http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 73, Number 3, Pages 611–629 (2024) DOI:10.31801/cfsuasmas.1382928 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: October 29, 2023; Accepted: April 28, 2024

CONFORMAL η -RICCI-YAMABE SOLITONS ON SUBMANIFOLDS OF AN $(\mathcal{LCS})_n$ -MANIFOLD ADMITTING A QUARTER-SYMMETRIC METRIC CONNECTION

Sunil Kumar YADAV¹, Abdul HASEEB² and Ahmet YILDIZ³

¹ Department of Applied Science and Humanities, United College of Engineering & Research, A-31, UPSIDC Institutional Area, Naini-211010, Prayagraj, Uttar Pradesh, INDIA

²Department of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, KINGDOM of SAUDI ARABIA

³Education Faculty, Department of Mathematics, Inonu University, 44280 Malatya, TÜRKİYE

ABSTRACT. This paper presents some results for conformal η -Ricci-Yamabe solitons (CERYS) on invariant and anti-invariant submanifolds of a $(\mathcal{LCS})_n$ -manifold admitting a quarter-symmetric metric connection (QSMC). In addition, we developed the characterization of CERYS on \mathcal{M} -projectively flat, \mathcal{Q} -flat, and concircularly flat anti-invariant submanifolds of a $(\mathcal{LCS})_n$ -manifold with respect to the aforementioned connection. Finally, we construct an extensive example that appoints some of our inferences.

1. BACKGROUND AND MOTIVATIONS

Conformal Ricci flow is defined in a Riemannian *n*-manifold (\mathbb{V}, g) as a generalisation of classical Ricci flow by [6]

$$\frac{\partial g}{\partial t} = -2(\mathcal{R}ic + \frac{g}{n}) - pg, \ \ \tau(g) = -1,$$

where p is called the conformal pressure, g is the Riemannian metric; τ and $\mathcal{R}ic$ denote the scalar curvature and the Ricci tensor of \mathbb{V} , respectively.

A conformal Ricci soliton on (\mathbb{V}, g) is defined as follows [2]:

$$\mathfrak{L}_{\mathcal{F}_1}g + 2\mathcal{R}ic = [\frac{1}{n}(pn+2) - 2\mu]g,$$

¹ prof_sky16@yahoo.com-Corresponding author; 00000-0001-6930-3585

©2024 Ankara University Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 53C05, 53C15, 53C20, 53C25, 53C40.

Keywords. Conformal η -Ricci-Yamabe soliton, submanifolds of a $(\mathcal{LCS})_n$ -manifolds, quarter symmetric metric connection, \mathcal{M} -projectively flat, pseudo-projectively flat, \mathcal{Q} -flat.

² haseeb@jazanu.edu.sa; malikhaseeb80@gmail.com; ⁰0000-0002-1175-6423

³ [□]a.yildiz@inonu.edu.tr; [□]00000-0002-9799-1781.

where $\mu \in \Re$ (\Re is the set of real numbers) and $\mathfrak{L}_{\mathcal{F}_1}$ denotes the Lie-derivative operator along a smooth vector field \mathcal{F}_1

A Ricci-Yamabe flow of type (κ, l) , which is a scalar combination of Ricci and Yamabe flows, is defined as follows [7]:

$$\frac{\partial}{\partial t}g(t) = 2\kappa \mathcal{R}ic(g(t)) - l\tau(t)g(t), \quad g(0) = g_0,$$

for some scalars κ and l.

A Riemannian manifold is said to have a Ricci-Yamabe solitons of type (κ, l) (briefly, RYS) if [4, 29]

$$\mathfrak{L}_{\mathcal{F}_1}g + 2\kappa \mathcal{R}ic + (2\mu - l\tau)g = 0,$$

where $l, \kappa, \mu \in \Re$.

In [30], Zhang et al. studied conformal Ricci-Yamabe soliton (briefly, CRYS), which is defined on (\mathbb{V}, g) by

$$\mathfrak{L}_{\mathcal{F}_1}g + 2\kappa\mathcal{R}ic + [2\mu - l\tau - \frac{1}{n}(pn+2)]g = 0.$$

In this follow-up, the conformal η -Ricci-Yamabe soliton (briefly, CERYS) on (\mathbb{V}, g) is defined by [28]

$$\mathfrak{L}_{\mathcal{F}_1}g + 2\kappa\mathcal{R}ic + [2\mu - l\tau - \frac{1}{n}(pn+2)]g + 2\nu\eta\otimes\eta = 0, \tag{1}$$

where $l, \kappa, \mu, \nu \in \Re$. If $\mathcal{F}_1 = grad(f)$, then the Equation (1) is called a gradient conformal η -Ricci-Yamabe soliton (briefly, GCERYS) and given by

$$\nabla^2 f + \kappa \mathcal{R}ic + \left[\mu - \frac{l\tau}{2} - \frac{1}{2}(p + \frac{2}{n})\right]g + \nu \eta \otimes \eta = 0,$$

where $\nabla^2 f$ is said to be the Hessian of f. A CRYS (or GCRYS) is said to be shrinking, steady or expanding if $\mu < 0$, = 0 or > 0, respectively. A CERYS (or GCERYS) reduces to (*i*) CERS if $\kappa = 1$, l = 0, (*ii*) CEYS if $\kappa = 0$, l = 1, and (*iii*) conformal η -Einstein soliton (briefly, CEES) if $\kappa = 1$, l = -1.

Shaikh [22] introduced the concept of *n*-dimensional Lorentzian concircular structure manifold (briefly, $(\mathcal{LCS})_n$ -manifold) and demonstrated its existence with several examples [24], which generalises the concept of \mathcal{LP} -Sasakian manifolds introduced in [13,14]. We refer to the works [1,10,23] for more extensive studies. Mantica and Molinari [18] recently demonstrated that a $(\mathcal{LCS})_n$ -manifold (n > 3) is equal to the GRW spacetime. The authors also examined the applicability of $(\mathcal{LCS})_n$ manifolds in general theory of relativity and cosmology in [3]. Thus the geometry of submanifolds has grown in popularity in modern analysis due to its importance in practical mathematics and theoretical physics.

A linear connection $\overline{\nabla}$ on (\mathbb{V}, g) is said to be a quarter-symmetric connection (briefly, QSC) [8] if its torsion tensor $\overline{\mathcal{T}}$ has the form

$$\bar{\mathcal{T}}(\mathcal{F}_1, \mathcal{F}_2) = \bar{\nabla}_{\mathcal{F}_1} \mathcal{F}_2 - \bar{\nabla}_{\mathcal{F}_2} \mathcal{F}_1 - [\mathcal{F}_1, \mathcal{F}_2] = \mathcal{A}(\mathcal{F}_2) \psi^*(\mathcal{F}_1) - \mathcal{A}(\mathcal{F}_1) \psi^*(\mathcal{F}_2), \quad (2)$$

where \mathcal{A} is a 1-form and ψ^* is a (1,1) type tensor field. If a quarter-symmetric linear connection $\overline{\nabla}$ satisfies the condition

$$(\bar{\nabla}_{\mathcal{F}_1}g)(\mathcal{F}_2,\mathcal{F}_3)=0,$$

for all $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3 \in \chi(\mathbb{V})$, then $\overline{\nabla}$ is said to be a quarter-symmetric metric connection (briefly, QSMC). If a contact metric manifold admits a QSC, then we take $\mathcal{A}=\eta$ and $\psi^*=\phi$ and hence (2) takes the form $\overline{\mathcal{T}}(\mathcal{F}_1, \mathcal{F}_2) = \eta(\mathcal{F}_2)\phi(\mathcal{F}_1) - \eta(\mathcal{F}_1)\phi(\mathcal{F}_2)$.

The relation between the Levi-Civita connection ∇ and a QSMC $\overline{\nabla}$ on a contact metric manifold is given by

$$\overline{\nabla}_{\mathcal{F}_1}\mathcal{F}_2 = \nabla_{\mathcal{F}_1}\mathcal{F}_2 - \eta(\mathcal{F}_1)\phi(\mathcal{F}_2).$$

Recently, the QSMC have been studied by many authors such as [9, 12, 19, 31] and many others.

2. Preliminaries

Let $\widetilde{\mathbb{V}}$ be an *n*-dimensional Lorentzian manifold admitting a unit time-like concircular vector field ζ . Then there is

$$g(\zeta, \zeta) = -1.$$

Since ζ is a unit concircular vector field, it follows that there exists a non-zero 1-form η such that for

$$g(\mathcal{F}_1,\zeta) = \eta(\mathcal{F}_1)$$

satisfies [25]

$$(\tilde{\nabla}_{\mathcal{F}_1}\eta)\mathcal{F}_2 = \alpha[g(\mathcal{F}_1,\mathcal{F}_2) + \eta(\mathcal{F}_1)\eta(\mathcal{F}_2)], \ \alpha \neq 0,$$

$$\tilde{\nabla}_{\mathcal{F}_1}\zeta = \alpha[\mathcal{F}_1 + \eta(\mathcal{F}_1)\zeta], \ \alpha \neq 0,$$
(3)

for $\mathcal{F}_1, \mathcal{F}_2 \in \chi(\widetilde{\mathbb{V}})$, where $\widetilde{\nabla}$ denotes the operator of covariant differentiation with respect to the Lorentzian metric q and α is a non-zero scalar function that satisfies

$$\widetilde{\nabla}_{\mathcal{F}_1} \alpha = (\mathcal{F}_1 \alpha) = d\alpha(\mathcal{F}_1) = \rho \eta(\mathcal{F}_1),$$

 ρ being a certain scalar function given by $\rho = -(\zeta \alpha)$. Let us have a look

$$\phi \mathcal{F}_1 = \frac{1}{\alpha} \widetilde{\nabla}_{\mathcal{F}_1} \zeta, \tag{4}$$

then utilizing (3) and (4) we acquire

$$\phi \mathcal{F}_1 = \mathcal{F}_1 + \eta(\mathcal{F}_1)\zeta,$$

$$g(\phi \mathcal{F}_1, \mathcal{F}_2) = g(\mathcal{F}_1, \phi \mathcal{F}_2).$$

Thus the Lorentzian manifold $\widetilde{\mathbb{V}}$ admits the unit time-like concircular vector field ζ , its associated 1-form η and a (1,1) tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly, $(\mathcal{LCS})_n$ -manifold) [17,22]. Especially, if we take $\alpha=1$, then we can obtain the \mathcal{LP} -Sasakian structure of Matsumoto [13]. In an $(\mathcal{LCS})_n$ -manifold, we have [22]:

$$\eta(\zeta) = -1, \ \phi \circ \zeta = 0, \ \eta(\phi \mathcal{F}_1) = 0, \ g(\phi \mathcal{F}_1, \phi \mathcal{F}_2) = g(\mathcal{F}_1, \mathcal{F}_2) + \eta(\mathcal{F}_1)\eta(\mathcal{F}_2),$$

0

$$\begin{split} \phi^2 \mathcal{F}_1 &= \mathcal{F}_1 + \eta(\mathcal{F}_1)\zeta, \\ \eta(\widetilde{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3) &= (\alpha^2 - \rho)[g(\mathcal{F}_2, \mathcal{F}_3)\eta(\mathcal{F}_1) - g(\mathcal{F}_1, \mathcal{F}_3)\eta(\mathcal{F}_2)], \\ \widetilde{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2)\zeta &= (\alpha^2 - \rho)[\eta(\mathcal{F}_2)\mathcal{F}_1 - \eta(\mathcal{F}_1)\mathcal{F}_2], \\ \widetilde{\mathcal{R}}ic(\mathcal{F}_1, \zeta) &= (n-1)(\alpha^2 - \rho)\eta(\mathcal{F}_1), \\ \widetilde{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 &= \phi\widetilde{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 + (\alpha^2 - \rho)[g(\mathcal{F}_2, \mathcal{F}_3)\eta(\mathcal{F}_1) - g(\mathcal{F}_1, \mathcal{F}_3)\eta(\mathcal{F}_2)]\zeta \\ (\widetilde{\nabla}_{\mathcal{F}_1}\phi)\mathcal{F}_2) &= \alpha[g(\mathcal{F}_1, \mathcal{F}_2)\zeta + 2\eta(\mathcal{F}_1)\eta(\mathcal{F}_2)\zeta + \eta(\mathcal{F}_2)\mathcal{F}_1], \end{split}$$

for all $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3 \in \chi(\widetilde{\mathbb{V}}).$

Let \mathbb{N} be an *m*-dimensional (m < n) submanifold of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with induced metric *g*. Also, let ∇ be the induced connection on the tangent bundle $T\mathbb{N}$ and ∇^{\perp} be the induced connection on the normal bundle $T^{\perp}\mathbb{N}$ of \mathbb{N} , respectively. Then the Gauss and Weingarten formulae are respectively given by

$$\overline{\nabla}_{\mathcal{F}_1} \mathcal{F}_2 = \nabla_{\mathcal{F}_1} \mathcal{F}_2 + \hbar(\mathcal{F}_1, \mathcal{F}_2), \tag{5}$$

and

$$\widetilde{\nabla}_{\mathcal{F}_1}\mathcal{F}_3 = -\mathcal{A}_{\mathcal{F}_3}\mathcal{F}_1 + \nabla_{\mathcal{F}_1}^{\perp}\mathcal{F}_3,$$

for all $\mathcal{F}_1, \mathcal{F}_2 \in \chi(\mathbb{N})$ and $\mathcal{F}_3 \in \chi^{\perp}(\mathbb{N})$, where \hbar and $\mathcal{A}_{\mathcal{F}_3}$ are second fundamental form and the shape operator (corresponding to the normal vector field \mathcal{F}_3), respectively for the immersion of \mathbb{N} into $\widetilde{\mathbb{V}}$. The second fundamental form \hbar and the shape operator $\mathcal{A}_{\mathcal{F}_3}$ are related by [26]

$$g(\hbar(\mathcal{F}_1, \mathcal{F}_2), \mathcal{F}_3) = g(\mathcal{A}_{\mathcal{F}_3}\mathcal{F}_1, \mathcal{F}_2),$$

for all $\mathcal{F}_1, \mathcal{F}_2 \in \chi(\mathbb{N})$ and $\mathcal{F}_3 \in \chi^{\perp}(\mathbb{N})$. We note that $\hbar(\mathcal{F}_1, \mathcal{F}_2)$ is bilinear and since $\nabla_{f\mathcal{F}_1}\mathcal{F}_2 = f \nabla_{\mathcal{F}_1}\mathcal{F}_2$ for any smooth function f on a manifold, then we have

$$\hbar(f\mathcal{F}_1,\mathcal{F}_2) = f\hbar(\mathcal{F}_1,\mathcal{F}_2).$$

A submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is said to be totally umbilical if

$$\hbar(\mathcal{F}_1, \mathcal{F}_2) = g(\mathcal{F}_1, \mathcal{F}_2)\mathcal{H},\tag{6}$$

where $\mathcal{F}_1, \mathcal{F}_2 \in T\mathbb{N}$ and the mean curvature vector \mathcal{H} on \mathbb{N} is given by $\mathcal{H} = \frac{1}{m} \sum_{i=1}^{m} \hbar(v_i, v_i)$, where $\{v_1, v_2, ..., v_m\}$ is a local orthonormal frame of vector fields on \mathbb{N} . Moreover, if $\hbar(\mathcal{F}_1, \mathcal{F}_2) = 0$ for all $\mathcal{F}_1, \mathcal{F}_2 \in T\mathbb{N}$, then \mathbb{N} is said to be totally geodesic and if $\mathcal{H}=0$ then \mathbb{N} is called minimal in $\widetilde{\mathbb{V}}$.

A submanifold \mathbb{N} of $\widetilde{\mathbb{V}}$ is said to be invariant if the structure vector field ζ is tangent to \mathbb{N} at every point of \mathbb{N} and $\phi \mathcal{F}_1$ is tangent to \mathbb{N} for every vector field \mathcal{F}_1 tangent to \mathbb{N} at every point of \mathbb{N} , i.e., $\phi(T\mathbb{N}) \subset T\mathbb{N}$ at every point of \mathbb{N} . Whereas, \mathbb{N} is said to be anti-invariant if for any \mathcal{F}_1 tangent to \mathbb{N} , $\phi \mathcal{F}_1$ is normal to \mathbb{N} , i.e., $\phi(T\mathbb{N}) \subset T^{\perp}\mathbb{N}$ at every point of \mathbb{N} , where $T^{\perp}\mathbb{N}$ is the normal bundle of \mathbb{N} .

Now we recall the following results:

Lemma 1. [11] On an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with a QSMC $\overline{\widetilde{\nabla}}$, we have

(i)
$$\widetilde{\nabla}_{\mathcal{F}_1}\mathcal{F}_2 = \widetilde{\nabla}_{\mathcal{F}_1}\mathcal{F}_2 + \eta(\mathcal{F}_2)\phi\mathcal{F}_1 - g(\phi\mathcal{F}_1,\mathcal{F}_2)\zeta,$$

$$\begin{aligned} (ii) \quad \bar{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 &= \quad \widetilde{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 + (2\alpha - 1)[g(\phi\mathcal{F}_1, \mathcal{F}_3)\phi\mathcal{F}_2 - g(\phi\mathcal{F}_2, \mathcal{F}_3)\phi\mathcal{F}_1] \\ &+ \quad \alpha[\eta(\mathcal{F}_2)\mathcal{F}_1 - \eta(\mathcal{F}_1)\mathcal{F}_2]\eta(\mathcal{F}_3) + \alpha[g(\mathcal{F}_2, \mathcal{F}_3)\eta(\mathcal{F}_1) - g(\mathcal{F}_1, \mathcal{F}_3)]\zeta, \end{aligned}$$

$$\begin{array}{lll} (iii) & \bar{\mathcal{R}}ic(\mathcal{F}_2,\mathcal{F}_3) & = & \widetilde{\mathcal{R}}ic(\mathcal{F}_2,\mathcal{F}_3) + (\alpha-1)g(\mathcal{F}_2,\mathcal{F}_3) + (n\alpha-1)\eta(\mathcal{F}_2)\eta(\mathcal{F}_3) \\ & & -(2\alpha-1)\varepsilon g(\phi\mathcal{F}_2,\mathcal{F}_3), \end{array}$$

where $\bar{\mathcal{R}}$, $\bar{\mathcal{R}}ic$ are the curvature and the Ricci tensors of $\tilde{\mathbb{V}}$ with respect to $\bar{\tilde{\nabla}}$ and $\varepsilon = \text{trace}\phi$.

3. Cervs on Submanifolds of $(\mathcal{LCS})_n$ -Manifolds

Let $(g, \zeta, \mu, \kappa, l)$ be a CERYS on submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$. Then in view of (1) we obtain

$$\mathfrak{L}_{\zeta}g(\mathcal{F}_2,\mathcal{F}_3) = -2\kappa \mathcal{R}ic(\mathcal{F}_2,\mathcal{F}_3) - [2\mu - l\tau - \frac{1}{n}(pn+2)]g(\mathcal{F}_2,\mathcal{F}_3) \qquad (7)$$
$$-2\nu\eta(\mathcal{F}_2)\eta(\mathcal{F}_3).$$

With the help of (4) and (5) one can get

$$\alpha \phi \mathcal{F}_1 = \widetilde{\nabla}_{\mathcal{F}_1} \zeta = \nabla_{\mathcal{F}_1} \zeta + \hbar(\mathcal{F}_1, \zeta).$$
(8)

If \mathbb{N} is invariant in $\widetilde{\mathbb{V}}$, then $\phi \mathcal{F}_1, \zeta \in T\mathbb{N}$. So from (8) we yields

(i)
$$\alpha \phi \mathcal{F}_1 = \nabla_{\mathcal{F}_1} \zeta, \quad (ii) \quad \hbar(\mathcal{F}_1, \zeta) = 0.$$
 (9)

Using (9)(i) in (7), we obtain

$$\mathcal{R}ic(\mathcal{F}_{2},\mathcal{F}_{3}) = -\frac{1}{\kappa} [\mu + \alpha - \frac{l\tau}{2} - \frac{1}{2n} (pn+2)]g(\mathcal{F}_{2},\mathcal{F}_{3}) - \frac{(\nu+\alpha)}{\kappa} \eta(\mathcal{F}_{2})\eta(\mathcal{F}_{3}), (10)$$

where $\mathfrak{L}_{\zeta}g(\mathcal{F}_2,\mathcal{F}_3) = 2\alpha[g(\mathcal{F}_2,\mathcal{F}_3) + \eta(\mathcal{F}_2)\eta(\mathcal{F}_3)].$

Also, with the help of (9)(ii), we get from (6) that $\eta(\mathcal{E})\mathcal{H} = 0 \implies \mathcal{H} = 0$. So, we obtain the result:

Theorem 1. If $(g, \zeta, \mu, \nu, \kappa, l)$ be a CERYS on an invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$, then \mathbb{N} is an η -Einstein manifold and also minimal in $\widetilde{\mathbb{V}}$.

Also, we have

$$\mathcal{R}(\mathcal{F}_2, \mathcal{F}_3)\zeta = \nabla_{\mathcal{F}_2}\nabla_{\mathcal{F}_3}\zeta - \nabla_{\mathcal{F}_3}\nabla_{\mathcal{F}_2}\zeta - \nabla_{[\mathcal{F}_2, \mathcal{F}_3]}\zeta = (\alpha^2 - \rho)[\eta(\mathcal{F}_3)\mathcal{F}_2 - \eta(\mathcal{F}_2)\mathcal{F}_3],$$

which by using (9)(*i*), we lead to

$$\mathcal{R}ic(\mathcal{F}_2,\zeta) = (m-1)(\alpha^2 - \rho)\eta(\mathcal{F}_2), \text{ for all } \mathcal{F}_2.$$
(11)

By fixing $\mathcal{F}_3 = \zeta$ in (10) and using (11), we get

$$\mu = \nu - \kappa (m-1)(\alpha^2 - \rho) + \frac{l\tau}{2} + \frac{1}{2}(p + \frac{2}{n}).$$

As consequence, we can make the following claim:

Theorem 2. If $(g, \zeta, \mu, \nu, \kappa, l)$ be a CERYS on an invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$, then the CERYS reduces to (i) CERS if $\mu = \nu - (m-1)(\alpha^2 - \rho) + \frac{1}{2}(p + \frac{2}{n})$, (ii) CEYS if $\mu = \nu + \frac{\tau}{2} + \frac{1}{2}(p + \frac{2}{n})$, (iii) CEES if $\mu = \nu - (m-1)(\alpha^2 - \rho) - \frac{\tau}{2} + \frac{1}{2}(p + \frac{2}{n})$.

Corollary 1. An η -Yamabe soliton on an invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ of type (0,1), is contracting, stable or increasing accordingly as $\tau < -2\nu$, $\tau = -2\nu$, or $\tau > -2\nu$, respectively.

Corollary 2. An η -Ricci soliton on an invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifolds $\widetilde{\mathbb{V}}$ of type (1,0), is contracting, stable or increasing accordingly as $\nu < (m-1)(\alpha^2 - \rho)$, $\nu = (m-1)(\alpha^2 - \rho)$ or $\nu > (m-1)(\alpha^2 - \rho)$, provided $\alpha^2 \neq \rho$.

Corollary 3. An η -Einstein soliton on an invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ manifolds $\widetilde{\mathbb{V}}$ of type (1, -1), is contracting, stable or increasing accordingly as $\tau > 2[\nu - (m-1)(\alpha^2 - \rho)], \tau = 2[\nu - (m-1)(\alpha^2 - \rho)]$ or $\tau < 2[\nu - (m-1)(\alpha^2 - \rho)],$ provided $\alpha^2 \neq \rho$.

In particular, if \mathbb{N} is an anti-invariant submanifold on $\widetilde{\mathbb{V}}$. Then for any $\mathcal{F}_1 \in T\mathbb{N}$ and $\phi \mathcal{F}_1 \in T^{\perp}\mathbb{N}$, we get from (8) that $\nabla_{\mathcal{F}_1}\zeta=0$, $\hbar(\mathcal{F}_1,\zeta)=\alpha\phi\mathcal{F}_1$. Thus, $\mathfrak{L}_{\zeta}g(\mathcal{F}_1,\mathcal{F}_2)=0$, that is, ζ is a Killing vector field (briefly, KVF) and in this case from (7), we have

$$\mathcal{R}ic(\mathcal{F}_2, \mathcal{F}_3) = -\frac{1}{\kappa} \left[\mu - \frac{l\tau}{2} - \frac{1}{2}(p + \frac{2}{n})\right] g(\mathcal{F}_2, \mathcal{F}_3) - \frac{\nu}{\kappa} \eta(\mathcal{F}_2) \eta(\mathcal{F}_3).$$
(12)

This results in the following outcomes:

Theorem 3. If $(g, \zeta, \mu, \nu, \kappa, l)$ be a CERYS on an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifolds $\widetilde{\mathbb{V}}$, then \mathbb{N} is an η -Einstein and ζ is a KVF.

Again, for an anti-invariant submanifold \mathbb{N} of $\widetilde{\mathbb{V}}$, we have $\mathcal{R}(\mathcal{F}_2, \mathcal{F}_3)\zeta=0$ and hence $\mathcal{R}ic(\mathcal{F}_2, \zeta)=0$. Also, from (12) we obtain $\mathcal{R}ic(\mathcal{F}_2, \zeta) = -\frac{1}{\kappa}[\mu - \frac{l\tau}{2} - \frac{1}{2}(p + \frac{2}{n}) - \nu]\eta(\mathcal{F}_1)$. So, we get $\mu = \frac{l\tau}{2} + \frac{1}{2}(p + \frac{2}{n}) + \nu$. Thus, we have finalized the result:

Corollary 4. A CERYS of type (κ, l) on an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is contracting, stable or increasing accordingly as $\tau < \frac{-1}{l}[2\nu + (p + \frac{2}{n})], \tau = \frac{-1}{l}[2\nu + (p + \frac{2}{n})]$ or $\tau > \frac{-1}{l}[2\nu + (p + \frac{2}{n})].$

4. Cervs on Submanifolds of
$$(\mathcal{LCS})_n$$
-Manifolds Admitting $\bar{\widetilde{\nabla}}$

Assume that $(g, \zeta, \mu, \nu, \kappa, l)$ be a CERYS on a submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ manifold $\widetilde{\mathbb{V}}$ in view of QSMC $\overline{\widetilde{\nabla}}$. Then from (1) we obtain

$$\bar{\mathfrak{L}}_{\mathcal{F}_{1}}g(\mathcal{F}_{2},\mathcal{F}_{3}) = -2\kappa\bar{\mathcal{R}}ic(\mathcal{F}_{2},\mathcal{F}_{3}) - [2\mu - l\bar{\tau} - \frac{1}{n}(pn+2)]g(\mathcal{F}_{2},\mathcal{F}_{3}) \quad (13)$$
$$-2\nu\eta(\mathcal{F}_{2})\eta(\mathcal{F}_{3}) = 0.$$

In view of QSMC $\overline{\nabla}$, the second fundamental form \overline{h} on \mathbb{N} is given by

$$\widetilde{\nabla}_{\mathcal{F}_1} \mathcal{F}_2 = \bar{\nabla}_{\mathcal{F}_1} \mathcal{F}_2 + \bar{\hbar}(\mathcal{F}_1, \mathcal{F}_2).$$
(14)

Using Lemma 2.1(i) and (5) in (14), we lead to

$$\bar{\nabla}_{\mathcal{F}_1}\mathcal{F}_2 + \bar{\hbar}(\mathcal{F}_1, \mathcal{F}_2) = \nabla_{\mathcal{F}_1}\mathcal{F}_2 + \hbar(\mathcal{F}_1, \mathcal{F}_2) + \eta(\mathcal{F}_2)\phi\mathcal{F}_1 - g(\phi\mathcal{F}_1, \mathcal{F}_2)\xi.$$
(15)

We suppose that \mathbb{N} is invariant in $\widetilde{\mathbb{V}}$, then $\phi \mathcal{F}_1, \xi \in T\mathbb{N}$. Thus from (15) we have

$$\bar{\nabla}_{\mathcal{F}_1}\mathcal{F}_2 = \nabla_{\mathcal{F}_1}\mathcal{F}_2 + \eta(\mathcal{F}_2)\phi\mathcal{F}_1 - g(\phi\mathcal{F}_1,\mathcal{F}_2)\zeta, \tag{16}$$

which means \mathbb{N} admits QSME $\widetilde{\nabla}$. Also, in view of (9)(i), it follows that $\overline{\nabla}_{\mathcal{F}_1}\zeta = (\alpha - 1)\phi\mathcal{F}_1$ and hence

$$\bar{\mathfrak{L}}_{\mathcal{F}_1}g(\mathcal{F}_2,\mathcal{F}_3) = 2(\alpha-1)[g(\mathcal{F}_2,\mathcal{F}_3) + \eta(\mathcal{F}_2)\eta(\mathcal{F}_3)].$$
(17)

Let $\overline{\mathcal{R}}$ be the curvature tensor of submanifold \mathbb{N} with respect to the QSMC $\overline{\nabla}$. Then we get

$$\bar{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2), \mathcal{F}_3 = \tilde{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 + (2\alpha - 1)[g(\phi \mathcal{F}_1, \mathcal{F}_3)\phi \mathcal{F}_2 - g(\phi \mathcal{F}_2, \mathcal{F}_3)\phi \mathcal{F}_1)] \\
+ \alpha[\eta(\mathcal{F}_2)\mathcal{F}_1 - \eta(\mathcal{F}_1)\mathcal{F}_2]\eta(\mathcal{F}_3) \\
+ \alpha[g(\mathcal{F}_2, \mathcal{F}_3)\eta(\mathcal{F}_1) - g(\mathcal{F}_1, \mathcal{F}_3)\eta(\mathcal{F}_2)]\zeta,$$
(18)

where $\bar{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 = \bar{\tilde{\nabla}}_{\mathcal{F}_1}\bar{\tilde{\nabla}}_{\mathcal{F}_2}\mathcal{F}_3 - \bar{\tilde{\nabla}}_{\mathcal{F}_2}\bar{\tilde{\nabla}}_{\mathcal{F}_1}\mathcal{F}_3 - \bar{\tilde{\nabla}}_{[\mathcal{F}_1, \mathcal{F}_2]}\mathcal{F}_3.$ On contracting (18), we obtain

$$\bar{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3) = \tilde{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3) + [\alpha(1-2\varepsilon) + \varepsilon]g(\mathcal{F}_2, \mathcal{F}_3) + [\alpha(m-2\varepsilon) + \varepsilon - 1]\eta(\mathcal{F}_2)\eta(\mathcal{F}_3).$$
(19)

In view of (17) and (19), equation (13) reduces to

$$\widetilde{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3) = -\frac{1}{\kappa} \Big[\mu - \frac{l\overline{\tau}}{2} - \frac{1}{2n}(pn+2) + (\alpha-1) + \kappa \{\alpha(1-2\varepsilon) + \varepsilon\} \Big] g(\mathcal{F}_2, \mathcal{F}_3) \\ - \big[\kappa \{\alpha(m-2\varepsilon) + \varepsilon - 1\} + \alpha - 1 + \nu \big] \eta(\mathcal{F}_2) \eta(\mathcal{F}_3).$$

Thus, we state:

Theorem 4. Let $(g, \zeta, \mu, \nu, \kappa, l)$ be a CERYS on an invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with respect to $QSMC \,\widetilde{\overline{\nabla}}$. If $\overline{\nabla}$ be the induced connection on \mathbb{N} from the connection $\overline{\widetilde{\nabla}}$, then \mathbb{N} is an η -Einstein manifold.

Next, if \mathbb{N} is anti-invariant submanifold on $\widetilde{\mathbb{V}}$ as per $\overline{\widetilde{\nabla}}$, then from (15), we get $\overline{\nabla}_{\mathcal{F}_1}\zeta=0$ and hence we find $\overline{\mathfrak{L}}_{\zeta}g(\mathcal{F}_2,\mathcal{F}_3)=0$. So from (13) we leads to the outcome:

Theorem 5. Let $(g, \zeta, \mu, \nu, \kappa, l)$ be a CERYS on an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ admits QSMC $\overline{\widetilde{\nabla}}$. Then \mathbb{N} is η -Einstein with respect to induced Riemannian connection.

Corollary 5. There does not exist a CEYS on an invariant (or, anti – invariant) submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with respect to the QSMC $\overline{\widetilde{\nabla}}$.

5. Cervs on \mathcal{M} -Projectively Flat Anti-Invariant Submanifolds Admitting $\widetilde{\nabla}$

The \mathcal{M} -projective curvature tensor \mathcal{M}^{\flat} of rank three on (\mathbb{N}^n, g) is given by [5,20]

$$\mathcal{M}^{\flat}(\mathcal{F}_{1}, \mathcal{F}_{2})\mathcal{F}_{3} = \mathcal{R}(\mathcal{F}_{1}, \mathcal{F}_{2})\mathcal{F}_{3} - \frac{1}{2(n-1)}[\mathcal{R}ic(\mathcal{F}_{2}, \mathcal{F}_{3})\mathcal{F}_{1} - \mathcal{R}ic(\mathcal{F}_{1}, \mathcal{F}_{3})\mathcal{F}_{2}] - \frac{1}{2(n-1)}[g(\mathcal{F}_{2}, \mathcal{F}_{3})\mathcal{Q}\mathcal{F}_{1} - g(\mathcal{F}_{1}, \mathcal{F}_{3})\mathcal{Q}\mathcal{F}_{2}]$$
(20)

for all smooth vectors fields $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3 \in \chi(\mathbb{N})$, where \mathcal{Q} is the Ricci operator.

We suppose that, \mathbb{N} is \mathcal{M} -projectively flat with respect to QSMC $\widetilde{\nabla}$, i.e., $\mathcal{M}^{\flat}(\mathcal{E}, \mathcal{F})\mathcal{G} = 0$, then from (20) we have

$$\begin{split} \bar{\mathcal{R}}(\mathcal{F}_{1},\mathcal{F}_{2})\mathcal{F}_{3} &= \frac{1}{2(n-1)}[\bar{\mathcal{R}}ic(\mathcal{F}_{2},\mathcal{F}_{3})\mathcal{F}_{1} - \bar{\mathcal{R}}ic(\mathcal{F}_{1},\mathcal{F}_{3})\mathcal{F}_{2}] \\ &+ \frac{1}{2(n-1)}[g(\mathcal{F}_{2},\mathcal{F}_{3})\bar{\mathcal{Q}}\mathcal{F}_{1} - g(\mathcal{F}_{1},\mathcal{F}_{3})\bar{\mathcal{Q}}\mathcal{F}_{2}], \end{split}$$

which implies that

$$\bar{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3) = \frac{\bar{\tau}}{n}g(\mathcal{F}_2, \mathcal{F}_3).$$
(21)

With the help of (21) and Lemma 2.1 (iii), we obtain

$$\widetilde{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3) = [\frac{\overline{\tau}}{n} + \varepsilon(2\alpha - 1) + (1 - \alpha)]g(\mathcal{F}_2, \mathcal{F}_3) + [\varepsilon(2\alpha - 1) - (n\alpha - 1)]\eta(\mathcal{F}_2)\eta(\mathcal{F}_3).$$
(22)

Putting $\mathcal{F}_3 = \zeta$ in (22) and then multiplying both sides by 2κ , we get

$$2\kappa \widetilde{\mathcal{R}}ic(\mathcal{F}_2,\zeta) = \left[\frac{2\kappa \overline{\tau}}{n} + 2\kappa \alpha (n-1)\right] \eta(\mathcal{F}_2).$$
⁽²³⁾

Next, let $(g, \zeta, \mu, \nu, \kappa, l)$ be a CERYS on \mathbb{N} and \mathbb{N} is anti-invariant, then from (1), we lead to

$$2\kappa \widetilde{\mathcal{R}}ic(\mathcal{F}_2,\mathcal{F}_3) = -[2\mu - l\tau - \frac{1}{n}(pn+2)]g(\mathcal{F}_2,\mathcal{F}_3) - 2\nu\eta(\mathcal{F}_2)\eta(\mathcal{F}_3).$$
(24)

Again setting $\mathcal{F}_3 = \zeta$ in (24), we have

$$2\kappa \widetilde{\mathcal{R}}ic(\mathcal{F}_2,\zeta) = \left[-2\mu + l\tau + \frac{1}{n}(pn+2) + 2\nu\right]\eta(\mathcal{F}_2).$$
⁽²⁵⁾

Equating (23) and (25), we get

$$\mu = -\frac{\kappa\bar{\tau}}{n} - \kappa\alpha(n-1) + \frac{l\tau}{2} + \frac{1}{2n}(pn+2) + \nu.$$
(26)

We assert the outcome:

Theorem 6. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is \mathcal{M} projectively flat with respect to QSMC $\overline{\widetilde{\nabla}}$, then the CERYS of type (κ, l) on \mathbb{N} is
contracting, stable or increasing accordingly as

$$-\frac{\kappa\bar{\tau}}{n} - \kappa\alpha(n-1) + \frac{l\tau}{2} + \frac{1}{2n}(pn+2) + \nu \stackrel{\leq}{\leq} 0.$$

It is clear, from (26) that, if $\kappa = 0$, then $\mu = \frac{l\tau}{2} + \frac{1}{2n}(pn+2) + \nu$ and if l = 0, then $\mu = -\frac{\kappa\bar{\tau}}{2} - \kappa\alpha(n-1) + \frac{1}{2n}(np+2) + \nu$. Thus, we state:

Corollary 6. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is \mathcal{M} projectively flat with respect to QSMC $\overline{\widetilde{\nabla}}$, then the CEYS of type (0,1) on \mathbb{N} is
contracting, stable or increasing accordingly as $\tau < -\frac{1}{n}[n(p+2\nu)+2], \tau = -\frac{1}{n}[n(p+2\nu)+2]$

Corollary 7. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is \mathcal{M} -projective flat with respect to QSMC $\overline{\widetilde{\nabla}}$, then the CERS of type (1,0) on \mathbb{N} is contracting, stable or increasing accordingly as

$$-\frac{\bar{\tau}}{2} - \alpha(n-1) + \frac{1}{2n}(np+2) + \nu \stackrel{\leq}{=} 0.$$

Again taking $\mathcal{F}_2 = \mathcal{F}_3 = v_i$, $i (1 \le i \le n)$ in (1) and using (21), we have

$$\bar{\mathfrak{L}}_{\mathcal{F}_1}g(\upsilon_i,\upsilon_i) + \left\{\frac{2\kappa\bar{\tau}}{n} + 2\mu - l\tau - \frac{1}{n}(pn+2)\right\}g(\upsilon_i,\upsilon_i) + 2\nu\eta(\upsilon_i)\eta(\upsilon_i) = 0,$$

which leads to

$$div(\mathcal{F}_1) + \left\{ \kappa \bar{\tau} + n\mu - \frac{\ln \tau}{2} - \frac{1}{2}(pn+2) \right\} - \nu = 0.$$
 (27)

If \mathcal{F}_1 is solenoidal, then $div(\mathcal{F}_1)=0$ and hence (27) reduces to

$$\mu = (\frac{p}{2} + \frac{1}{n}) + \frac{l\tau}{2} - \frac{\kappa\bar{\tau}}{2} + \frac{\nu}{n}$$

Again, if $\mathcal{F}_1 = grad(f)$, then the equation (27) becomes

$$\nabla^2 f = -\kappa \bar{\tau} - n\mu + \frac{\ln \tau}{2} + \frac{1}{2}(pn+2) + \nu.$$
(28)

As a result, we may state:

Theorem 7. Let the metric g of an \mathcal{M} -projectively flat anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with respect to $QSMC \ \overline{\widetilde{\nabla}}$ be a CERYS of type (κ, l) , where \mathcal{F}_1 =grad(f) then (28) holds.

Corollary 8. Let the metric g of an \mathcal{M} -projectively flat anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with respect to $QSMC \ \overline{\widetilde{\nabla}}$ be a CERYS of type (κ, l) . Then the vector field \mathcal{F}_1 is solenoidal iff

$$\mu = \frac{1}{2}(p + \frac{2}{n}) + \frac{l\tau}{2} - \frac{\kappa\bar{\tau}}{n} + \frac{\nu}{n}.$$

6. Cerys on Pseudo-Projectively Flat Anti-Invariant Submanifolds Admitting $\tilde{\widetilde{\nabla}}$

The pseudo-projective curvature tensor $\widetilde{\mathcal{P}}$ of rank three on (\mathbb{N}^n, g) is given by [21]

$$\widetilde{\mathcal{P}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 = \sigma \mathcal{R}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 + \varsigma [\mathcal{R}ic(\mathcal{F}_2, \mathcal{F}_3)\mathcal{F}_1 - \mathcal{R}ic(\mathcal{F}_1, \mathcal{F}_3)\mathcal{F}_2] \quad (29)
+ \varrho \tau [g(\mathcal{F}_2, \mathcal{F}_3)\mathcal{F}_1 - g(\mathcal{F}_1, \mathcal{F}_3)\mathcal{F}_2],$$

for all smooth vectors fields $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3 \in \chi(\mathbb{N})$, where $\sigma, \varsigma, \varrho$ are non-zero constants related by $\varrho = -\frac{1}{n}(\frac{\sigma}{n-1}+\varsigma)$.

Let (\mathbb{N}^n, g) is pseudo-projectively flat with respect to QSMC $\overline{\tilde{\nabla}}$, then from (29), we yields

$$\sigma \bar{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2) \mathcal{F}_3 = -\varsigma [\bar{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3)\mathcal{F}_1 - \bar{\mathcal{R}}ic(\mathcal{F}_1, \mathcal{F}_3)\mathcal{F}_2] - \varrho \bar{\tau} [g(\mathcal{F}_2, \mathcal{F}_3)\mathcal{F}_1 - g(\mathcal{F}_1, \mathcal{F}_3)\mathcal{F}_2],$$

which is equivalent to

$$[\sigma + \varsigma(n-1)]\bar{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3) = -\varrho\bar{\tau}(n-1)g(\mathcal{F}_2, \mathcal{F}_3).$$
(30)

Using (30) in Lemma 2.1-(iii), we obtain

$$\widetilde{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3) = \left[\frac{-\varrho\bar{\tau}(n-1)}{\{\sigma+\varsigma(n-1)\}} + \varepsilon(2\alpha-1) - (\alpha-1)\right]g(\mathcal{F}_2, \mathcal{F}_3) \quad (31)$$
$$-[(n\alpha-1) - \varepsilon(2\alpha-1)]\eta(\mathcal{F}_2)\eta(\mathcal{F}_3).$$

By fixing $\mathcal{G} = \xi$ in (31) and then multiplying both sides by 2κ , we have

$$2\kappa \widetilde{\mathcal{R}}ic(\mathcal{F}_2,\zeta) = \left[\frac{-2\kappa\varrho\bar{\tau}(n-1)}{\{\sigma+\varsigma(n-1)\}} + 2\alpha\kappa(n-1)\right]\eta(\mathcal{F}_2).$$
(32)

In view of (25) and (32), we get

$$\mu = \frac{\kappa \varrho \bar{\tau}(n-1)}{\{\sigma - \varsigma(1-n)\}} + \frac{l\tau}{2} + (\frac{p}{2} + \frac{1}{n}) + \alpha \kappa (1-n) + \nu.$$

Accordingly, as the Section 5, we claim:

Theorem 8. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is pseudo-projectively flat with respect to QSMC $\overline{\widetilde{\nabla}}$, then the CERYS of type (κ, l) on \mathbb{N} is contracting, stable or increasing accordingly as

$$\frac{\kappa\varrho\bar{\tau}(n-1)}{\{\sigma-\varsigma(1-n)\}} + \alpha\kappa(1-n) + \frac{l\tau}{2} + (\frac{p}{2} + \frac{1}{n}) + \nu \stackrel{\leq}{=} 0$$

Corollary 9. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is pseudo-projectively flat admits QSMC $\overline{\widetilde{\nabla}}$, then the CEYS of type (0,1) on \mathbb{N} is contracting, stable or increasing accordingly as $\tau < -[(p+\frac{2}{n})+2\nu], \tau = -[(p+\frac{2}{n})+2\nu]$ or $\tau > -[(p+\frac{2}{n})+2\nu]$.

Corollary 10. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is pseudo-projectively flat admits QSMC $\overline{\widetilde{\nabla}}$, then the CERYS of type (1,0) on \mathbb{N} is contracting, stable or increasing accordingly as

$$\frac{\varrho \bar{\tau}(n-1)}{\{\sigma - \varsigma(1-n)\}} + \alpha(1-n) + (\frac{p}{2} + \frac{1}{n}) + \nu \stackrel{<}{=} 0.$$

Next, we replace $\mathcal{F}_2 = \mathcal{F}_3 = v_i \ i(1 \le i \le n)$ in (1) we have

$$\bar{\mathfrak{L}}_{\mathcal{F}_1} g(\upsilon_i, \upsilon_i) = \left\{ \frac{2\kappa \varrho \bar{\tau}(n-1)}{\sigma + \varsigma(n-1)} + 2\kappa \{ \alpha(1-2\varepsilon) + \varepsilon \} - \{ 2\mu - l\tau - \frac{1}{n}(pn+2) \} \right\} g(\upsilon_i, \upsilon_i)$$

-
$$[2\nu - 2\kappa \{ \alpha(m-2\varepsilon) + \varepsilon - 1 \}] \eta(\upsilon_i) \eta(\upsilon_i),$$

which implies that

$$div(\mathcal{F}_1) = \left\{ \frac{n\kappa\varrho\bar{\tau}(n-1)}{\sigma+\varsigma(n-1)} + n\kappa\{\alpha(1-2\varepsilon)+\varepsilon\} - \{n\mu - \frac{nl\tau}{2} - \frac{1}{2}(pn+2)\} \right\} - \left[\nu - \kappa\{\alpha(m-2\varepsilon)+\varepsilon-1\}\right].$$
(33)

If \mathcal{F}_1 is solenoidal, then $div(\mathcal{F}_1)=0$ and hence equation (33) reduces to

$$\mu = \left[\frac{\kappa\varrho\bar{\tau}(n-1)}{\sigma+\varsigma(n-1)} + \frac{l\tau}{2} + \frac{1}{2n}(pn+2) + \kappa\{\alpha(1-2\varepsilon)+\varepsilon\}\right]$$
(34)
$$- \frac{1}{n}[\nu - \kappa\{\alpha(m-2\varepsilon)+\varepsilon-1\}].$$

Again, if $\mathcal{F}_1 = grad(f)$, then the equation (33) becomes

$$\nabla^2 f = \frac{n\kappa\varrho\bar{\tau}(n-1)}{\sigma-\varsigma(n-1)} + n\kappa\{\alpha(1-2\varepsilon)+\varepsilon\} - n\mu + \frac{nl\tau}{2} + \frac{1}{2}(pn+2) - [\nu - \kappa\{\alpha(m-2\varepsilon)+\varepsilon-1\}].$$
(35)

Thus, we assert:

Theorem 9. Let the metric g of a pseudo-projectively flat anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with respect to QSMC $\overline{\widetilde{\nabla}}$ be a CERYS of type (κ, l) , where \mathcal{F}_1 =grad(f), then (35) holds. **Corollary 11.** Let the metric g of a pseudo-projectively flat anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with respect to $QSMC \,\widetilde{\nabla}$ be a CERYS of type (κ, l) , then the vector field \mathcal{F}_1 is solenoidal iff the relation (34) holds.

7. Cerys on $\mathcal Q$ Flat Anti-Invariant Submanifolds Admitting $\widetilde
abla$

A curvature tensor of type (1,3) on $(\mathbb{N}^n,g)(n>2)$ is denoted by $\mathcal Z$ and defined by

$$\mathcal{Z}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 = \mathcal{R}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 - \frac{\psi}{n-1}[g(\mathcal{F}_2, \mathcal{F}_3)\mathcal{F}_1 - g(\mathcal{F}_1, \mathcal{F}_3)\mathcal{F}_2], \quad (36)$$

where ψ can be any scalar function. This type of tensor \mathcal{Z} is known as a \mathcal{Q} -curvature tensor [15, 16]. If $\psi = \frac{\tau}{n}$, then the \mathcal{Q} curvature tensor is reduced to the concircular curvature tensor.

Let the submanifold \mathbb{N} be \mathcal{Q} -flat with respect to $\overline{\tilde{\nabla}}$, i.e., $\overline{\mathcal{Z}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 = 0$. Then from (36), we have

$$\bar{\mathcal{R}}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{F}_3 = \frac{\psi}{n-1}[g(\mathcal{F}_2, \mathcal{F}_3)\mathcal{F}_1 - g(\mathcal{F}_1, \mathcal{F}_3)\mathcal{F}_2],$$

which implies that

$$\bar{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3) = \psi g(\mathcal{F}_2, \mathcal{F}_3). \tag{37}$$

With the help of (9) and Lemma 2.1-(iii), we obtain

$$\widetilde{\mathcal{R}}ic(\mathcal{F}_2, \mathcal{F}_3) = [\psi + \varepsilon(2\alpha - 1) + (1 - \alpha)]g(\mathcal{F}_2, \mathcal{F}_3)$$

$$-[n\alpha - 1 + \varepsilon(1 - 2\alpha)]\eta(\mathcal{F}_2)\eta(\mathcal{F}_3).$$
(38)

After taking $\mathcal{F}_3 = \zeta$ in (38) and then multiplying both sides by 2κ we lead to

$$2\kappa \widetilde{\mathcal{R}}ic(\mathcal{F}_2,\zeta) = 2\kappa [\psi + \alpha(n-1)]\eta(\mathcal{F}_2).$$
(39)

Equating (25) and (39), we find

$$\mu = \frac{1}{2}(p + \frac{2}{n}) + \frac{l\tau}{2} - \kappa[\psi + \alpha(n-1)] + \nu.$$
(40)

Thus, likewise section 6 we bring the outcome:

Theorem 10. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is \mathcal{Q} flat with respect to $QSMC \ \overline{\widetilde{\nabla}}$, then the CERYS of type (κ, l) on \mathbb{N} is contracting, stable or increasing accordingly as

$$\frac{1}{2}(p+\frac{2}{n}) + \frac{l\tau}{2} - \kappa[\psi + \alpha(n-1)] + \nu \leq 0.$$

As a result of the aforementioned theorem, we have the following result:

Corollary 12. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\tilde{\mathbb{V}}$ is concircularly flat with respect to $QSMC \ \overline{\tilde{\nabla}}$, then the CERYS of type (κ, l) on \mathbb{N} is contracting, stable or increasing accordingly as

$$\tau \stackrel{\leq}{=} \frac{1}{(nl-2\kappa)} [2\kappa\alpha n(n-1) - (np+2) - 2n\nu].$$

Also, from (40), if $\kappa = 0$, l = 1, then $\mu = \frac{\tau}{2} + \frac{1}{2}(p + \frac{2}{n}) + \nu$, and if l = 0, $\kappa = 1$, then $\mu = \frac{1}{2}(p + \frac{2}{n}) - [\psi - \alpha(1 - n)] + \nu$. Thus, we state the results:

Corollary 13. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is concircularly flat with respect to $QSMC \,\overline{\widetilde{\nabla}}$, then the CEYS of type (0,1) on \mathbb{N} is contracting, stable or increasing accordingly as $\tau < -[(p + \frac{2}{n}) + 2\nu], \tau = -[(p + \frac{2}{n}) + 2\nu]$, $\tau = -[(p + \frac{2}{n}) + 2\nu]$, respectively.

Corollary 14. If an anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ is concircularly flat with respect to $QSMC \ \overline{\widetilde{\nabla}}$, then the CERS of type (1,0) on \mathbb{N} is contracting, stable or increasing accordingly as

$$\left(\frac{p}{2} + \frac{1}{n}\right) - \kappa[\psi - \alpha(1-n)] + \nu \stackrel{\leq}{=} 0.$$

Finally, using (37) in (1) and replacing $\mathcal{F}_2 = \mathcal{F}_3 = v_i, i(1 \le i \le n)$, we get

$$\bar{\mathfrak{L}}_{\mathcal{F}_1}g(\upsilon_i,\upsilon_i) = -\left\{2\mu - l\tau - \frac{1}{n}(pn+2) + 2\kappa\psi - 2\kappa\{\alpha(1-2\varepsilon) + \varepsilon\}\}\right\}g(\upsilon_i,\upsilon_i)$$
$$-[2\nu - 2\kappa\{\alpha(m-2\varepsilon) + \varepsilon - 1\}]\eta(\upsilon_i)\eta(\upsilon_i),$$

it leads to the conclusion that

$$div(\mathcal{F}_1) = -[n\mu - \frac{nl\tau}{2} - \frac{1}{2}(pn+2) + n\kappa\psi - n\kappa\{\alpha(1-2\varepsilon) + \varepsilon\}] \quad (41)$$
$$-[\nu - \kappa\{\alpha(m-2\varepsilon) + \varepsilon - 1\}].$$

If \mathcal{F}_1 is solenoidal, then $div(\mathcal{F}_1)=0$ and hence (41) reduces to

$$\mu = \frac{l\tau}{2} + \frac{1}{2n}(pn+2) - \psi\kappa + \kappa\{\alpha(1-2\varepsilon) + \varepsilon\} - \frac{1}{n}[\nu - \kappa\{\alpha(m-2\varepsilon) + \varepsilon - 1\}].$$
(42)

Again, if $\mathcal{F}_1 = grad(f)$, then the equation (41) becomes

$$\nabla^2 f = [-n\mu + \frac{nl\tau}{2} + \frac{1}{2}(pn+2) - n\kappa\psi + n\kappa\{\alpha(1-2\varepsilon) + \varepsilon\}]$$
(43)
-[\nu - \kappa\{\alpha(m-2\varepsilon) + \varepsilon - 1\}].

Theorem 11. If the metric g of a Q-flat anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with respect to $QSMC \ \overline{\widetilde{\nabla}}$ be a CERYS of type (κ, l) , where \mathcal{F}_1 =grad(f), then (43) holds.

Corollary 15. Let the metric g of a Q-flat anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ with respect to $QSMC \,\widetilde{\widetilde{\nabla}}$ be a CERYS of type (κ, l) . Then the vector field \mathcal{F}_1 is solenoidal iff the relation (42) holds.

8. HARMONIC ASPECT OF CERYS ON ANTI-INVARIANT SUBMANIFOLDS Admitting $\widetilde{\nabla}$

Taking a look at a function $f:\mathbb{N}\to \Re$. We say that f harmonic if $\nabla^2 f=0$, where ∇^2 is the Lalplacian operator on \mathbb{N} [27]. Since, $\zeta = grad(f)$. Then, utilizing Theorems 7, 9, and 11, we convey the following outcomes:

Theorem 12. If the metric g of an \mathcal{M} -projectively flat anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ admits a CERYS of type (κ, l) with respect to QSMC $\widetilde{\nabla}$ and $\mathcal{F}_1 = \operatorname{grad}(f)$. If f is a harmonic function on \mathbb{N} , then the soliton is increasing, stable, or contracting

(i) $\tau > \frac{2}{nl} [\kappa \bar{\tau} - \frac{1}{2} (pn+2) - \nu],$ (*ii*) $\tau > \frac{2}{nl} [\kappa \bar{\tau} - \frac{1}{2} (pn+2) - \nu], \text{ or}$ (*iii*) $\tau > \frac{2}{nl} [\kappa \bar{\tau} - \frac{1}{2} (pn+2) - \nu], \text{ respectively.}$

Proof. With the help of (28), We may just accomplish the needed results.

 \Box

Theorem 13. If the metric q of a pseudo-projectively flat anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold \mathbb{V} admits a CERYS of type (κ, l) with respect to $QSMC \ \widetilde{\nabla}$ and $\mathcal{F}_1 = qrad(f)$. If f is a harmonic on \mathbb{N} , then the soliton is growing, stable, or collapsing

$$\begin{split} (i) \ \ \tau &> \frac{-1}{l} \left[\frac{2\kappa\varrho\bar{\tau}(n-1)}{(\sigma+\varsigma(n-1))} + 2\kappa\{\alpha(1-2\varepsilon)+\varepsilon\} + (p+\frac{2}{n}) - \frac{2}{n}[\nu-\kappa\{\alpha(m-2\varepsilon)+\varepsilon-1\}],\\ (ii) \ \ \tau &= \frac{-1}{l} \left[\frac{2\kappa\varrho\bar{\tau}(n-1)}{(\sigma+\varsigma(n-1))} + 2\kappa\{\alpha(1-2\varepsilon)+\varepsilon\} + (p+\frac{2}{n}) - \frac{2}{n}[\nu-\kappa\{\alpha(m-2\varepsilon)+\varepsilon-1\}],\\ or\\ (iii) \ \ \tau &< \frac{-1}{l} \left[\frac{2\kappa\varrho\bar{\tau}(n-1)}{(\sigma+\varsigma(n-1))} + 2\kappa\{\alpha(1-2\varepsilon)+\varepsilon\} + (p+\frac{2}{n}) - \frac{2}{n}[\nu-\kappa\{\alpha(m-2\varepsilon)+\varepsilon-1\}],\\ respectively. \end{split}$$

Proof. We arrive at our conclusions using the equation (35).

Theorem 14. If the metric g of a Q-flat anti-invariant submanifold \mathbb{N} of an $(\mathcal{LCS})_n$ -manifold $\widetilde{\mathbb{V}}$ admits a CERYS of type (κ, l) with respect to QSMC $\widetilde{\nabla}$ and $\mathcal{F}_1 = grad(f)$. If f is a harmonic on \mathbb{N} , then the soliton is growing, stable, or collapsing

$$\begin{array}{ll} (i) & \tau > -\frac{2}{l} [\frac{1}{2} (p + \frac{2}{n}) - \kappa \psi + \kappa \{ \alpha (1 - 2\varepsilon) + \varepsilon \} - \frac{1}{n} [\nu - \kappa \{ \alpha (m - 2\varepsilon) - 1 \}]], \\ (ii) & \tau = -\frac{2}{l} [\frac{1}{2} (p + \frac{2}{n}) - \kappa \psi + \kappa \{ \alpha (1 - 2\varepsilon) + \varepsilon \} - \frac{1}{n} [\nu - \kappa \{ \alpha (m - 2\varepsilon) - 1 \}]], \\ (iii) & \tau < -\frac{2}{l} [\frac{1}{2} (p + \frac{2}{n}) - \kappa \psi + \kappa \{ \alpha (1 - 2\varepsilon) + \varepsilon \} - \frac{1}{n} [\nu - \kappa \{ \alpha (m - 2\varepsilon) - 1 \}]], \\ \end{array}$$

Proof. By virtue of equation (43) we may simply obtain the desired outcome.

9. Example

We define $\widetilde{\mathbb{V}}^5 = \{(r, s, t, u, v) \in \Re^5 : u \neq 0\}$, where $\{v_1, v_2, v_3, v_4, v_5\}$ being standard coordinates of linearly independent vector fields of $\widetilde{\mathbb{V}}^5$ given by

$$v_1 = e^u \frac{\partial}{\partial r} + e^u s \frac{\partial}{\partial t}, \ v_2 = \frac{\partial}{\partial s}, \ v_3 = \frac{\partial}{\partial t} = \zeta, \ v_4 = \frac{\partial}{\partial u} + e^u v \frac{\partial}{\partial t}, \ v_5 = \frac{\partial}{\partial v}.$$

Also, the metric g of $\widetilde{\mathbb{V}}^5$ has the following relations

$$g(v_1, v_1) = g(v_2, v_2) = g(v_3, v_3) = g(v_4, v_4) = g(v_5, v_5) = 1, \ , g(v_3, v_3) = -1.$$

Let the 1-form η is given by $\eta(\mathcal{F}_1)=g(\mathcal{F}_1, \upsilon_3), \forall \mathcal{F}_1 \in \widetilde{\mathbb{V}}^5$ and the (1, 1)-tensor field ϕ of $\widetilde{\mathbb{V}}^5$ as follows

$$\phi v_1 = v_2, \ \phi v_2 = v_1, \ \phi v_3 = 0, \ \phi v_4 = v_5, \ \phi v_5 = v_4.$$

Utilizing the linearity qualities of ϕ and g dictates how they interact.

$$\phi^2 v_i = v_i + \eta(v_i)\zeta, \ \eta(v_3) = -1,$$

hold for i=1,2,3,4,5 and $\zeta=v_3$. Also, for $\zeta=v_3$, $\widetilde{\mathbb{V}}^5$ satisfies $g(v_i,v_3)=\eta(v_i)$, $g(\phi v_i, v_j)=g(v_i, \phi v_j)$ and $g(\phi v_i, \phi v_j)=g(v_i, v_j)+\eta(v_i)\eta(v_j)$, where i, j=1,2,3,4,5. Now, we can compute

$$[v_i, v_j] = \begin{cases} -e^u v_3, & \text{if } i = 1, \ j = 2, \\ -e^u v_1, & \text{if } i = 1, \ j = 4, \\ -e^u v_3, & \text{if } i = 4, \ j = 5, \\ 0, & \text{otherwise.} \end{cases}$$

We may use Koszul's formula for getting

$$\begin{split} \widetilde{\nabla}_{v_1} v_1 &= 0, \quad \widetilde{\nabla}_{v_1} v_2 = \frac{e^u}{2} v_3, \quad \widetilde{\nabla}_{v_1} v_3 = -\frac{e^u}{2} v_2, \quad \widetilde{\nabla}_{v_1} v_4 = 0, \quad \widetilde{\nabla}_{v_1} v_5 = 0, \\ \widetilde{\nabla}_{v_2} v_1 &= -\frac{e^u}{2} v_3, \quad \widetilde{\nabla}_{v_2} v_2 = 0, \quad \widetilde{\nabla}_{v_2} v_3 = -\frac{e^u}{2} v_1 \quad \widetilde{\nabla}_{v_2} v_4 = 0, \quad \widetilde{\nabla}_{v_2} v_5 = 0, \\ \widetilde{\nabla}_{v_3} v_1 &= -\frac{e^u}{2} v_2, \quad \widetilde{\nabla}_{v_3} v_2 = -\frac{e^u}{2} v_1, \quad \widetilde{\nabla}_{v_3} v_3 = 0, \quad \widetilde{\nabla}_{v_3} v_4 = -\frac{e^u}{2} v_5, \quad \widetilde{\nabla}_{v_3} v_5 = -\frac{e^u}{2} v_4, \\ \widetilde{\nabla}_{v_4} v_1 &= 0, \quad \widetilde{\nabla}_{v_4} v_2 = 0, \quad \widetilde{\nabla}_{v_4} v_3 = -\frac{e^u}{2} v_5, \quad \widetilde{\nabla}_{v_4} v_4 = 0, \quad \widetilde{\nabla}_{v_4} v_5 = -\frac{e^u}{2} v_3, \\ \widetilde{\nabla}_{v_5} v_1 &= 0, \quad \widetilde{\nabla}_{v_5} v_2 = 0, \quad \widetilde{\nabla}_{v_5} v_3 = -\frac{e^u}{2} v_4, \quad \widetilde{\nabla}_{v_5} v_4 = -\frac{e^u}{2} v_3, \quad \widetilde{\nabla}_{v_5} v_5 = 0. \end{split}$$

Thus for $v_3 = \zeta$ and $\alpha = -\frac{e^u}{2}$ we verified that $\widetilde{\nabla}_{\mathcal{F}_1}\zeta = \alpha\phi\mathcal{F}_1$ for all $\mathcal{F}_1 \in \mathcal{T}\widetilde{\mathbb{V}}^5$, where $\mathcal{F}_1 = \mathcal{F}_1v_1 + \mathcal{F}_2v_2 + \mathcal{F}_3v_3 + \mathcal{F}_4v_4 + \mathcal{F}_5v_5$. So, the manifold $\widetilde{\mathbb{V}}^5$ equipped with the structure (ϕ, ζ, η, g) is an $(\mathcal{LCS})_5$ -manifold with $\alpha = -\frac{e^u}{2}$ and $\varrho^* = -\mathcal{F}_4\alpha$.

Let $\tilde{\pi} : \mathbb{N} \to \widetilde{\mathbb{V}}$ and given by $\tilde{\pi}(r, s, t) = (r, s, u, 0, 0)$. Then we define $\mathbb{N} = \{(r, s, u) \in \Re^3 : u \neq 0\}$, where (r, s, u) are the standard coordinates in \Re^3 . Let $\{v_1, v_2, v_3\}$ on \mathbb{N} given by

$$v_1 = e^u \frac{\partial}{\partial r} + e^u s \frac{\partial}{\partial u}, \ v_2 = \frac{\partial}{\partial s}, \ v_3 = \frac{\partial}{\partial u}.$$
$$q(v_1, v_1) = q(v_2, v_2) = 1, \ q(v_3, v_3) = -1.$$

 $g(\upsilon_1,\upsilon_1)=g(\upsilon_2,\upsilon_2)=1, \ g(\upsilon_3,\upsilon_3)$ Also, the (1,1)-tensor field ϕ of \mathbb{N}^3 is given by

$$\phi v_1 = v_2, \ \phi v_2 = v_1, \ \phi v_3 = 0$$

Utilizing the linearity qualities of ϕ and g dictates how they interact

$$\phi^2 v_i = v_i + \eta(v_i)\zeta, \ \eta(\zeta) = -1,$$

for i=1,2,3 and $\zeta=v_3$. Again, for $\zeta=v_3$, \mathbb{N}^3 satisfies

$$g(\phi v_i, \phi v_j) = g(v_i, v_j) + \eta(v_i)\eta(v_j),$$

where i, j=1, 2, 3. Next, one can easily obtain

$$[v_1, v_2] = -e^u v_3, \quad [e_1, v_3] = -e^u v_1, \quad [v_2, v_3] = 0.$$

We acquire assuming Koszul's formula

$$\nabla_{v_1}v_1 = 0, \quad \nabla_{v_1}v_2 = \frac{e^u}{2}v_3, \quad \nabla_{v_1}v_3 = -\frac{e^u}{2}v_2, \quad \nabla_{v_2}e_1 = -\frac{e^u}{2}v_3, \quad \nabla_{v_2}v_2 = 0,$$
$$\nabla_{v_2}v_3 = -\frac{e^u}{2}v_1, \quad \nabla_{v_3}v_1 = -\frac{e^u}{2}v_2, \quad \nabla_{v_3}v_2 = -\frac{e^u}{2}v_1, \quad \nabla_{v_3}v_3 = 0.$$

Thus the data (ϕ, ζ, η, g) is an $(\mathcal{LCS})_3$ -structure on N. Consequently, if \mathbb{N}^3 equipped with the structure (ϕ, ζ, η, g) is $(\mathcal{LCS})_3$ manifold with $\alpha = -\frac{e^u}{2}$ and $\varrho^* = -\mathcal{F}_3 \alpha$. We define the tangent space \mathcal{TN} of \mathbb{N}^3 as follows

$$\mathcal{T}\mathbb{N} = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus < \zeta >,$$

where $\mathcal{D}=\langle v_1 \rangle$, $\mathcal{D}^{\perp}=\langle v_2 \rangle$. Since $\phi v_1=v_2 \in \mathcal{D}^{\perp}$, for $v_1 \in \mathcal{D}$ and $\phi v_2=v_1 \in \mathcal{D}$, for $v_2 \in \mathcal{D}^{\perp}$. Then, \mathbb{N}^3 is an invariant submanifold of $\widetilde{\mathbb{V}}^5$. Also, from (5) we have $\hbar(v_i, v_j)=\widetilde{\nabla}_{v_i}v_j - \nabla_{v_i}v_j$. Using the values of $\widetilde{\nabla}_{v_i}v_j$ and $\nabla_{v_i}v_j$, we notice that $\hbar(v_i, v_j)=0, \forall i, j=1, 2, 3$. i.e., \mathbb{N}^3 is totally geodesic. So, Theorem 1 is verified. Now, using (16) we get the QSMC $\widetilde{\widetilde{\nabla}}$ on \mathbb{N} as follows

$$\begin{split} \bar{\tilde{\nabla}}_{\upsilon_1} v_3 &= -\left\{\frac{e^u + 2}{2}\right\} v_2, \quad \bar{\tilde{\nabla}}_{\upsilon_1} v_1 = 0, \quad \bar{\tilde{\nabla}}_{\upsilon_1} v_2 = \left\{\frac{e^u - 2}{2}\right\} v_3, \\ \bar{\tilde{\nabla}}_{\upsilon_2} v_3 &= -\left\{\frac{e^u + 2}{2}\right\} v_1, \quad \bar{\tilde{\nabla}}_{\upsilon_3} v_2 = -\frac{e^u}{2} v_1, \quad \bar{\tilde{\nabla}}_{\upsilon_2} v_1 = -\left\{\frac{e^u + 2}{2}\right\} v_3, \\ \bar{\tilde{\nabla}}_{\upsilon_3} v_3 &= 0, \quad \bar{\tilde{\nabla}}_{\upsilon_2} v_2 = 0, \quad \bar{\tilde{\nabla}}_{\upsilon_3} v_1 = 0. \end{split}$$

By using the preceding relations, one can get $\overline{\mathcal{R}}$.

$$\bar{\mathcal{R}}(v_1, v_2)v_1 = \frac{(e^u + 2)^2}{4}v_2, \ \bar{\mathcal{R}}(v_1, v_2)v_2 = -\frac{(3e^{2u} - 4)}{4}v_1, \ \bar{\mathcal{R}}(v_2, v_3)v_2 = \frac{e^u(e^u + 2)}{4}v_3.$$

Also, the $\bar{\mathcal{R}}ic$ and $\bar{\tau}$ have the value

$$\bar{\mathcal{R}}ic(\upsilon_1,\upsilon_1) = -\frac{(3e^{2u}-4)}{4}, \ \bar{\mathcal{R}}ic(\upsilon_2,\upsilon_2) = 0, \ \bar{\mathcal{R}}ic(\upsilon_3,\upsilon_3) = \frac{e^u(e^u+2)}{4},$$
$$\bar{\tau} = -[(e^{2u}-1) + \frac{e^u}{2}].$$

Since, \mathbb{N} in invariant on $\widetilde{\mathbb{V}}$. Therefore, from the equations (1) and (17) we obtain

$$2\kappa\bar{\mathcal{R}}ic(\upsilon_i,\upsilon_i) + [2(\alpha-1)+2\mu-l\bar{\tau}-\frac{1}{n}(pn+2)]g(\upsilon_i,\upsilon_i)$$
(44)
+2[\alpha-1+\nu]\eta(\u03c6_i)\eta(\u03c6_i) = 0,

for all $i \in \{1, 2, 3\}$. From the equation (44), we can easily calculate

$$\mu = \frac{1}{6} [(3p+2) - (3l-2\kappa)\bar{\tau} + 2\nu - 4(\alpha - 1)].$$
(45)

$$\nu = -\frac{1}{6}(3p+2) - \frac{\kappa e^u(e^u+2)}{4} + \mu - \frac{l\bar{\tau}}{2}.$$
(46)

With help of equations (45), (46) and the value of $\bar{\tau}$, we obtain

$$\mu = \frac{(3p+2)}{6} - \frac{l(2e^{2u} - 2 + e^u)}{4} + \frac{\kappa(3e^{2u} - 4)}{8} - \alpha + 1.$$

Thus the data $(g, \mathcal{F}_1, \mu, \nu, \kappa, l)$ is a CERYS of type (κ, l) with respect to QSMC $\tilde{\nabla}$ on (\mathbb{N}^3, g) . Now, we conclude that:

Case(a):

For $\kappa = 1$ and l = 0, (\mathbb{N}^3, g) also admits the CERS, which is (*i*) expanding if $p > -\frac{3}{4}e^{2u} + 2\alpha - \frac{5}{3}$, (*ii*) steady if $p = -\frac{3}{4}e^{2u} + 2\alpha - \frac{5}{3}$, (*iii*) shrinking if $p < -\frac{3}{4}e^{2u} + 2\alpha - \frac{5}{3}$.

Case(b):

For $\kappa = 0$ and l = 1, then (\mathbb{N}^3, g) admits the CEYS, which is (i) expanding if $p > e^u(e^u + \frac{1}{2}) + 2\alpha - \frac{11}{3}$, (ii) steady if $p = e^u(e^u + \frac{1}{2}) + 2\alpha - \frac{11}{3}$, (iii) shrinking if $p < e^u(e^u + \frac{1}{2}) + 2\alpha - \frac{11}{3}$.

Case(c):

For $\kappa = 1$ and l = -1, (\mathbb{N}^3, g) admits the CEES, which is (*i*) expanding if $p > -\frac{e^u}{4}(7e^u + 2) - \frac{2}{3} + 2\alpha$, (*ii*)steady if $p = -\frac{e^u}{4}(7e^u + 2) - \frac{2}{3} + 2\alpha$, (*iii*) shrinking if $p < -\frac{e^u}{4}(7e^u + 2) - \frac{2}{3} + 2\alpha$.

10. CONCLUSION

The investigation of a CERYS on Riemannian (or pseudo-Riemannian) manifolds is crucial in differential geometry, relativity theory and physics. RY flow is the most visible representative of modern physics. In addition to differential geometry, the CERYS is a new idea that works with geometric and physical applications. We characterized the submanifolds of a $(\mathcal{LCS})_n$ -manifold that admits the CERYS

with a QSMC in our study.

Author Contribution Statements The authors contributed equally to this article.

Declaration of Competing Interests The authors declare that they have no competing interests.

Acknowledgements The authors thank the reviewer and the editor for their constructive comments to improve the article.

References

- Atceken, M., Hui, S. K., Slant and pseudo-slant submanifolds in (*LCS*)_n-manifolds, *Czechoslovak Math. J.*, 63 (2013), 177-190. http://eudml.org/doc/252505
- [2] Basu, N., Bhattacharyya, A., Conformal Ricci soliton in Kenmotsu manifold. Global Journal of Advanced Research on Classical and Modern Geometries, 4 (2015), 15-21.
- [3] Baishya, K. K., Eyasmin, S., Generalized weakly Ricci-symmetric (*LCS*)_n-Spacetimes, J. of Geom. and Physics, 132 (2018), 415-422. https://doi.org/10.1016/j.geomphys.2018.05.029
- [4] De, U. C., Sardar, A., De, K., Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turk J. of Math., 6(3) (2022), 1078-1088. https://doi.org/10.55730/1300-0098.3143
- [5] De, U. C., Haseeb, A., On generalized Sasakian space forms with *M*-projective curvature tensor, *Adv. Pure Appl. Math.*, 9 (2018), 67-73. https://doi.org/10.1515/apam-2017-0041
- [6] Fischer, A. E., An introduction to conformal Ricci flow, Classical and Quantum Gravity, 21 (2004), 171-218. https://doi.org/10.1088/0264-9381/21/3/011
- [7] Güler, S., Crasmareanu, M., Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, *Turk J. Math.*, 43 (2019), 2631-2641. https://doi.org/10.3906/mat-1902-38
- [8] Golab, S., On semi-symmetric and quarter symmetric linear connections, Tensor (N.S.), 29 (1975), 249-254.
- [9] Prasad, R., Haseeb, A., On a Lorentzian para-Sasakian manifold with respect to the quarter symmetric-metric connection, *Novi Sad J. Math.*, 46 (2016), 103-116. https://doi.org/10.30755/NSJOM.04279
- [10] Hui, S. K. Pal, T., Totally real submanifolds of (*LCS*)_n-manifolds, *Facta Universitatis (NIS) Ser. Math. Inform.*, 33 (2018.), 141-152. https://doi.org/10.22190/FUMI1802141H
- [11] Hui, S. K., Prasad, R., Pal, T., Ricci solitons on submanifolds of (*LCS*)_n-manifolds, *Ganita*, 68 (2018), 53-63. https://doi.org/10.48550/arXiv.1707.06815
- [12] Ahmad, M., Jun, J. B., Haseeb, A., Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection, *Bull. Korean Math. Soc.*, 46 (2009), 477-487. https://doi.org/10.4134/BKMS.2009.46.3.477
- [13] Matsumoto, K., On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12(1989), 151-156.
- [14] Mihai, I., Rosca, R., On Lorentzian para-Sasakian manifolds, Classical Analysis, World Scientific Publ. Singapore, 1992.
- [15] Mantica, C. A., Suh, Y. J., Pseudo-Q-symmetric Riemannian manifolds, International Journal of Geometric Methods in Modern Physics, 10 (2013), 25 pages. https://doi.org/10.1142/S0219887813500138
- [16] Yadav, S. K., Yildiz, A., Q-curvature tensor on f-Kenmotsu 3-manifolds, Universal Journal of Mathematics and Applications, 5(3) (2022), 96-106. https://doi.org/10.32323/ujma.1055272
- [17] Yadav, S. K., Dwivedi, P. K., Suthar, D. L., On $(\mathcal{LCS})_{2n+1}$ -manifolds satisfying certain conditions on the concircular curvature tensor, *Thai J. Math.*, 9(3) (2011), 597-603.

- [18] Mantica, C. A., Molinari, L. G., A note on concircular structure space-times, Commun. Korean Math. Soc., 34(2) (2019), 633-635. https://doi.org/10.4134/CKMS.c180138
- [19] Maksimovic, M. D., Zlatanović., M. L., Quarter-symmetric metric connection on a cosymplectic manifold, *Mathematics*, 11(9) (2023), 2209. https://doi.org/10.3390/math11092209
- [20] Pokhariyal, G. P., Mishra, R. S., Curvature tensors and their relativistic significance II, Yokohama Math. J., 19(2) (1971), 97-103. http://hdl.handle.net/11295/38452
- [21] Prasad, B., A pseudo-projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc., 94(3) (2002), 163-166.
- [22] Shaikh, A. A., On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J., 43 (2003), 305-314.
- [23] Shaikh, A. A., Matsuyama, Y., Hui, S. K., On invariant submanifolds of $(\mathcal{LCS})_n$ -manifolds, Journal of the Egyptian Mathematical Society, 24 (2016), 263-269. https://doi.org/10.1016/j.joems.2015.05.008
- [24] Shaikh, A. A., Some results on $(\mathcal{LCS})_n$ -manifolds, J. Korean Math. Soc., 46 (2009), 449-461. https://doi.org/10.4134/JKMS.2009.46.3.449
- [25] Yano, K., Concircular geometry I, Concircular transformations, Proc. Imp.Acad. Tokyo, 16 (1940), 195-200. https://doi.org/10.3792/PIA/1195579139
- [26] Yano, K., Kon, M., Structures on manifolds, World Scientific publishing, Singapore, 1984. https://doi.org/10.1142/0067
- [27] Yau, S. T., Harmonic functions on complete Riemannian manifolds, Commu. Pure Appl. Math., 28 (1975), 201-228. https://doi.org/10.1002/cpa.3160280203
- [28] Haseeb, A., Khan, M. A., Conformal η-Ricci-Yamabe solitons within the framework of ε-*LP*-Sasakian 3-manifolds, Advances in Mathematical Physics, (2022), Article ID 3847889, 8 pages. https://doi.org/10.1155/2022/3847889
- [29] Haseeb, A., Chaubey, S. K., Khan, M. A., Riemannian 3 manifolds and Ricci-Yamabe Solitons, International Journal of Geometric Methods in Modern Physics, 20(1) (2023): 2350015, 13 pages. https://doig/10.1142/S0219887823500159
- [30] Zhang, P., Li, Y., Roy, S., Dey, S., Bhattacharyya, A., Geometrical structure in a perfect fluid spacetime with conformal Ricci-Yamabe soliton, Symmetry, 14(3) (2022), 594. https://doi.org/10.3390/sym14030594
- [31] Li, Y., Gezer, A., Karakas, E., Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection, AIMS Mathematics, 8(8) (2023), 17335-17353. https://doi.org/10.3934/math.2023886