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Highlights 

• This paper focuses on trichotomy of non-oscillatory solutions. 

• To prove our results discrete analogue of Kiguradze's lemma is used. 

• The behavior of the reduced equation was examined. 
 

Article Info 

 

Abstract 

In this study, we examine the trichotomy of non-oscillatory solution for the nonlinear first-order 

neutral difference equation 

∆𝑎(𝑥𝑛 − 𝑎
𝑛+1𝑥𝑛−1) + ∆𝑎 (

𝑥𝑛−1
𝑏𝑛−1

) + 𝑞𝑛𝑓(𝑥𝑛−𝜏) = 0, 𝑛 ∈ ℕ𝑚𝑎𝑥{1,𝜏}, 

where ∆𝑎𝑥𝑛 = 𝑥𝑛+1 − 𝑎𝑥𝑛 , 𝜏 ∈ ℕ, 𝑎 ∈ ℝ
+ with  ∆𝑎

𝑚𝛥 = ∆𝑎
𝑚−1(∆𝑎),   𝑎ⁿ is a general term of 

exponential sequence,  (𝑞𝑛) is real valued sequences; 𝑛 − 𝜏 < 𝑛 with (𝑛 − 𝜏) → +∞ as 𝑛 →

+∞; under the assumption ∑
1

𝑏𝑛
< ∞(= ∞),   ∞

𝑠=𝑛0 where 𝑏𝑛 = ∏ 𝑎𝑖𝑛
𝑖=1 .  The accuracy of the 

primary findings is demonstrated by examples. 
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1. INTRODUCTION 

 

Differential equations and their discrete analogues difference equations have many applications, from 

social sciences to physical sciences and from health sciences to engineering sciences. For these, readers 

can look at the references and their cities in [1-4]. The past few years have seen a significant increase in 

interest in the asymptotic behavior of solutions to difference equations involving generalized difference 

operators. We assemble here some relevant results. 

 

A solution of a difference equation  is sequence (𝑥𝑛) which satisfies the difference equation for sufficiently 

large 𝑛. In this work, nontrivial solutions are considered for all large 𝑛. If the terms of the sequence (𝑥𝑛) 

are neither eventually positive nor eventually negative, the solution (𝑥𝑛)  is considered oscillatory. 

Otherwise, it is referred to as a non-oscillatory solution. If every solution of a difference equation oscillates, 

the equation is said to be oscillatory. It is non-oscillatory otherwise.  

 

Bolat and Akin, by generalizing the equation that Parhi had considered in [5], gave new results on 

oscillation in her work in [6]. In this paper, we further generalize the works of Bolat and Akın in [6] and 

Agata Bezubik and et all. in [7], and we investigate trichotomy of non-oscillatory solutions of difference 

equation  

http://dergipark.gov.tr/gujs
https://link.springer.com/article/10.1186/s13662-015-0531-6#auth-Agata-Bezubik-Aff1
https://orcid.org/0000-0002-7978-1078
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∆𝑎(𝑥𝑛 − 𝑎
𝑛+1𝑥𝑛−1) + ∆𝑎 (

𝑥𝑛−1

𝑏𝑛−1
) + 𝑞𝑛𝑓(𝑥𝑛−𝜏) = 0, 𝑛 ∈ ℕ𝑚𝑎𝑥{1,𝜏},                                          (1) 

 

where 𝑎 ∈ ℝ+, 𝜏 ∈ ℕ, (𝑎ⁿ) and (𝑞𝑛) are positive real valued sequences, 𝑏𝑛 = ∏ 𝑎𝑖𝑛
𝑖=1 , 𝑓:ℝ → ℝ,             

(𝑛 − 𝜏) → ∞ as 𝑛 → ∞. 
 

During the study, we will impose one or both of the assumptions below: 

 

(𝐻₁)  𝑢𝑓(𝑢) > 0 for 𝑢 ≠ 0; 

 

(𝐻₂)  𝑓:ℝ → ℝ is continuous. 

 

In this manuscript, we will investigate the three forms of the behaviour of sequential solutions as in 

unbounded solutions, constant solutions and zero solutions, which is known as trichotomy of non-

oscillatory solutions.  

 

Definition 1. 

 

(𝑖) A sequence whose limit is nonzero is called an asymptotically constant sequence. 

 

(𝑖𝑖) A sequence whose limit is zero is called a zero sequence. 

 

(𝑖𝑖𝑖) If the sequence (
𝑢𝑛

𝑣𝑛 
)  has a non-zero limit then the sequence (𝑢𝑛) is asymptotically equivalent to 

sequence (𝑣𝑛). 
 

Definition 2.  A subset 𝑆 of the Banach space 𝐵 is said to be uniformly Cauchy if for every 𝜀 > 0 there 

exists a positive integer 𝑁 such that |𝑥𝑖 − 𝑥𝑗| < 𝜀  whenever 𝑖, 𝑗 > 𝑁 for any (𝑥𝑛) ∈ 𝐵 [8]. 

 

Lemma 1. Each bounded and uniformly Cauchy subset of 𝐵 is relatively compact (Arzela-Ascoli's 

Theorem [3]). 

 

Theorem 1. Let 𝑆 be a nonempty, closed, and convex subset of a Banach space 𝐵 and 𝑇: 𝑆 → 𝑆 be a 

continuous mapping such that 𝑇(𝑆) is a relatively compact subset of 𝐵. Then 𝑇 has at least one fixed 

point in 𝑆 (Schauder Theorem [3]). 

 

Theorem 2. Let (𝑢𝑛), (𝑣𝑛) be two real sequences. Assume that (𝑣𝑛) is a strictly monotone and divergent 

sequence, and the following limit exists: lim
𝑛→∞

∆𝑢𝑛

∆𝑣𝑛
= 𝑔. Then  

 

lim
𝑛→∞

𝑢𝑛

𝑣𝑛
= 𝑔 (Stolz-Cesáro Theorem [2]). 

 

We introduce the notation: 

 

𝑄𝑛 = ∑
1

𝑏𝑖

𝑛−1
𝑖=𝑛1

 .                                                             (2) 

 

If we denote 

 

𝑦𝑛+1 = 𝑥𝑛∏
1

𝑎𝑖
 𝑛

𝑖=1  and 𝑏𝑛 = ∏ 𝑎𝑖𝑛
𝑖=1 ,                                                                                                       (3) 

 

we have 𝑥𝑛 − 𝑎
𝑛+1𝑥𝑛−1 = ∏ 𝑎𝑖∆𝑎𝑦𝑛.

𝑛
𝑖=1   

 

Hence using (3) we transform Equation (1) into second- order difference equation 
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∆𝑎(𝑏𝑛∆𝑎𝑦𝑛) + ∆𝑎𝑦𝑛 + 𝑞𝑛𝑓(𝑏𝑛−𝜏𝑦𝑛+1−𝜏) = 0, 𝑛 ∈ ℕ𝑚𝑎𝑥{1,𝜏}, 𝜏 ∈ ℕ.                                                     (4)   

 

Considering ∆𝑎
𝑚𝑦𝑛 = 𝑎

𝑛+𝑚∆𝑚 (
𝑦𝑛

𝑎𝑛
) , 𝑛 ∈ ℕ, we have following second-order nonlinear delay ordinary 

difference equation 

 

∆(𝑏𝑛∆𝑧𝑛) + ∆𝑧𝑛 + 𝑞𝑛
∗𝑓(𝑏𝑛+1−𝜏𝑧𝑛+1−𝜏) = 0, 𝑛 ∈ ℕ𝑚𝑎𝑥{1,𝜏}, 𝜏 ∈ ℕ.                                                      (5) 

 

where 𝑧𝑛 =
𝑦𝑛

𝑎𝑛
, 𝑞𝑛

∗ =
𝑞𝑛

𝑎𝑛+2
 . Assuming 

 

𝑓(𝑏𝑛+1−𝜏𝑢) = 𝑏𝑛
∗𝑔(𝑢), 𝑏𝑛

∗ > 0, 𝑏𝑛
∗ =

𝑐𝑛

𝑞𝑛
∗                                                                                                     (6) 

 

from (5) we reach following second-order nonlinear delay ordinary difference equation 

 

∆(𝑏𝑛∆𝑧𝑛) + ∆𝑧𝑛 + 𝑐𝑛𝑔(𝑧𝑛+1−𝜏) = 0, 𝑛 ∈ ℕ𝑚𝑎𝑥{1,𝜏}, 𝜏 ∈ ℕ,                                                                   (7) 

 

where 𝑐𝑛 = 𝑞𝑛
∗𝑏𝑛

∗ . 
 

Similar equations with (7) have been studied in [9-13].  

 

2. MAIN RESULTS 

 

In here, we provide the necessary and sufficient criteria for the existence of non-oscillatory solutions of 

Equation (1). Firstly, we give following lemmas which will use on our results. First we give the discrete 

analogue of the Kiguradze's Lemma and the second is its particular case. 

Lemma 2. [1] Let (𝑥𝑛) be defined for 𝑛 ≥ 𝑛₀ ∈ ℕ, and 𝑥𝑛 > 0 with ∆𝑚𝑥𝑛 of constant sign for 𝑛 ≥ 𝑛₀ and 

not identically zero. Then, there exists an integer 𝑘, 0 ≤ 𝑘 ≤ 𝑚 with (𝑚 + 𝑘) odd for ∆𝑚𝑥𝑛 ≤ 0 and     

(𝑚 + 𝑘) even for ∆𝑚𝑥𝑛 ≥ 0 such that 

 

(𝑖) 𝑘 ≤ 𝑚 − 1 implies (−1)𝑚+𝑖∆𝑖𝑥𝑛 > 0 for all 𝑛 ≥ 𝑛₀, 𝑘 ≤ 𝑖 ≤ 𝑚 − 1, 

 

(𝑖𝑖) 𝑘 ≥ 1 implies ∆𝑖𝑥𝑛 > 0  for all large 𝑛 ≥ 𝑛₀, 1 ≤ 𝑖 ≤ 𝑘 − 1. 
 

Lemma 3. Assume that following conditions: 

 

(𝐻1
∗) 𝑢𝑔(𝑢) > 0 for all 𝑢 ≠ 0; 

 

(𝐻2
∗) 𝑔:ℝ → ℝ is a continuous function; 

 

are satisfied. Assume that (𝑧𝑛) is an eventually positive solution of Equation (7). Then one of the following 

hypotheses is always exactly valid: 

 

(𝑖) (𝑧𝑛)>0, 𝛥𝑧𝑛 > 0, 

 

(𝑖𝑖)  (𝑧𝑛)>0, 𝛥𝑧𝑛 < 0 

 

for all sufficiently large 𝑛. 

 

Proof. The proof of Lemma 3 is obvious from Lemma 2. 
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Lemma 4. Suppose that 0 < 𝑎 ≤ 1. Then 

 

∑
1

𝑏𝑖

∞

𝑖=1

= ∞                                                                                                                                                                      (8) 

 

where 𝑏𝑛 = ∏ 𝑎𝑖𝑛
𝑖=1 . 

 

Lemma 5.  Assume that 1 < 𝑎 ≤ 1.549856. Then 

 

1 ≤∑
1

𝑏𝑖

∞

𝑖=1

< ∞                                                                                                                                                           (9) 

 

where 𝑏𝑛 = ∏ 𝑎𝑖𝑛
𝑖=1 . 

 

Lemma 6. Assume that 𝑎 > 1.549856. Then 

 

0 <∑
1

𝑏𝑖

∞

𝑖=1

< 1                                                                                                                                                            (10) 

 

where 𝑏𝑛 = ∏ 𝑎𝑖𝑛
𝑖=1 . 

 

For the proofs of Lemma 4−6, the number 1.549856 can be checked with the help of computer.  

 

So  𝑎 = 1.549856 is a boundary value for ∑
1

𝑏𝑖

∞
𝑖=1  to be less or greater then 1. 

 

Lemma 7. Let 0 < 𝑎 ≤ 1.549856 , and (8) and (9) be satisfied. If (𝑥𝑛)  is a non-oscillatory (positive) 

solution of Equation (1), then one of the following hypotheses is always exactly valid: 

 

(𝐼) lim
𝑛→∞

𝑥𝑛 

𝑏𝑛+1 
= 0; 

 

(𝐼𝐼) there are positive constants C₁, C₂ and a positive integer 𝑛0 such that 𝐶1𝑏𝑛+1 ≤ 𝑥𝑛 ≤ 𝐶2𝑏𝑛+1𝑄𝑛+1 for 

𝑛 ≥ 𝑛0 where 𝑏𝑛 = ∏ 𝑎𝑖𝑛
𝑖=1  and  𝑄𝑛+1 is as in (2). 

 

Proof. Assume that (𝑧𝑛) be an eventually positive solution of Equation (7). In this case, by Lemma 3, there 

are two possibilities: There exists a positive constant 𝐶₁ such that 𝑧𝑛+1 ≥ 𝐶₁ or lim
𝑛→∞

𝑧𝑛+1 = 0. If  

lim
𝑛→∞

𝑧𝑛+1 = 0 then lim
𝑛→∞

𝑥𝑛 

𝑏𝑛+1 
= 0 is satisfied. Assume that 𝑧𝑛+1 ≥ 𝐶₁. Then by (2) we have 𝑧𝑛+1 =

𝑦𝑛+1

𝑎𝑛+1
=

1

𝑎𝑛+1
𝑥𝑛∏

1

𝑎𝑖
=

𝑥𝑛 

𝑏𝑛+1 
𝑛
𝑖=1 ≥ 𝐶1,  that is, in the case (𝐼𝐼) the inequality 𝐶₁𝑏𝑛+1 ≤ 𝑥𝑛 is satisfied. Now we show 

that in the case (𝐼𝐼) the inequality 𝑥𝑛 ≤ 𝐶2𝑏𝑛+1𝑄𝑛+1  is also satisfied for 𝑛 ≥ 𝑛₀. 
 

We can find a positive integer 𝑛₁ and write from Equation (7) 

 

∆(𝑏𝑛∆𝑧𝑛) + ∆𝑧𝑛 < 0 for n ≥ 𝑛1.                                               (11) 

 

Summing up (11) from 𝑛₁ to 𝑛 − 1, we obtain 

 

∆𝑧𝑛 +
1

𝑏𝑛
𝑧𝑛 <

𝑀1
𝑏𝑛
 for 𝑛 ≥ 𝑛1. 
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Since 𝑧𝑛 is decreasing and 
1

𝑏𝑛
𝑧𝑛 > 0, ∆𝑧𝑛 < ∆𝑧𝑛 +

1

𝑏𝑛
𝑧𝑛. Therefore from (11), we can write 

 

∆𝑧𝑛 < ∆𝑧𝑛 +
1

𝑏𝑛
𝑧𝑛 <

𝑀1
𝑏𝑛
 for 𝑛 ≥ 𝑛1,                                                                                                                  (12) 

 

where 𝑀1 = 𝑚𝑎𝑥{𝑧𝑛1 , 𝑏𝑛1∆𝑧𝑛1} is nonnegative constant. Next summing up (12) from 𝑛₁ to 𝑛 − 1, we have 

 

𝑧𝑛 < 𝑀1 ∑
1

𝑏𝑖
+𝑀2 for 𝑛 ≥ 𝑛1,                                                                                                                          (13)

𝑛−1

𝑖=𝑛1

 

 

where 𝑀₂ = 𝑧𝑛1 is positive constant. By Lemma 4 and Lemma 5, we have 

 

1 ≤ ∑
1

𝑏𝑖
 for 𝑛 ≥ 𝑛1.                                                                                                                      

𝑛−1

𝑖=𝑛1

 

 

Therefore from (13), we have 

 

𝑧𝑛 < 𝑀1 ∑
1

𝑏𝑖
+𝑀2 ∑

1

𝑏𝑖

𝑛−1

𝑖=𝑛1 

𝑛−1

𝑖=𝑛1

 

      < 𝑚𝑎𝑥{𝑀1,𝑀2} ∑
1

𝑏𝑖

𝑛−1

𝑖=𝑛1

 

      = 𝐶2𝑄𝑛 for 𝑛 ≥ 𝑛1, 
 

where 𝐶₂=2𝑚𝑎𝑥{𝑀₁,𝑀₂}. Last inequality implies that 

 

𝑧𝑛+1 ≤ 𝐶2𝑄𝑛+1 for 𝑛 ≥ 𝑛1. 
 

Hence, we obtain 

 

𝑥𝑛 ≤ 𝐶2𝑏𝑛+1𝑄𝑛+1 

 

The proof is completed. 

 

Corollary 1. Let 0 < 𝑎 ≤ 1.549856. Assume that (8) and (9) are satisfied and conditions (𝐻₁) and 

(𝐻₂) are hold. If (𝑧𝑛) is an eventually positive solution to (7), then 

 

(𝑐₁) lim
𝑛→∞

𝑧𝑛  = 0;   

 

(𝑐₂) there exist positive constants 𝐶₁, 𝐶₂, and sufficiently large 𝑛2 such that 𝐶₁ ≤ 𝑧𝑛 ≤ 𝐶₂𝑄𝑛  for 𝑛 ≥ 𝑛2, 
where (𝑄𝑛) is defined by (2). 

 

Theorem 3. Suppose that 𝑎 > 1 and conditions (H₁), (H₂) and (6) are hold. The condition 

 

∑ 𝑐𝑖 ∑
1

𝑏𝑗

𝑖

𝑗=𝑛6

< ∞                                                                                                                                                 (14)

∞

𝑖=𝑛6−1

 

 

is a necessary condition for Equation (7) to has an asymptotically constant solution. 
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Proof. Suppose that (𝑧𝑛) is an asymptotically constant solution of Equation (7). Then, the solution (𝑧𝑛)  
becomes a non-oscillatory sequence. We suppose that (𝑧𝑛) is an eventually positive solution (Without loss 

of generality). Then according to Lemma 3, (𝑧𝑛) is either of type (𝑖) or type (𝑖𝑖). Each solution in the type 

(𝑖) tends to infinity. But this contradicts our assumption to be an asymptotically constant solution. 

Therefore (𝑧𝑛) is of type (𝑖𝑖). Assume that 

 

lim
𝑛→∞

𝑧𝑛  = 𝛼 > 0                                                                                                                                       (15) 

 

Then we have an integer 𝑛₂ such that 𝐶₃ ≤ 𝑧𝑛+1−𝜎 ≤ 𝐶₄ for 𝑛 ≥ 𝑛₂ where 𝐶₃ and 𝐶₄ are positive constants. 

By (𝐻₁) and (𝐻₂), we can find a positive constant 𝐶₅ = min
𝑢∈[𝐶3,𝐶4]

{𝑔(𝑢)} and 𝑛₃ ≥ 𝑛₂ that for   𝑛 ≥ 𝑛₃ we 

have 

 

𝐶₅ ≤ 𝑔(𝑧𝑛+1−𝜎)                                                                                (16) 
 

Hence, we can find an 𝑛₄ ≥ 𝑛₃ that (16) and (𝑖𝑖) are satisfied for 𝑛 ≥ 𝑛₄ . We can write (6) in the form 

 

−∆(𝑏𝑖∆𝑧𝑖 + 𝑧𝑖) =  𝑐𝑖𝑔(𝑧𝑖+1−𝜎). 
 

Multiplying this equation by ∑
1

𝑏𝑗

𝑖
𝑗=𝑛4

 and summing up both sides of it from 𝑖 = 𝑛₄ − 1 to 𝑛 − 1, we have 

 

− ∑ (∑
1

𝑏𝑗

𝑖

𝑗=𝑛4

)∆(𝑏𝑖∆𝑧𝑖 + 𝑧𝑖) = 

𝑛−1

𝑗=𝑛4−1

∑ (∑
1

𝑏𝑗

𝑖

𝑗=𝑛4

)𝑐𝑖𝑔(𝑧𝑖+1−𝜎).

𝑛−1

𝑗=𝑛4−1

                                                          (17) 

 

By (16), we can write following inequality 

 

∑ 𝑐𝑖𝑔(𝑧𝑖+1−𝜎) (∑
1

𝑏𝑗

𝑖

𝑗=𝑛4

) ≥ 𝐶5

𝑛−1

𝑗=𝑛4−1

∑ 𝑐𝑖 (∑
1

𝑏𝑗

𝑖

𝑗=𝑛4

) .

𝑛−1

𝑗=𝑛4−1

                                                                             (18) 

 

By the partial sum formula ∑ 𝑦𝑖∆𝑥𝑖 = 𝑦𝑛−1
𝑛−1
𝑗=𝑛4−1

𝑥𝑛−1 − 𝑦𝑛4−1𝑥𝑛4−1 − ∑ 𝑥𝑖+1∆𝑦𝑖
𝑛−1
𝑗=𝑛4−1

, from the left 

side of (19) we write 

 

− ∑ (∑
1

𝑏𝑗

𝑖

𝑗=𝑛4

)∆(𝑏𝑖∆𝑧𝑖 + 𝑧𝑖) = − [∑
1

𝑏𝑗

𝑖

𝑗=𝑛4

(𝑏𝑖∆𝑧𝑖 + 𝑧𝑖)]

𝑖=𝑛4−1

𝑛−1

+ ∑ (∆𝑧𝑖+1 +
1

𝑏𝑖+1
𝑧𝑖+1) .

𝑛−1

𝑖=𝑛4−1

  (19)

𝑛−1

𝑗=𝑛4−1

 

 

From (7), we have 

 

∆(𝑏𝑛∆𝑧𝑛) + ∆𝑧𝑛 = −𝑐𝑛𝑔(𝑧𝑛+1−𝜏) < 0.                                                       (20) 

 

By (20), we can find an 𝑛₅ ≥ 𝑛₄ such that 

 

∆(𝑏𝑛∆𝑧𝑛) + ∆𝑧𝑛 < −𝐴 for 𝑛 ≥ 𝑛5,                                                                                                         (21) 

 

where 𝐴 is positive constant. By (20), we have two cases: 𝑏𝑛∆𝑧𝑛 + 𝑧𝑛 < 0 or 𝑏𝑛∆𝑧𝑛 + 𝑧𝑛 > 0. Suppose 

that 𝑏𝑛∆𝑧𝑛 + 𝑧𝑛 < 0. Summing up (20) from 𝑛₅ to 𝑛 − 1 and considering 𝐶₃ ≤ 𝑧𝑛+1−𝜎 ≤ 𝐶₄, we obtain 

 

𝑏𝑛∆𝑧𝑛 + 𝐶3 ≤ 𝑏𝑛∆𝑧𝑛 + 𝑧𝑛 < −𝐴1(𝑛 − 𝑛5) + 𝐴2,                                       (22) 

 

where 𝐴₁ and 𝐴₂ = 𝑚𝑎𝑥{𝑧𝑛5 , 𝑏𝑛5𝛥𝑧𝑛5} are positive costants.  We have 
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𝑏𝑛∆𝑧𝑛 ≤ −𝐴1(𝑛 − 𝑛5) + 𝐴2 − 𝐶3.                                   (23) 

 

Thus we can find an 𝑛₆ ≥ 𝑛₅ such that −𝐴₁(𝑛 − 𝑛₅) + 𝐴₂ − 𝐶₃ < 0 for 𝑛 ≥ 𝑛₆. Hence from (23) we can 

write 

 

𝑏𝑛∆𝑧𝑛 < −𝑀 for 𝑛 ≥ 𝑛6,                        (24) 

 

where 𝑀 is a positive constant. Summing up (24) from 𝑛₆ to 𝑛 − 1 and considering (8), we obtain 

 

𝑧𝑛 < −𝑀 ∑
1

𝑏𝑗
+ 𝑧𝑛6 = −∞,

𝑛−1

𝑗=𝑛6

 

 

as 𝑛 → ∞ which contradicts with 𝑧𝑛 to be positive. In that case  

 

𝑏𝑛∆𝑧𝑛+𝑧𝑛 > 0.                                  (25) 

 

Hence considering 𝑏𝑛∆𝑧𝑛+𝑧𝑛 to be decreasing, from (19), we have 

 

− ∑ (∑
1

𝑏𝑗

𝑖

𝑗=𝑛6

)∆(𝑏𝑖∆𝑧𝑖 + 𝑧𝑖) = −[∑
1

𝑏𝑗

𝑖

𝑗=𝑛6

(𝑏𝑖∆𝑧𝑖 + 𝑧𝑖)]

𝑖=𝑛6−1

𝑛−1

+ ∑ (∆𝑧𝑖+1 +
1

𝑏𝑖+1
𝑧𝑖+1)

𝑛−1

𝑖=𝑛6−1

    

𝑛−1

𝑗=𝑛6−1

(26) 

                                                                < ∑
1

𝑏𝑖+1

𝑛−1

𝑖=𝑛6

𝑧𝑖+1 

                                                                < 𝐶4 ∑
1

𝑏𝑖+1

𝑛−1

𝑖=𝑛6

 

                                                                = 𝐶4𝑄𝑛+1. 

 

Thus by Lemma 5 and Lemma 6, from (18) and (26), we have  

 

𝐶5 ∑ 𝐶𝑖

𝑛−1

𝑖=𝑛6−1

(∑
1

𝑏𝑗

𝑖

𝑗=𝑛6

) < 𝐶4𝑄𝑛+1 < ∞,                                                                                                                (27) 

 

that is, the condition (14) is obtained 

 

∑ 𝐶𝑖

𝑛−1

𝑖=𝑛6−1

(∑
1

𝑏𝑗

𝑖

𝑗=𝑛6

) < ∞. 

 

So the proof is completed. 

 

Following examples show that the condition (14) is not a necessary condition for Equation (7) to has an 

asymptotically zero solution. 

 

Example 1. Consider  

 

∆(𝑏𝑛∆𝑧𝑛) + ∆𝑧𝑛 + 𝑐𝑛𝑧𝑛 = 0                           (28) 

 

which is the linear form of Equation (7), where 𝑏𝑛 = ∏ 𝑎𝑖 = 1, 𝑐𝑛 =
1

4
𝑛
𝑖=1  and 𝜏 = 1. One can see that        
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∑ 𝑐𝑖 (∑  

𝑖

𝑗=𝑛4

1

𝑏𝑗
) = ∑

1

4

∞

𝑖=𝑛4−1

(𝑖 − 𝑛4) = ∞.

∞

𝑗=𝑛4−1

 

 

Therefore, although Equation (7) has an asymptotically zero solution, the condition (14) of Theorem 3 is 

not satisfied. Such a solution is 𝑧𝑛 =
1

2𝑛
. 

 

Example 2. Consider   

 

∆(𝑏𝑛∆𝑧𝑛) + ∆𝑧𝑛 + 𝑐𝑛𝑧𝑛 = 0 ,                          (29) 

 

which is in the form (7), where 𝑏𝑛 = ∏
1

4𝑖
=

1

2𝑛(𝑛+1)
, 𝑐𝑛 =

12.2𝑛(𝑛+1)+16(22(𝑛+1)−1)

22(𝑛+1)(2𝑛(𝑛+1)+1)

𝑛
𝑖=1 , 𝑔(𝑢) = 𝑢, and          

𝜏 = 1. It is observed that the condition (14) is satisfied and Equation (29) has a solution 𝑧𝑛 = 1 +
1

2ⁿ⁽ⁿ⁺¹⁾
  

which is asymptotically constant.  

 

Theorem 4. Suppose that (𝐻₁), (𝐻₂), (6) and (14) are satisfied. Then ∀𝑐 ∈ ℝ, Equation (1) has a solution 

(𝑥𝑛) such that lim
𝑛→∞

𝑥𝑛 = 𝑐.  

 

Proof. According to Theorem 3, the condition (14) is the necessary condition for Equation (7) to have an 

asymptotically constant solution. Using (4), (5), (6) and (3), we see that Equation (1) has an 

asymptotically constant solution 𝑥𝑛 such that  

 

lim
𝑛→∞

𝑥𝑛 = 𝑐. 

 

Corollary 2. Let conditions (𝐻₁), (𝐻₂) and (6) be hold. Then the condition 

 

∑ 𝑐𝑖 (∑  

𝑖

𝑗=𝑛6

1

𝑏𝑗
) = ∞                                                                                                                                        (30)

∞

𝑗=𝑛6−1

 

           
implies that (7) has no asymptotically constant solution. 

     

The proof can be made directly from Theorem 3. 

 

Theorem 5. Assume that (𝐻₁) and (𝐻₂) are satisfied. Then a necessary and sufficient condition for 

Equation (1) to has a solution (𝑥𝑛) which is asymptotically equivalent to the sequence (𝑏𝑛 = ∏ 𝑎𝑖𝑛
𝑖=1 ) is 

 

∑∏
1

𝑎𝑙
∑𝑐𝑖 < ∞.                                                                                                                                             (31)

∞

𝑖=1

𝑘

𝑙=1

∞

𝑘=1

 

 

Proof. From Theorems 3 and 4, we can directly prove the theorem by using the notation (3) and  in the 

condition (14). 

 

Theorem 6. Assume that (𝐻₁) and (𝐻₂) are satisfied. Let 𝑔 be a monotonic function.  Then a necessary 

and sufficient condition for Equation (7) to has a solution (𝑧𝑛) satisfying 

 

lim
𝑛→∞

𝑧𝑛

𝑄𝑛
≠ 0                                                                 (32) 

 

is 
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∑𝑑𝑖|𝐶𝑄𝑖+1−𝜎| < ∞,                                                                                                                                               (33)

∞

𝑖=1

 

 

where 𝐶 ≠ 0 is a constant. 

 

Proof. Necessity. Suppose that (𝑧𝑛) is a non-oscillatory solution to Equation (7) which satisfies (32). 

Without loss of generality, we can assume that 

 

lim
𝑛→∞

𝑧𝑛
𝑄𝑛

= 𝜆 > 0. 

 

Then we can find positive constants 𝐶₇ and 𝐶₈ such that 𝐶₇𝑄𝑛 ≤ 𝑧𝑛 ≤  𝐶₈𝑄𝑛 for sufficiently large 𝑛. In 

that case we can find a positive integer 𝑛₄ such that 𝐶₇𝑄𝑛+1−𝜎 ≤ 𝑧𝑛+1−𝜎 ≤  𝐶₈𝑄𝑛+1−𝜎 for 𝑛 ≥ 𝑛₄. Since 

𝑔 is a monotonic function, 

 

𝑔(𝑧𝑛+1−𝜎 ≥ 𝑔(𝐶₉𝑄𝑖+1−𝜎)                                                                                                                       (34) 

 

where 𝐶₉ = 𝐶₇, if the function 𝑔 is nondecreasing and 𝐶₉ = 𝐶₈, if the function 𝑔 is nonincreasing. By (H₁), 

𝑔(𝐶₉𝑄𝑖+1−𝜎) is positive. On the other hand, if we sum Equation (7) form 𝑛₅ = 𝑛₄ + 𝜎 to 𝑛 − 1, and 

consider Lemma 3, we have 

 

0 < 𝑏𝑛∆𝑧𝑛 + 𝑧𝑛 = 𝑏𝑛5∆𝑧𝑛5 + 𝑧𝑛5 − ∑ 𝑐𝑛𝑔(𝑧𝑛+1−𝜎)

𝑛−1

𝑖=𝑛5

.                                                                                (35) 

 

(35) implies that  

 

∑ 𝑐𝑛𝑔(𝑧𝑛+1−𝜎)

𝑛−1

𝑖=𝑛5

≤ 𝑏𝑛5∆𝑧𝑛5 + 𝑧𝑛5 < ∞. 

 

Hence by (34), we obtain 

 

∑ 𝑐𝑛𝑔(𝐶₉𝑄𝑖+1−𝜎)

∞

𝑖=𝑛5

< ∞. 

 

Sufficiency. Let consider 𝐶₁₀ is a positive constant. Set 𝐼𝑛 = [
𝐶10

2
𝑄𝑛, 𝐶10𝑄𝑛]. According to the property of 

𝑔 and the assumption (𝐻₁), 𝑔 has a maximum value on the interval 𝐼𝑛, which we denote if the function 𝑔 

is nonincreasing, as the point 𝐶11𝑄𝑛 with 𝐶₁₁ =
𝐶10

2
  , and if the function 𝑔 is nondecreasing with 𝐶₁₁ =

𝐶₁₀. Then we have  
 

𝑔(𝑧𝑛) ≤ 𝑔(𝐶11𝑄𝑛) for 𝑛 ∈ 𝐼𝑛.                                           (36) 

 

Assume that (34) holds for 𝐶 = 𝐶₁₁. Thus we can find a positive integer 𝑛₆ such that 

 

∑ 𝑐𝑛𝑔(𝐶₉𝑄𝑖+1−𝜎) ≤
𝐶10
2

∞

𝑖=𝑛6

.                                                                                                                                    (37) 

 

Now let consider the Banach space 𝐵 of all real 𝑧 = (𝑧𝑛) such that 
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‖𝑧𝑛‖ = sup
𝑛≥𝑛7

𝑧𝑛

𝑄𝑛
2 < ∞, 

 

where 𝑛₇ =  𝑛₆ + 𝜎 − 1. Set 

 

𝑆 = {(𝑧𝑛) ∈ 𝐵: 𝑧𝑛 =
𝐶10

2
 for 𝑛 < 𝑛7,  𝑧𝑛 ∈ 𝐼𝑛 for 𝑛 ≥ 𝑛7}. 

 

It is easy to see that 𝑆 is a subset of 𝐵 which is convex, closed and bounded. We define an operator          

𝑇: 𝑆 → 𝐵 as in the follow 

(𝑇𝑧)𝑛 =

{
 
 

 
 
𝐶10
2𝑄𝑛

                                                          for 𝑛 < 𝑛7,

𝐶10
2𝑄𝑛

+ ∑
1

𝑏𝑖
∑𝑐𝑘𝑔(𝑧𝑘+1−𝜎)

∞

𝑘=𝑖

        for 𝑛 ≥ 𝑛7.

𝑛−1

𝑖=𝑛7

                                                                           (38) 

 

First, we show that 𝑇(𝑆) ⊂ 𝑆. Indeed, if 𝑧 ∈ 𝑆, it is clear from (38) that (𝑇𝑧)𝑛 ≥
𝐶10

2𝑄𝑛
 for 𝑛 ≥ 1. 

Furthermore, by (38) for 𝑛 ∈ 𝐼𝑛, we have 

 

(𝑇𝑧)𝑛 <
𝐶10
2𝑄𝑛

+ ∑
1

𝑏𝑖
∑𝑐𝑘𝑔(𝑧𝑘+1−𝜎)

∞

𝑘=𝑖

    

𝑛−1

𝑖=𝑛7

 

            <
𝐶10
2𝑄𝑛

+∑
1

𝑏𝑖
∑ 𝑐𝑘𝑔(𝑧𝑘+1−𝜎)

∞

𝑘=𝑛7

    

𝑛−1

𝑖=1

 

            <
𝐶10
2𝑄𝑛

+
1

𝑄𝑛
∑ 𝑐𝑘𝑔(𝐶9𝑄𝑘+1−𝜎)

∞

𝑘=𝑛7

 

            <
𝐶10
2𝑄𝑛

+
1

𝑄𝑛

𝐶10
2
=
𝐶10
𝑄𝑛
 . 

 

Hence T is an operator which maps S into itself.  

 

Next we will  prove that   𝑇 is a continuous operator. Assume that (𝑧(𝑚)) is a sequence in 𝑆 such that 

𝑧(𝑚) → 𝑧 as 𝑚 → ∞. Since 𝑆 is a closed subset, 𝑧 ∈ 𝑆. Let get 

 

|(𝑇𝑧(𝑚))
𝑛
− (𝑇𝑧)𝑛| ≤

1

𝑄𝑛
∑ 𝑐𝑘 |𝑔 (𝑧𝑘+1−𝜎

(𝑚) ) − 𝑔(𝑧𝑘+1−𝜎)|

∞

𝑘=𝑛7

. 

 

From this we can write 

 

‖(𝑇𝑧(𝑚))
𝑛
− (𝑇𝑧)𝑛‖ ≤

1

𝑄𝑛
∑ 𝐶𝑘 |𝑔 (𝑧𝑘+1−𝜎

(𝑚) ) − 𝑔(𝑧𝑘+1−𝜎)|

∞

𝑘=𝑛7

. 

 

By (H₁) and (H₂) we have lim
𝑛→∞

𝑄𝑛 = ∞ and considering (34) and (38), from last inequality we reach 

 

‖(𝑇𝑧(𝑚))
𝑛
− (𝑇𝑧)𝑛‖ ≤

2

𝑄𝑛
∑ 𝑐𝑘𝑔(𝐶9𝑄𝑘+1−𝜎) → 0.

∞

𝑘=𝑛7

 

 

Thus, we show that T is a continuous transformation. 
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Now, we will prove that 𝑇(𝑆) is uniformly Cauchy. For this, we need to prove that, given any 𝜀 > 0, we 

can find an integer 𝑛₈ such that for 𝑚 > 𝑛 > 𝑛8. We get 

 

‖
(𝑇𝑧)𝑚

𝑄𝑚
2 −

(𝑇𝑧)𝑛

𝑄𝑛
2 ‖ < 𝜀 

 

for any 𝑧 ∈ 𝑆. Indeed, we have 

 

‖
(𝑇𝑧)𝑚

𝑄𝑚
2 −

(𝑇𝑧)𝑛

𝑄𝑛
2 ‖ ≤

2

𝑄𝑛
∑𝑐𝑘𝑔(𝑧𝑘+1−𝜎) ≤

𝐶

𝑄𝑛
→ 0.

∞

𝑘=1

 

 

Thus, by Schauder Theorem, there exists 𝑧 ∈ 𝑆 such that 𝑧𝑛 = (𝑇𝑧)𝑛 for 𝑛 ≥ 𝑛₈. Furthermore, by Theorem 

2 and definition of 𝑄𝑛 we have 

 

lim
𝑛→∞

𝑧𝑛
𝑄𝑛

= lim
𝑛→∞

∆𝑧𝑛
∆𝑄𝑛

= lim
𝑛→∞

(𝑏𝑛∆𝑧𝑛). 

 

Hence 

 

lim
𝑛→∞

𝑧𝑛
𝑄𝑛

≤ lim
𝑛→∞

(
𝐶

2
+∑𝑐𝑘𝑔(𝑧𝑘+1−𝜎)

∞

𝑘=1

) 

               ≤ lim
𝑛→∞

(
𝐶

2
+∑𝑐𝑘𝑔(𝐶10𝑄𝑘+1−𝜎)

∞

𝑘=1

) =
𝐶

2
. 

 

Hence we complete the proof. 

 

Example 3. Consider the equation 

 

∆𝑎(𝑥𝑛 − 𝑎
𝑛+1𝑥𝑛−1) + ∆𝑎 (

𝑥𝑛−1

𝑏𝑛−1
) + 𝑞𝑛𝑓(𝑥𝑛−𝜏) = 0,                                        (39) 

 

where 𝑎 = 4, 𝑏𝑛 = 2
𝑛(𝑛+1) and 𝑞𝑛 = 3 +

7

2
2−𝑛 − 2𝑛+4 −

2𝑛+1

2𝑛2(𝑛+1)(𝑛+2)
−

2𝑛+1+4

2𝑛−12𝑛(𝑛+1)
. 

 

𝑥𝑛 = 1 +
1

2𝑛
 is an asymptotically constant solution of Equation (39). 

 

3. CONCLUSION 

In this paper, a new generalized equation was considered by expanding the equation containing the 

generalized difference operator previously considered by Bolat and Akın [6] and Agata Bezubik and et all. 
in [7] , and this equation was reduced to an equation with a normal operator. The behavior of the solutions 

of this reduced equation was examined by making use of previous [9-13] studies new results were given. 
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