l}∥2ℓ2(Z2)(3.7)

for a.e. λ ∈ (0, 1] and for all {ck,l} ∈ ℓ2(Z2). But

⟨G(λ){ck,l}, {ck,l}⟩ℓ2(Z2) =
∥∥H(λ)

(
{ck,l}

)∥∥2
ℓ2(Z,B2)

=

∥∥∥∥ ∑
k,l∈Z

ck,lτ(L(2k,l,0)g)(λ)

∥∥∥∥2
ℓ2(Z,B2)

=
∑

k,l,k′,l′∈Z
ck,lc̄k′,l′

〈
τ(L(2k,l,0)g)(λ), τ(L(2k′,l′,0)g)(λ)

〉
ℓ2(Z,B2)

=
∑

k,l,k′,l′∈Z

∑
r∈Z

ck,lck′,l′e
2πi(λ−r)(lk′−kl′)

〈(
T t
(2(k−k′),l−l′)

)λ−r
gλ−r, gλ−r

〉
L2(R2)

(3.8)

by using (3.2). Employing (3.8) in (3.7), we obtain (3.6). □

Example 3.1. Let ϕ(x, y, t) := χ[0,2](x)χ[0,2](y)h(t), where χ[0,2] denotes the characteristic function
on [0, 2] and h ∈ L2(R) is given by ĥ(λ) = χ[0,p](λ), for N ∋ p ≥ 3. Then, ∥ϕ∥2L2(H) = 4 ∥h∥2L2(R).
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Furthermore, ϕλ(x, y) = χ[0,2](x)χ[0,2](y)ĥ(−λ). Now,〈(
T t
(2k,l)

)λ
ϕλ, ϕλ

〉
=

∫
R2

eπiλ(lx−2ky)ϕλ(x− 2k, y − l)ϕλ(x, y) dx dy

= ĥ(−λ)
∫ 2

0

∫ 2

0

eπiλ(lx−2ky)ϕλ(x− 2k, y − l) dy dx

= ĥ(−λ)
∫ 2−2k

−2k

∫ 2−l

−l

eπiλ(lx−2ky)ϕλ(x, y) dy dx

= |ĥ(−λ)|2
∫
[−2k,2−2k]∩[0,2]

∫
[−l,2−l]∩[0,2]

eπiλ(lx−2ky) dy dx.(3.9)

For λ ∈ (0, 1] and {ck,l} ∈ ℓ2(Z2), consider the middle term in (3.6) which is ⟨G(λ){ck,l}, {ck,l}⟩ℓ2(Z2).
It follows from (3.9) that only k′ = k and l′ = l − 1, l, l + 1 will contribute to the sum over k′, l′ ∈ Z.
Thus, we have

⟨G(λ){ck,l}, {ck,l}⟩ℓ2(Z2) =M1 +M2 +M3,

where

M1 :=
∑
r∈Z

∑
k,l∈Z

ck,lck,l−1e
2πi(λ−r)k

〈(
T t
(0,1)

)λ−r

ϕλ−r, ϕλ−r

〉
,(3.10)

M2 :=
∑
r∈Z

∑
k,l∈Z

ck,lck,l+1e
−2πi(λ−r)k

〈(
T t
(0,−1)

)λ−r

ϕλ−r, ϕλ−r

〉
and

M3 :=
∑
k,l∈Z

|ck,l|2
∑
r∈Z

∥∥ϕλ−r
∥∥2
L2(R2)

.

We observe thatM2 =M1. Hence, ⟨G(λ){ck,l}, {ck,l}⟩ℓ2(Z2) = 2Re (M1)+M3. But Re(M1) ≤ |M1|.
Applying the Cauchy-Schwarz inequality in (3.10), we obtain Re(M1) ≤ ∥{ck,l}∥2ℓ2(Z2) I1,λ, where

I1,λ :=

∣∣∣∣∣∑
r∈Z

〈(
T t
(0,1)

)λ−r

ϕλ−r, ϕλ−r

〉∣∣∣∣∣
=

∣∣∣∣∣∑
r∈Z

|ĥ(−(λ− r))|2
∫ 2

0

eπi(λ−r)x dx

∣∣∣∣∣
=

∣∣∣∣∣
p∑

r=1

∫ 2

0

eπi(λ−r)x dx

∣∣∣∣∣ .
But, ∫ 2

0

eπi(λ−r)x dx = 2eπi(λ−r) sinc(λ− r).

Hence,

I1,λ ≤ 2

p∑
r=1

| sinc(λ− r)| ≤ 2

p∑
r=1

1 = 2p.
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As
∥∥ϕλ−r

∥∥2
L2(R2)

= |ĥ(−(λ− r))|2,

M3 = 2

[∑
r∈Z

|ĥ(−(λ− r))|2
]
∥{ck,l}∥2ℓ2(Z2) = 2p ∥{ck,l}∥2ℓ2(Z2) .

Therefore,

⟨G(λ){ck,l}, {ck,l}⟩ℓ2(Z2) ≤ 6p ∥{ck,l}∥2ℓ2(Z2) .

On the other hand, Re(M1) ≥ −|M1| leads to

⟨G(λ){ck,l}, {ck,l}⟩ℓ2(Z2) ≥ 2

[
p− 2

∣∣∣∣∣
p∑

r=1

eπi(λ−r) sinc(λ− r)

∣∣∣∣∣
]
∥{ck,l}∥2ℓ2(Z2) .

Now,

p− 2

∣∣∣∣∣
p∑

r=1

eπi(λ−r) sinc(λ− r)

∣∣∣∣∣
=p− 2

∣∣∣∣∣
(

p∑
r=1

cos (π(λ− r)) sinc(λ− r)

)
+ i

(
p∑

r=1

sin (π(λ− r)) sinc(λ− r)

)∣∣∣∣∣
= : p−Ap(λ).(3.11)

Employing some properties of the digamma function [1, Section 6.3]

ψ(0)(z) :=
d

dz
log Γ(z), Re z > 0,

we deduce that
p∑

r=1

cos (π(λ− r)) sinc(λ− r)

=−
p∑

r=1

cos(πλ) sin(πλ)

π(r − λ)

=−
(
cos(πλ) sin(πλ)

π(1− λ)
+

sin(πλ) cos(πλ)(ψ(0)(p− λ+ 1)− ψ(0)(2− λ))

π

)
and

p∑
r=1

sin (π(λ− r)) sinc(λ− r) =

p∑
r=1

sin2(πλ)

π(r − λ)

=
sin2(πλ)

π(1− λ)
+

sin2(πλ)(ψ(0)(p− λ+ 1)− ψ(0)(2− λ))

π
.

Hence,

Ap(λ) = 2
sin(πλ)

π(1− λ)

(
1− (1− λ)ψ(0)(2− λ) + (1− λ)ψ(0)(p− λ+ 1)

)
= 2 sinc(1− λ)

[
1 + (1− λ)

(
ψ(0)(p− λ+ 1)− ψ(0)(2− λ)

)]
,

where we used that sin(πλ) = sinπ(1− λ).
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The goal is to find those values of p for which p − 2Ap(λ) > 0, for all λ ∈ (0, 1]. As the digamma
function is monotone increasing and positive for integer arguments ≥ 2 and as

(3.12) lim
λ→0+

Ap(λ) = 0 and Ap(1) = 2,

we show that p − Ap(λ) has a unique positive minimum at λ0 ∈ (0, 1) whose value is strictly positive
for p ≥ 3 and that p + 1 − Ap+1(λ) > p − Ap(λ), for all λ ∈ (0, 1) and p ≥ 3. To establish the latter,
note that

p+ 1−Ap+1(λ) = p+ 1− (2 sinc(1− λ))
[
1 + (1− λ)

(
ψ(0)(p+ 1− λ+ 1)− ψ(0)(2− λ

)]
= p+ 1− (2 sinc(1− λ))

[
1 + (1− λ)

(
ψ(0)(p+ 1− λ) +

1

p+ 1− λ
− ψ(0)(2− λ

)]
= p−Ap(λ) + 1− 2(1− λ)

p+ 1− λ
sinc(1− λ)

> p−Ap(λ), for p ≥ 3.

Hence, it suffices to show that 3− A3(λ) has a unique minimum value for a λ ∈ [0, 1]. To this end, we
remark that

3−A3(λ) = 3− (2 sinc(1− λ))
[
1 + (1− λ)

(
ψ(0)(4− λ+ 1)− ψ(0)(2− λ

)]
= 3− (2 sinc(1− λ))

[
3− 2

3− λ
− 1

2− λ

]
=: Ψ(λ).

Differentiation of Ψ with respect to λ yields

Ψ′(λ) =
2π(λ− 3)(λ− 2)(λ− 1)(3(λ− 4)λ+ 11) cos(πλ)− 2(3(λ− 4)λ((λ− 4)λ+ 8) + 49) sin(πλ)

π(λ− 3)2(λ− 2)2(λ− 1)2
.

Numerically solving Ψ′(λ) = 0, 0 < λ < 1, produces an unique zero at λ0 ≈ 0.762714. As Ψ′′(λ0) ≈
12.8421 and because of equations. 3.12, the point (λ0, 3−A3(λ0)) ≈ (0.762714, 0.638135) is the unique
global minimum of 3−A3(λ) on [0, 1]. Therefore, the right-hand side of (3.11) is strictly positive. Hence,
by Theorem 3.4, we conclude that the shift-invariant system {L(2k,l,m)ϕ : k, l,m ∈ Z} forms a Riesz
sequence for each p ≥ 3.

The following result shows that one can obtain more examples of Riesz sequences of left
translates on H from the Riesz sequence of classical translates on R.

Proposition 3.1. Let h ∈ L2(R). Define ϕ(x, y, t) := χ[0,2](x)χ[0,1](y)h(t). Then, the system
{L(2k,l,m)ϕ : k, l,m ∈ Z} is a Riesz sequence in L2(H) with bounds A,B > 0 iff the system
{Trh : r ∈ Z} is a Riesz sequence in L2(R) with bounds 1

2A and 1
2B.

Proof. We have ϕλ(x, y) = χ[0,2](x)χ[0,1](y)ĥ(−λ). Now,〈(
T t
(2k,l)

)λ
ϕλ, ϕλ

〉
=

∫
R2

eπiλ(lx−2ky)ϕλ(x− 2k, y − l)ϕλ(x, y) dx dy

= ĥ(−λ)
∫ 2

0

∫ 1

0

eπiλ(lx−2ky)ϕλ(x− 2k, y − l) dy dx

= ĥ(−λ)
∫ 2−2k

−2k

∫ 1−l

−l

eπiλ(lx−2ky)ϕλ(x, y) dy dx

= |ĥ(−λ)|2
∫
[−2k,2−2k]∩[0,2]

∫
[−l,1−l]∩[0,1]

eπiλ(lx−2ky) dy dx,
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which in turn implies that ⟨(T t
(2k,l))

λϕλ, ϕλ⟩ = 0, ∀ (k, l) ∈ Z2 \ {(0, 0)}. Moreover, for (k, l) =

(0, 0), ⟨(T t
(2k,l))

λϕλ, ϕλ⟩ = 2|ĥ(−λ)|2. For {ck,l} ∈ ℓ2(Z2), the middle term in (3.6) becomes

⟨G(λ){ck,l}, {ck,l}⟩ℓ2(Z2) =
∑
k,l∈Z

|ck,l|2
∑
r∈Z

2|ĥ(−(λ− r))|2

= 2∥{ck,l}∥2ℓ2(Z2)

∑
r∈Z

|ĥ(−(λ− r))|2.

From Theorem 3.4, the system {L(2k,l,m)ϕ : k, l,m ∈ Z} is a Riesz sequence with boundsA,B >
0 iff

A∥{ck,l}∥2ℓ2(Z2) ≤ 2∥{ck,l}∥2ℓ2(Z2)

∑
r∈Z

|ĥ(−(λ− r))|2 ≤ B∥{ck,l}∥2ℓ2(Z2)

for a.e. λ ∈ (0, 1], which is equivalent to

A

2
≤
∑
r∈Z

|ĥ(−(λ− r))|2 ≤ B

2

for a.e. λ ∈ (0, 1]. Hence, the required result follows from Theorem 2.1. □

Example 3.2. Let ϕ(x, y, t) := χ[0,2](x)χ[0,1](y)Bn(t), where Bn denotes the cardinal polynomial B-
spline of order n. It is well known that {TrBn : r ∈ Z} is a Riesz sequence in L2(R), for each n ∈ N.
Hence, it follows from Proposition 3.1 that {L(2k,l,m)ϕ : k, l,m ∈ Z} is a Riesz sequence.

4. OBLIQUE DUAL OF THE SYSTEM OF LEFT TRANSLATES

In this section, we investigate the structure of an oblique dual of the system of left translates
{L(2k,l,m)ϕ : k, l,m ∈ Z}.

Lemma 4.2. Assume that ϕ, ϕ̃ ∈ L2(H) have compact support and {L(2k,l,m)ϕ : k, l,m ∈ Z} and
{L(2k,l,m)ϕ̃ : k, l,m ∈ Z} form Riesz sequences. Then, the following statements are equivalent:

(i) f =
∑

k,l,m∈Z
⟨f, L(2k,l,m)ϕ̃⟩L(2k,l,m)ϕ, ∀ f ∈ V := span{L(2k,l,m)ϕ : k, l,m ∈ Z}.

(ii) ⟨ϕ,L(2k,l,m)ϕ̃⟩ = δ(k,l,m),(0,0,0), ∀ (k, l,m) ∈ Z3.

Proof. The proof of this lemma is similar to the proof of Lemma 2.1 in [10]. However, for the
sake of completeness, we provide the proof. Suppose that (i) holds. As (i) is true for f = ϕ, we
have

ϕ =
∑

k,l,m∈Z
⟨ϕ,L(2k,l,m)ϕ̃⟩L(2k,l,m)ϕ,

which leads to

[⟨ϕ,L(2k,l,m)ϕ̃⟩ − 1]ϕ +
∑

k,l,m∈Z
(k,l,m) ̸=(0,0,0)

⟨ϕ,L(2k,l,m)ϕ̃⟩L(2k,l,m)ϕ = 0.

As {L(2k,l,m)ϕ : k, l,m ∈ Z} is a Riesz sequence, we know that ⟨ϕ,L(2k,l,m)ϕ̃⟩ = δ(k,l,m),(0,0,0),
∀ (k, l,m) ∈ Z3, which is (ii).
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Conversely, suppose (ii) holds. Let f ∈ V . Then f =
∑

k,l,m∈Z
ck,l,mL(2k,l,m)ϕ for some coeffi-

cients {ck,l,m}. Now,

⟨f, L(2k,l,m)ϕ̃⟩ =
∑

k′,l′,m′∈Z
ck′,l′,m′⟨L(2k′,l′,m′)ϕ,L(2k,l,m)ϕ̃⟩

=
∑

k′,l′,m′∈Z
ck′,l′,m′⟨ϕ,L(2(k−k′),l−l′,m−m′+(k′l−l′k))ϕ̃⟩

=
∑

k′,l′,m′∈Z
ck′,l′,m′δ(k−k′,l−l′,m−m′+(k′l−l′k)),(0,0,0)

= ck,l,m,

from which (i) follows. □

Theorem 4.5. Let ϕ ∈ L2(H) be supported in [0, 2n]× [0, n]× [0,M ] for someM,n ∈ N. Also assume
that the system {L(2k,l,m)ϕ : k, l,m ∈ Z} forms a Riesz sequence. Then, the following statements are
equivalent:

(i) The system {L(2k,l,m)ϕ : k, l,m ∈ Z} has a generalized dual {L(2k,l,m)ϕ̃ : k, l,m ∈ Z} with
supp ϕ̃ ⊂ Q, where Q := [0, 2]× [0, 1]× [0, 1].

(ii) If
∑

(k,l,m)∈A

ck,l,mL(2k,l,m)ϕ(x, y, t) = 0, for all (x, y, t) ∈ Q and for some coefficients {ck,l,m},

then c0,0,0 = 0, where A := {−(n− 1) ≤ k, l ≤ 0,−M − n+ 1 < m < n}.
(iii) ϕ|Q /∈ span

{
(L(2k,l,m)ϕ)|Q : (k, l,m) ∈ A \ {(0, 0, 0)}

}
.

In case that any one of the above conditions is satisfied, the generalized duals {L(2k,l,m)ϕ̃ : k, l,m ∈ Z}
form orthogonal sequences and they are oblique duals of {L(2k,l,m)ϕ : k, l,m ∈ Z}. One can choose ϕ̃
to be of the form

ϕ̃ =

[ ∑
(k,l,m)∈A

dk,l,mL(2k,l,m)ϕ

]
χQ

for some coefficients {dk,l,m}. Here, χQ denotes the characteristic function of Q.

Proof. The idea of the proof is similar to that of Theorem 3.1 of [10]. Here, we provide the main
steps in the proof.

Let ϕ̃ ∈ L2(H) be such that supp ϕ̃ ⊂ Q. Then,

⟨L(2k,l,m)ϕ, ϕ̃⟩

=

∫
Q

L(2k,l,m)ϕ(x, y, t)ϕ̃(x, y, t) dxdydt

=

∫ 2(1−k)

−2k

∫ 1−l

−l

∫ 1−m+ 1
2 (−lx+2ky)

−m+ 1
2 (2ky−lx)

ϕ(x, y, t)ϕ̃(x+ 2k, y + l, t+m− 1

2
(−lx+ 2ky)) dtdydx,

by applying a change of variables. Further, using suppϕ ⊂ [0, 2n] × [0, n] × [0,M ], we obtain
⟨L(2k,l,m)ϕ, ϕ̃⟩ = 0, ∀ (k, l,m) ∈ Ac.

Assume that (i) holds. Then, by Lemma 4.2, we have that ⟨ϕ,L(2k,l,m)ϕ̃⟩ = δ(k,l,m),(0,0,0),
∀ (k, l,m) ∈ Z3. Hence, we obtain the moment problem

⟨L(2k,l,m)ϕ, ϕ̃⟩ = δ(k,l,m),(0,0,0)
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for (k, l,m) ∈ A. Now, condition (i) is equivalent to the existence of a solution of the moment
problem. By Lemma 2.1, the existence of a solution of the moment problem is equivalent to
conditions (ii) and (iii). Moreover, if (i) is true, then supp ϕ̃ ⊂ Q leads to the fact that the system
{L(2k,l,m)ϕ̃ : k, l,m ∈ Z} is an orthogonal sequence. □

Example 4.3. Let ϕ(x, y, t) := χ[0,2](x)χ[0,1](y)B3(t), where B3 is the cardinal polynomial B-spline
of order 3, given by

B3(t) =


1
2 t

2, t ∈ [0, 1];

−t2 + 3t− 3
2 , t ∈ [1, 2];

1
2 t

2 − 3t+ 9
2 , t ∈ [2, 3];

0, otherwise.

Thus, it follows from Example 3.2 that {L(2k,l,m)ϕ : k, l,m ∈ Z} is a Riesz sequence. We know that
supp ϕ̃ ⊂ Q. Consider

⟨L(2k,l,m)ϕ, ϕ̃⟩

=

∫ 2

0

∫ 1

0

∫ 1

0

ϕ(x− 2k, y − l, t−m+ 1
2 (2ky − lx))ϕ̃(x, y, t) dt dy dx

=

∫
[−2k,2−2k]∩[0,2]

∫
[−l,1−l]∩[0,1]

∫ 1

0

B3(t−m+ 1
2 (2ky − lx))ϕ̃(x+ 2k, y + l, t) dt dy dx.

Hence, for (k, l) ̸= (0, 0), ⟨L(2k,l,m)ϕ, ϕ̃⟩ = 0.
For (k, l) = (0, 0), we have

⟨L(0,0,m)ϕ, ϕ̃⟩ =
∫ 2

0

∫ 1

0

∫
[−m,1−m]∩[0,3]

B3(t)ϕ̃(x.y, t+m) dt dy dx,

which shows that −2 ≤ m ≤ 0. Define Λ := {(0, 0,−2), (0, 0,−1), (0, 0, 0)}. Then, ⟨L(0,0,m)ϕ, ϕ̃⟩ =
0, ∀ (k, l,m) /∈ Λ. Furthermore, it is easy to show that

{
ϕ|Q,

(
L(0,0,−1)ϕ

)
|Q,
(
L(0,0,−2)ϕ

)
|Q
}

is a
linearly independent set. Thus, by Theorem 4.5, an oblique dual of ϕ is given by

ϕ̃ =

[ ∑
m=−2,−1,0

dmL(0,0,m)ϕ

]
χQ,(4.1)

satisfying the moment problem

⟨L(0,0,m)ϕ, ϕ̃⟩ = δ0,m(4.2)

for m = −2,−1, 0.
Next, we proceed to solve the above moment problem. Substituting (4.1) in (4.2), we get the following

equations ∑
m=−2,−1,0

dm ⟨ϕ,L(0,0,m)ϕ · χQ⟩ = 1,

∑
m=−2,−1,0

dm ⟨L(0,0,−1)ϕ,L(0,0,m)ϕ · χQ⟩ = 0,

∑
m=−2,−1,0

dm ⟨L(0,0,−2)ϕ,L(0,0,m)ϕ · χQ⟩ = 0.
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Upon simplification, we obtain

6d0 + 13d−1 + d−2 = 60,

d0 +
54

13
d−1 + d−2 = 0,

d0 + 13d−1 + 6d−2 = 0.

Solving these equations and then substituting back into (4.1), yields

ϕ̃(x, y, t) = 3
2 (40t

2 − 36t+ 5)χQ(x, y, t).
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