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Highlights 

• A random walk with a generalised reflecting barrier is examined in this study. 

• The ergodicity of the process and the weak convergence of the ergodic distribution is discussed.  

• An inequality is obtained for evaluating the rate of the weak convergence.  

• The rate depends only on the probability characteristics of the ladder height of the random walk. 

Article Info 

 

Abstract 

In this study, a random walk process with generalized reflecting barrier is considered and an 

inequality for rate of weak convergence of the stationary distribution of the process of interest is 

propounded. Though the rate of convergence is not thoroughly examined, the literature does 

provide a weak convergence theorem under certain conditions for the stationary distribution of 

the process under consideration. Nonetheless, one of the most crucial issues in probability theory 

is the convergence rate in limit theorems, as it affects the precision and effectiveness of using 

these theorems in practice. Therefore, for the rate of convergence for the examined process, 

comparatively simple inequality is represented. The obtained inequality demonstrates that the rate 

of convergence is correlated with the tail of the distribution of ladder heights of the random walk. 
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1. INTRODUCTION 

 

Since the introduction of randomness into science, it has become obvious that the theoretical foundations 

of random walk processes play a crucial role, particularly in the fields of quantum physics and mathematical 

biology, reliability, stochastic finance, computer science, inventory, and queuing theories, among others. 

In some real-life problems, the theoretical basis of the random walk with reflecting barriers was especially 

required. The motion of a high-energy particle in a diluted environment, for instance, is described by the 

considered process in quantum physics [1]. Some valuable studies on reflecting barriers can be listed as 

follows: [2-6] etc. 

 

Weak convergence, a critical probabilistic feature of stochastic processes, has been studied in literature [1-

2,7-13]. Because theoretical results are usually complicated [1], some asymptotic approaches are taken into 

account ([2,4]), thus the obtained results are able to be applied in practice.  

 

The rate of weak convergence is also important because it influences the precision and efficacy with which 

weak convergence theorems can be applied in practice [7,14]. Even though the weak convergence for 

stationary distribution of the random walk with reflecting barrier is obtained by asymptotic methods in the 

study [2], the rate of the weak convergence is not investigated. Consider the following real-world model 

before giving the mathematical design of the process. 
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The Model. In this study, a company which its capital level begins from 𝜆𝑧 > 0 (𝑧, 𝜆 > 0) as an initial 

level, is considered. The capital level increases with the premiums and the arrivals of the new customers at 

𝑇𝑛 = ∑ 𝜉𝑖
𝑛
𝑖=1 , 𝑛 = 1,2, … random times. Moreover, the company loses money due to accidents. Let us 

consider the variation ({𝜂𝑛}, 𝑛 ≥ 1) of the capital level over time ({𝑇𝑛}, 𝑛 ≥ 1) with a stochastic process. 

Here, both the sequences {𝜂𝑛} and {𝑇𝑛} are random. The process moves up and down over time until the 

capital level drops below zero. A capital level falling below zero indicates an unmet cost (−𝜁1) which 

means the company encounters with a crisis. If an unmet cost occurs, the company takes out a loan 

immediately at 𝜆 times bigger of the size of the unmet cost. Thus, as soon as the company faces with a 

crisis, the process begins from a new initial level (𝜆𝜁1) and proceeds similarly until it encounters with a 

new crisis. Every time the company meets with an unmet cost ({−𝜁𝑛}, 𝑛 = 1,2, … ), it continues by carrying 

out the same procedure. Thus, the process moves by repeating the same kind of cycles. Hence, a random 

walk with a generalized reflecting barrier expresses such a mechanism. 

 

To investigate the system expressed above, random walk with a generalized reflecting barrier should be 

examined asymptotically. The weak convergence presented in the study [2] provides an asymptotic 

estimate, however the convergence’s speed depends on more delicate properties of the underlying 

distribution [1]. The striking feature of the obtained inequality in this study is that it depends only on some 

basic numerical and probabilistic characteristics of the ladder heights of random walk. The study's primary 

finding provides a more quantitative outcome by indicating the rate at which this convergence occurs and 

providing a bound on the maximum error of the convergence found in [2]. 

 

The rate of weak convergence for an ergodic distribution of a particular stochastic process has been 

examined in this work. The rate of convergence in limit theorems is a crucial piece of information. Usually, 

figuring out the rate is a quite challenging task. Even though there aren't many studies in this field in the 

literature, the ones that are have a significant impact on both science and practice such as the Berry-Esseen 

inequality for central limit theorems [1]. The current study's results are helpful in that regard. The fact that 

the rate can only be determined by taking into account the probability characteristics of the random walk's 

first ladder height is particularly intriguing. 

 

The rest of the paper is followed by the mathematical construction of the process of interest. Then, after 

examining the ergodicity of the process in the third section, the preliminary results are given in the fourth 

section. Finally, the main purpose, which is an inequality for the rate of the weak convergence of the random 

walk with generalized reflecting barrier is presented. The study is concluded with the discussion on the 

obtained result. 

 

2. MATHEMATICAL DESIGN OF PROCESS 𝑿(𝒕) 

 

The primary aim of the study is to attain an inequality for the rate of the weak convergence of the 

investigated process. To do so, primarily the process is required to be constructed. Therefore, this section 

establishes mathematically the random walk with generalized reflecting barrier. Correspondingly, denote 

the essential random variables and boundary functionals of interest. 

 

Let {𝜉𝑛} and {𝜂𝑛}; 𝑛 = 1,2, … be two independent and identically distributed (iid) random sequences. 

Suppose that random variables 𝜉𝑛, 𝑛 = 1,2, … take only positive values whereas random variables 𝜂𝑛, 𝑛 =

1,2, … take on both positive and negative values. The following are the distribution functions for them: 

 

𝛷(𝑡) ≡ 𝑃{𝜉1 ≤ 𝑡};    𝐹(𝑥) ≡ 𝑃{𝜂1 ≤ 𝑥}, 𝑡 ≥ 0, 𝑥 ∈ 𝑅. 
 

Give the following definitions for a renewal sequence {𝑇𝑛} and a random walk {𝑆𝑛} as follows: 

 

𝑇0 ≡ 𝑆0 ≡ 0; 𝑇𝑛 = ∑ 𝜉𝑖
𝑛
𝑖=1 ;    𝑆𝑛 = ∑ 𝜂𝑖

𝑛
𝑖=1 , 𝑛 = 1,2, …  . 

 

Additionally, introduce the random variables that follows: 
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𝑁0 = 0; 𝜁0 = 𝑧 ≥ 0; 𝜏0 ≡ 0;  𝑁1 ≡ 𝑁1(𝜆𝑧) = inf{𝑘 ≥ 1: 𝜆𝑧 − 𝑆𝑘 < 0 } ; 
𝑁𝑛 ≡ 𝑁𝑛(𝜆𝜁𝑛−1) = inf{𝑘 ≥ 𝑁𝑛−1 + 1: 𝜆𝜁𝑛−1 − (𝑆𝑘 − 𝑆𝑁𝑛−1

) < 0} ; 

𝜁𝑛 ≡ 𝜁𝑛(𝜆𝜁𝑛−1) = |𝜆𝜁𝑛−1 − (𝑆𝑁𝑛
− 𝑆𝑁𝑛−1

)|;  𝜏𝑛 = ∑ 𝜉𝑖

𝑁𝑛

𝑖=1

,   𝑛 = 1,2, … 

 

Furthermore, set 𝜈(𝑡) = max{𝑛 ≥ 0: 𝑇𝑛 ≤ 𝑡} , 𝑡 > 0. This allows us to construct the stochastic process as 

follows: 

 

𝑋(𝑡) ≡ ∑ ( 𝜆𝜁𝑛 − (𝑆𝜈(𝑡) − 𝑆𝑁𝑛
)) 𝐼[𝜏𝑛 ; 𝜏𝑛+1)(𝑡)

∞

𝑛=0

, 

 

where 𝐼𝐴(𝑡) is an indicator function of the set 𝐴. Figure 1 displays a sample path of the process 𝑋(𝑡). The 

term random walk with a generalized reflecting barrier refers to the process 𝑋(𝑡).  

 

 
Figure 1. Illustration of a trajectory of the process 𝑋(𝑡) 

 

The primary aim is to obtain an inequality for the rate of the weak convergence for the defined process 

𝑋(𝑡). To reach the goal, the ergodicity and the weak convergence for the stationary distribution of the 

process are investigated in the next section. 

 

3. ERGODICITY AND WEAK CONVERGENCE OF PROCESS 𝑿(𝒕) 

 

The ergodicity of the random walk with generalized reflecting barrier, 𝑋(𝑡), is investigated in this section. 

In the study of [2], the ergodicity of the process 𝑋(𝑡) is proved under the following conditions on the initial 

sequences of random variables {𝜉𝑛} and {𝜂𝑛}, 𝑛 = 1,2, …: 

 

i) 𝐸(𝜉1) < ∞;  ii) 𝐸(𝜂1) > 0;  iii)  𝐸(𝜂1
2) < ∞;  iv) 𝜂1 has non-arithmetic distribution. 

 

Put 𝜋𝜆(𝑧) = lim
𝑛→∞ 

𝑃{𝜁𝑛(𝜆𝜁𝑛−1) ≤ 𝑧}. Now, denote by 𝑌𝜆(𝑡) the standardized stochastic process, i.e., 

𝑌𝜆(𝑡) = 𝑋(𝑡)/𝜆, the random variables 𝑌𝜆(0) = 𝑧; 𝑌𝜆(𝜏𝑛) = 𝜁𝑛; 𝑛 = 1,2, … forms an stationary Markov 

chain with stationary distribution 𝜋𝜆(𝑥). Consequently, it is easily derived that the standardized stochastic 

process 𝑌𝜆(𝑡) is also stationary [2]. 

 

Furthermore, in [2], the weak convergence theorem for stationary distribution of the standardized process 

𝑌𝜆(𝑡) is presented. Denote 𝑄𝑌(𝑥) ≡ lim
𝑡→∞

𝑃{𝑌𝜆(𝑡) ≤ 𝑥}. 
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Proposition 3.1 [2]. Under the above conditions on {𝜉𝑛} and {𝜂𝑛}, 𝑛 = 1,2, …, as follows, the stationary 

distribution 𝑄𝑌(𝑥) converges weakly to the distribution function 𝑅(𝑥): 

 

lim
𝜆→∞

𝑄𝑌(𝑥) = 𝑅(𝑥) ≡
2

𝜇2
∫ {∫ (1 − 𝐹+(𝑢))𝑑𝑢

∞

𝑣

} 𝑑𝑣

𝑥

0

, 

 

where 𝜇2 ≡ 𝐸(𝜒1
+2) and 𝐹+(𝑥) ≡ 𝑃{𝜒1

+ ≤ 𝑥}. Here 𝜒1
+ is the first ladder height of random walk {𝑆𝑛}.  

 

This study aims to evaluate the difference 𝑄𝑌(𝑥) − 𝑅(𝑥) for sufficiently large values of 𝜆. To achieve this, 

some propositions and lemmas are presented for the preliminary research in the next section. 

 

4. PRELIMINARY RESULTS FOR INEQUALITY OF WEAK CONVERGENCE RATE 

 

In terms of having the main result, let us include primarily two essential independent random sequences, 

which are called ladder variables (𝜒𝑚
+ , 𝜈𝑚

+ ), 𝑚 = 1,2, …. Let us introduce the first ladder epoch 𝜈1
+ and the 

first ladder height 𝜒1
+ of the random walk {𝑆𝑛}, 𝑛 ≥ 0 as follows: 𝜈1

+ = min{𝑛 ≥ 1: 𝑆𝑛 > 0} ; 𝜒1
+ = 𝑆𝑣1

+ =

∑ 𝜂𝑖
𝜈1

+

𝑖=1 . 

 

The random pairs (𝜒𝑛
+, 𝜈𝑛

+), 𝑛 = 2,3, …, are mutually independent and identically distributed (iid) with the 

random pairs (𝜒1
+, 𝜈1

+), respectively (see [1]).  

 

By using ladder heights {𝜒𝑛
+, 𝑛 = 1,2, … }, a renewal process 𝐻(𝑡) is defined as 𝐻(𝑡) ≡ min{𝑛 ≥

1: ∑ 𝜒𝑖
+𝑛

𝑖=1 > 𝑡} , 𝑡 ≥ 0. Then, the process 𝑊(𝑡) ≡ ∑ 𝜒𝑖
+𝐻(𝑡)

𝑖=1 − 𝑡 is called as residual waiting time 

generated by ladder heights or residual waiting time for shortness. Moreover, the cumulative distribution 

function (cdf) of 𝑊(𝑡) is denoted by 𝐻(𝑡, 𝑥), i.e., 𝐻(𝑡, 𝑥) ≡ 𝑃{𝑊(𝑡) ≤ 𝑥}.  

 

In order to achieve the fundamental advancement of the study, we need to get asymptotic results on cdf and 

characteristic function of residual waiting time as an auxiliary goal. Therefore, let us include the following 

propositions. 

 

Proposition 4.1. Suppose that 𝜇3 ≡ 𝐸(𝜒1
+3) < ∞. Then, for all 𝑥 ≥ 0, �̅�𝑛(𝑥) ≡ ∫ 𝑣𝑛−1(1 −

∞

𝑥

𝐹+(𝑣))𝑑𝑣 < ∞;   𝑛 = 1,2,3. Here, 𝐹+(𝑥) ≡ 𝑃{𝜒1
+ ≤ 𝑥}. 

 

Proof. Recall that the nth order of the moment for the positive-valued random variables {𝜒𝑛
+, 𝑛 ≥ 1}, 𝜇𝑛 ≡

𝐸(𝜒1
+𝑛) = 𝑛 ∫ 𝑣𝑛−1(1 − 𝐹+(𝑣))𝑑𝑣

∞

0
 [4]. For 𝑛 = 1,2,3, the relation that follows is hold: 

 
𝜇𝑛

𝑛
= ∫ 𝑣𝑛−1(1 − 𝐹+(𝑣))𝑑𝑣

∞

0

≥ ∫ 𝑣𝑛−1(1 − 𝐹+(𝑣))𝑑𝑣
∞

𝑥

= �̅�𝑛(𝑥). 

 

Since 𝜇𝑛 < ∞, 𝑛 = 1,2,3, for all 𝑥 ≥ 0, �̅�𝑛(𝑥) < ∞, 𝑛 = 1,2,3 is hold.  

 

The following corollary can be easily attained from Proposition 4.1. 

 

Corollary 4.1. Regarding Proposition 4.1's requirements, the following inequalities are hold: 

 

𝑥�̅�1(𝑥) ≤
𝜇2

2
; 𝑥2�̅�1(𝑥) ≤

𝜇3

3
 and  𝑥�̅�2(𝑥) ≤

𝜇3

3
. 

 

Proof. From Proposition 4.1, it is easy to see that the relations that follows are hold: 
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𝜇2

2
≥ ∫ 𝑣

∞

𝑥

�̅�+(𝑣)𝑑𝑣 ≥ ∫ 𝑥
∞

𝑥

�̅�+(𝑣)𝑑𝑣 = 𝑥�̅�1(𝑥), 

𝜇3

3
≥ ∫ 𝑣2

∞

𝑥

�̅�+(𝑣)𝑑𝑣 ≥ ∫ 𝑥2
∞

𝑥

�̅�+(𝑣)𝑑𝑣 = 𝑥2�̅�1(𝑥), 

𝜇3

3
≥ ∫ 𝑣2�̅�+(𝑣)𝑑𝑣

∞

𝑥

≥ ∫ 𝑥𝑣
∞

𝑥

�̅�+(𝑣)𝑑𝑣 = 𝑥�̅�2(𝑥). 

 

Here, �̅�+(𝑥) ≡ 1 − 𝐹+(𝑥). Therefore, since 𝜇3 < ∞ for all 𝑥 ≥ 0, the desired results are obtained.  

By including 𝑎𝑛(𝑥) ≡ ∫ 𝑣𝑛−1�̅�+(𝑣)𝑑𝑣
𝑥

0
 and �̅�+(𝑥) = 1 − 𝐹+(𝑥), let us give the following proposition. 

 

Proposition 4.2. Suppose that 𝜇3 ≡ 𝐸(𝜒1
+3) < ∞. Then, lim

𝑥→∞
𝑎𝑛(𝑥) =

𝜇𝑛

𝑛
 is hold.  

 

Proof. By using the alternative definition of the nth order of moment of a positive-valued random variables 

and Proposition 4.1, the corresponding result is obtained.  

 

Now, let us examine the limit behavior for the function �̅�𝑛(𝑥) given in Proposition 4.1: 

 

Proposition 4.3. Suppose that 𝜇3 ≡ 𝐸(𝜒1
+3) < ∞.Then, lim

𝑥→∞
�̅�𝑛(𝑥) = 0. Here, �̅�𝑛(𝑥) ≡

∫ 𝑣𝑛−1�̅�+(𝑣)𝑑𝑣
∞

𝑥
.  

By using Proposition 4.3, we can obtain the following results to reach auxiliary purpose. 

 

Proposition 4.4. Suppose that 𝜇3 ≡ 𝐸(𝜒1
+3) < ∞. Then, the following results are hold: 

 

a) lim
𝑥→∞

𝑥2�̅�1(𝑥) = 0; b) lim
𝑥→∞

𝑥�̅�1(𝑥) = 0;  c) lim
𝑥→∞

𝑥�̅�2(𝑥) = 0. 

 

By using the above results, we can give the two-term asymptotic expansion for the cdf 𝐻(𝑡; 𝑥) of the 

residual waiting time 𝑊(𝑡) as in part of the secondary purpose of the study. 

 

Lemma 4.1. Let 𝑊(𝑡) represent the residual waiting time, produced by ladder heights {𝜒𝑛
+},, where 𝑛 =

1,2, … and 𝜇3 ≡ 𝐸(𝜒1
+3) < ∞. Then, the following asymptotic expansion for the cdf 𝐻(𝑡; 𝑥) can be given, 

when 𝑡 → ∞: 

 

𝐻(𝑡; 𝑥) ≡ 𝑃{𝑊(𝑡) ≤ 𝑥} = 𝜋+(𝑥) + 𝑜 (
1

𝑡
). 

 

Here, 𝜋+(𝑥) =
1

𝜇1
∫ (1 − 𝐹+(𝑡))𝑑𝑡

𝑥

0
;  𝜇1 ≡ 𝐸(𝜒1

+) and 𝐹+(𝑡) ≡ 𝑃{𝜒1
+ ≤ 𝑡}. 

 

Proof. The corresponding proof is placed in Appendix 1.  

 

Define that a random variable 𝜁 which has distribution 𝜋𝜆(𝑧), i.e., 𝑃{𝜁 ≤ 𝑧} ≡ 𝜋𝜆(𝑧) =
lim

𝑛→∞ 
𝑃{𝜁𝑛(𝜆𝜁𝑛−1) ≤ 𝑧}. By means of Lemma 4.1 and the rest of the propositions for reaching the auxiliary 

aim, the asymptotic relation of the stationary limit distribution 𝜋𝜆(𝑥) can be given in the following lemma. 

 

Lemma 4.2. Suppose that the conditions of Proposition 3.1 are satisfied. Then, the asymptotic relation for 

𝜋𝜆(𝑥) can be written as follows, when 𝜆 → ∞: 

 

𝜋𝜆(𝑥) ≡ lim
𝑛→∞

𝑃{𝜁𝑛(𝜆𝜁𝑛−1) ≤ 𝑥} = 𝜋+(𝑥) +
1

𝜆
𝑔(𝜆; 𝑥). 
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Here, 𝜋+(𝑥) =
1

𝜇1
∫ (1 − 𝐹+(𝑡))𝑑𝑡

𝑥

0
; 𝜇1 = 𝐸(𝜒1

+);  𝐹+(𝑡) = 𝑃{𝜒1
+ ≤ 𝑡} and 𝑔(𝜆; 𝑥) is a measurable and 

bounded function with lim
𝜆→∞

𝑔(𝜆; 𝑥) = 0. 

 

Proof. The random variable 𝜁1 is a residual waiting time generated by the ladder heights {𝜒𝑛
+}, 𝑛 = 1,2, …. 

Then, by using the Lemma 4.1, the asymptotic expansion for the distribution function 𝜋1𝜆(𝑧) of random 

variable 𝜁1 can be written as follows, when 𝜆 → ∞: 

 

𝐻(𝜆𝑧; 𝑥) ≡ 𝑃{𝜁1(𝜆𝑧) ≤ 𝑥} ≡ 𝜋1𝜆(𝜆𝑧; 𝑥) = 𝜋+(𝑥) +
1

𝜆
𝑔1(𝜆𝑧; 𝑥). 

 

Here, lim
𝜆→∞

𝑔1(𝜆𝑧; 𝑥) = 0 for the measurable and bounded function 𝑔1(𝜆𝑧; 𝑥). Then, the distribution of the 

random variable 𝜁2 can be written as follows: 

 

𝜋2𝜆(𝜆𝑧; 𝑥) ≡ 𝑃{𝜁2(𝜆𝜁1) ≤ 𝑥} = ∫ 𝐻(𝜆𝑣; 𝑥)𝑑𝑣𝐻(𝜆𝑧; 𝑣)
∞

𝑣=+0

. (1) 

 

Here, 𝐻(𝜆𝑣; 𝑥) = 𝜋+(𝑥) +
1

𝜆
𝑔1(𝜆𝑣; 𝑥), when 𝜆 → ∞. By substituting 𝐻(𝜆𝑣; 𝑥) in (1): 

 

𝜋2𝜆(𝜆𝑧; 𝑥) = ∫ {𝜋+(𝑥) +
1

𝜆
𝑔1(𝜆𝑣; 𝑥)} 𝑑𝑣𝐻(𝜆𝑧; 𝑣)

∞

𝑣=+0

= 𝜋+(𝑥) +
1

𝜆
𝑔2(𝜆𝑧; 𝑥)  

 

is acquired. Here, 𝑔2(𝜆𝑧; 𝑥) ≡ ∫ 𝑔1(𝜆𝑣; 𝑥)𝑑𝑣𝐻(𝜆𝑧; 𝑣)
∞

𝑣=+0
 is a measurable and bounded function and 

lim
𝜆→∞

𝑔2(𝜆𝑧; 𝑥) = 0 is hold (see, [2]). Now, examine the distribution of 𝜁3 as follows: 

 

𝜋3𝜆(𝜆𝑧; 𝑥) ≡ 𝑃{𝜁3(𝜆𝜁2) ≤ 𝑥} = 𝜋+(𝑥) +
1

𝜆
𝑔3(𝜆𝑧; 𝑥). (2) 

 

Here, 𝑔3(𝜆𝑣; 𝑥) = ∫ 𝑔1(𝜆𝑣; 𝑥)𝜋2𝜆(𝜆𝑧; 𝑑𝑣)
∞

𝑣=+0
 is a bounded and measurable function and 

lim
𝜆→∞

𝑔3(𝜆𝑧; 𝑥) = 0 is hold (see, [2]). Similarly, by induction, the asymptotic expansion that follows can be 

expressed, when 𝜆 → ∞: 

 

𝜋𝑛𝜆(𝜆𝑧; 𝑥) = 𝑃{𝜁𝑛(𝜆𝜁𝑛−1) ≤ 𝑥} = 𝜋+(𝑥) +
1

𝜆
𝑔𝑛(𝜆𝑧; 𝑥);   𝑛 = 1,2,3, …  . 

 

Here 𝜋+(𝑥) =
1

𝜇1
∫ (1 − 𝐹+(𝑣))𝑑𝑣

𝑥

0
 and the function 𝑔𝑛(𝜆𝑧; 𝑥) is a measurable function and 

lim
𝜆→∞

𝑔𝑛(𝜆𝑧; 𝑥) = 0 is hold for all 𝑛 = 1,2, … (see, [2]). By using Equation (2), the following relation can 

be obtained: 

 

𝜋𝜆(𝑥) ≡ lim
𝑛→∞

𝜋𝑛𝜆(𝜆𝑧; 𝑥) = lim
𝑛→∞

𝑃{𝜁𝑛(𝜆𝜁𝑛−1) ≤ 𝑥} = 𝜋+(𝑥) +
1

𝜆
lim

𝑛→∞
𝑔𝑛(𝜆𝑧; 𝑥). 

 

For convenience, include 𝑔(𝜆; 𝑥) ≡ lim
𝑛→∞

𝑔𝑛(𝜆𝑧; 𝑥). Recall that 𝑔(𝜆; 𝑥) is a measurable and bounded 

function and lim
𝜆→∞

𝑔(𝜆; 𝑥) = 0. Then, 

 

𝜋𝜆(𝑥) = 𝜋+(𝑥) +
1

𝜆
𝑔(𝜆; 𝑥). 

 

Thus, this proves Lemma 4.2.  
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Now that we get the asymptotic relation for the stationary distribution 𝜋𝜆(𝑥), let us focus on obtaining the 

asymptotic expansion for the characteristic function of the residual waiting time. To do so, give the 

following proposition.  

 

Proposition 4.5. Suppose that the measurable function 𝑔: 𝑅+ → 𝑅 is a bounded function and, 𝑔(0) = 0 

and lim
𝑥→∞

𝑔(𝑥) = 0 are satisfied. It is then possible to write the following relation: 

 

lim
𝑇→∞

∫ 𝑒𝑖𝛼𝑥𝑑𝑔(𝑥)
𝑇

𝑥=0

= 0, 𝛼 > 0. 

 

Proof. Since lim
𝑥→∞

𝑔(𝑥) = 0, for sufficiently large 𝑇, |𝑔(𝑇)| → 0. Therefore, 

 

|∫ 𝑒𝑖𝛼𝑥𝑑𝑔(𝑥)
𝑇

0

| ≤ |∫ 𝑑𝑔(𝑥)
𝑇

0

| = |𝑔(𝑇) − 𝑔(0)| = |𝑔(𝑇)|. 

 

For all 𝜀 > 0, it is possible to find such 𝑇0 that |𝑔(𝑇)| < 𝜀 is satisfied for all 𝑇 ≥ 𝑇0. Then, 

 

|∫ 𝑒𝑖𝛼𝑥𝑑𝑔(𝑥)
𝑇

0

| < 𝜀 

 

is obtained. Therefore, lim
𝑇→∞

∫ 𝑒𝑖𝛼𝑥𝑑𝑥𝑔(𝑥)
𝑇

0
= 0 is hold. 

 

To complete the secondary purpose, the two-term asymptotic expansion for the characteristic function 

(𝜑𝜁(𝛼)) of the random variable 𝜁 can be given in the following lemma by means of Lemma 4.2 and 

Proposition 4.5. 

 

Lemma 4.3. Assume that Proposition 3.1's requirements are met. Then, the asymptotic expansion for the 

characteristic function of the positive-valued random variable 𝜁 which has the distribution 𝜋𝜆(𝑥), can be 

expressed as follows: 

 

𝜑𝜁(𝛼) ≡ 𝐸(𝑒𝑖𝛼𝜁) = �̂�+(𝛼) + 𝑜 (
1

𝜆
).  (3) 

 

Here, �̂�+(𝛼) =
𝜑+(𝛼)−1

𝑖𝛼𝜇1
; 𝜑+(𝛼) ≡ 𝐸(𝑒𝑖𝛼𝜒1

+
) and 𝜇1 = 𝐸(𝜒1

+). 

 

Proof. The characteristic function 𝜑𝜁(𝛼) of the random variable 𝜁 is 𝜑𝜁(𝛼) ≡ 𝐸(𝑒𝑖𝛼𝜁) = ∫ 𝑒𝑖𝛼𝑥𝑑𝜋𝜆(𝑥)
∞

𝑥=0
 

by definition. By Lemma 4.2, the following asymptotic expansion for the distribution function 𝜋𝜆(𝑥) can 

be given as follows, when 𝜆 → ∞: 

 

𝜋𝜆(𝑥) = 𝜋+(𝑥) + 𝑜 (
1

𝜆
).  (4) 

 

Here, 𝜋+(𝑥) =
1

𝜇1
∫ (1 − 𝐹+(𝑢))𝑑𝑢

𝑥

0
; 𝐹+(𝑥) ≡ 𝑃{𝜒1

+ ≤ 𝑥} and 𝜇1 ≡ 𝐸(𝜒1
+). By considering the 

asymptotic expansion (4) in (3) the following equality is hold, when 𝜆 → ∞:  

 

𝜑𝜁(𝛼) = ∫ 𝑒𝑖𝛼𝑥𝑑 [𝜋+(𝑥) +
1

𝜆
𝑔(𝜆𝑧; 𝑥)]

∞

𝑥=0

= ∫ 𝑒𝑖𝛼𝑥𝑑𝜋+(𝑥)
∞

𝑥=0

+
1

𝜆
∫ 𝑒𝑖𝛼𝑥𝑑𝑥𝑔(𝜆𝑧; 𝑥)

∞

𝑥=0

. 

 

Proposition 4.5 allows us to write the asymptotic expansion as follows when 𝜆 → ∞: 
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𝜑𝜁(𝛼) ≡ ∫ 𝑒𝑖𝛼𝑥𝑑𝜋+(𝑥)
∞

𝑥=0

+ 𝑜 (
1

𝜆
) =

1

𝜇1
∫ 𝑒𝑖𝛼𝑥(1 − 𝐹+(𝑥))𝑑𝑥

∞

𝑥=0

+ 𝑜 (
1

𝜆
). 

 

Denoting 𝑢 ≡ 1 − 𝐹+(𝑥) and 𝑣 ≡ 𝑒𝑖𝛼𝑥, we get 𝜑𝜁(𝛼) =
𝜑+(𝛼)−1 

𝑖𝛼𝜇1
+ 𝑜 (

1

𝜆
). Here, 𝜑+(𝛼) ≡ 𝐸(𝑒𝑖𝛼𝜒1

+
). The 

characteristic function (�̂�+(𝛼)) of the residual waiting time of the renewal process generated by the ladder 

heights (𝜒𝑛
+) is �̂�+(𝛼) ≡

𝜑+(𝛼)−1

𝑖𝛼𝜇1
 [15-16]. Hence, 𝜑𝜁(𝛼) = �̂�+(𝛼) + 𝑜 (

1

𝜆
) is obtained. 

As intended, the required preliminary results are obtained to have the inequality that we are aiming for the 

rate of the weak convergence of the random walk with generalized reflecting barrier 𝑋(𝑡). Therefore, we 

can give the main result in the next section. 

 

5. INEQUALITY FOR RATE OF WEAK CONVERGENCE OF STATIONARY DISTRIBUTION 

FOR PROCESS 𝒀𝝀(𝒕) 

 

One of the most important topics in probability theory is the convergence rate of limit theorems, as it 

influences the accuracy and practical utility of these theorems. Subsequently, in this section, the primary 

purpose of the study, which is attaining an inequality for the rate of weak convergence for the random walk 

with generalized reflecting barrier, is presented. Before moving on to the main purpose, let us include the 

following alternative definition of 𝑁1(𝜆𝑧) and 𝑆𝑁1(𝜆𝑧) according to Dynkin principle by using ladder 

variables, 𝑁1(𝜆𝑧) = ∑ 𝜈𝑖
+𝐻(𝜆𝑧)

𝑖=1 ;    𝑆𝑁1(𝜆𝑧) = ∑ 𝜒𝑖
+𝐻(𝜆𝑧)

𝑖=1  where 𝐻(𝑥) = min{𝑛 ≥ 1: ∑ 𝜒𝑖
+𝑛

𝑖=1 > 𝑥} (see 

[16]). With the help of the results acquired in Section 4, the main purpose can be given by the following 

theorem. 

 

Theorem 5.1. Suppose that the conditions of Proposition 3.1 are satisfied and 𝜇3 ≡ 𝐸(𝜒1
+3) < ∞. Then, 

the inequality that follows can be expressed, when 𝜆 → ∞: 

 

|𝑄𝑌(𝑥) − 𝑅(𝑥)| ≤
2𝑚1𝜇2(1 − 𝑅(𝑥)) + 2𝑚2𝜇1(1 − 𝜋+(𝑥))

𝜆𝑚1𝜇2
. 

 

Here, 𝑄𝑌(𝑥) ≡ lim
𝑡→∞

𝑃{𝑌𝜆(𝑡) ≤ 𝑥}, 𝑅(𝑥) ≡
2

𝜇2
∫ {∫ (1 − 𝐹+(𝑢))𝑑𝑢

∞

𝑣
}𝑑𝑣

𝑥

0
, 𝜋+(𝑥) =

1

𝜇1
∫ (1 − 𝐹+(𝑡))

𝑥

0
𝑑𝑡; 

𝐹+(𝑥) ≡ 𝑃{𝜒1
+ ≤ 𝑥}, 𝜇𝑘 = 𝐸(𝜒1

+𝑘); 𝑚𝑘 = 𝐸(𝜂1
𝑘), 𝑘 = 1,2. 

 

Proof. The characteristic function of the process 𝑌𝜆(𝑡) =
𝑋(𝑡)

𝜆
, 𝜆 > 0 by definition, can be written by means 

of the characteristic function of the process 𝑋(𝑡) as 𝜑𝑌(𝛼) = 𝜑𝑋 (
𝛼

𝜆
). According to [2],  

 

𝜑𝑋(𝛼) =
1

𝐸{𝑁1(𝜆𝜁1)}
∫ 𝑒𝑖𝛼𝜆𝑧

𝜑𝑆𝑁1(𝜆𝑧)
(−𝛼) − 1

𝜑𝜂(−𝛼) − 1
𝑑𝜋𝜆(𝑧)

∞

0

, 𝛼 ≠ 0. 

 

Therefore, the equality 𝜑𝑌(𝛼) =
1

𝐼2(𝜆)
∫ 𝐼1(𝜆, 𝑧)𝑑𝜋𝜆(𝑧)

∞

0
 can be written. Here (see [2]),  

 

𝐼1(𝜆, 𝑧) ≡ 𝑒𝑖𝛼𝑧 [𝜑𝑆𝑁1(𝜆𝑧)
(−

𝛼

𝜆
) − 1] ;  𝐼2(𝜆) ≡ 𝐸(𝑁1(𝜆𝜁)) [𝜑𝜂 (−

𝛼

𝜆
) − 1]. (5) 

 

Include �̂�𝑁1(𝜆𝑧) ≡ 𝑆𝑁1(𝜆𝑧) − 𝜆𝑧 for the shortness. Then, 

 

𝜑𝑆𝑁1(𝜆𝑧)
(−

𝛼

𝜆
) ≡ 𝐸 (exp (−𝑖

𝛼

𝜆
 𝑆𝑁1(𝜆𝑧))) = 𝑒−𝑖𝛼𝑧𝐸 (exp (−𝑖

𝛼

𝜆
 �̂�𝑁1(𝜆𝑧))) (6) 

 

is obtained. Therefore, when 𝜆 → ∞: 
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𝐸 (exp (−𝑖
𝛼

𝜆
 �̂�𝑁1(𝜆𝑧))) = 1 −

𝑖𝛼

𝜆
𝐸(�̂�𝑁1(𝜆𝑧)) + 𝑜 (

1

𝜆
) (7) 

 

is hold. The asymptotic expansion for 𝐸(𝑆𝑁1(𝜆𝑧)) that follows can be expressed: 

 

𝐸(𝑆𝑁1(𝜆𝑧)) = 𝐸(𝐻(𝜆𝑧))𝜇1 = 𝜆𝑧 + �̂�1 + 𝑜(1) 

 

where �̂�1 =
𝜇2

2𝜇1
. Note that �̂�1 ≡ 𝐸(�̂�1

+) is the expected value of the residual waiting time (�̂�1
+) generated 

by the ladder heights (𝜒𝑖
+, 𝑖 = 1,2, … ). Hence, 

 

𝐸(�̂�𝑁1(𝜆𝑧)) = �̂�1 + 𝑜(1), �̂�1 = 𝜇2/(2𝜇1). 

 
(8) 

 

By substituting Equation (8) into Equation (7), the following asymptotic expansion is derived: 

 

𝐸 {exp (−𝑖
𝛼

𝜆
 �̂�𝑁1(𝜆𝑧))} = 1 −

𝑖𝛼

𝜆
�̂�1 + 𝑜 (

1

𝜆
). (9) 

 

The following asymptotic expansion is obtained for 𝜑𝑆𝑁1(𝜆𝑧)
(−

𝛼

𝜆
) by substituting Equation (9) into 

Equation (6): 

 

𝜑𝑆𝑁1(𝜆𝑧)
(−

𝛼

𝜆
) − 1 = 𝑒−𝑖𝛼𝑧 − 1 − 𝑒−𝑖𝛼𝑧

𝑖𝛼

𝜆
�̂�1 + 𝑜 (

1

𝜆
) (10) 

 

is obtained. By substituting Equation (10) in the definition of 𝐼1(𝜆, 𝑧) in Equation (5), 

 

𝐼1(𝜆, 𝑧) = 𝑒𝑖𝛼𝑧 {𝜑𝑆𝑁1(𝜆𝑧)
(−

𝛼

𝜆
) − 1} = 1 − 𝑒𝑖𝛼𝑧 −

𝑖𝛼

𝜆
�̂�1 + 𝑜 (

1

𝜆
) (11) 

𝐼1(𝜆, 𝑧) = 𝑒𝑖𝛼𝑧 {𝜑𝑆𝑁1(𝜆𝑧)
(−

𝛼

𝜆
) − 1} = 1 − 𝑒𝑖𝛼𝑧 −

𝑖𝛼

𝜆
�̂�1 + 𝑜 (

1

𝜆
) (11) 

 

can be written. Now, take the integral of the following expansion (11) with respect to 𝜋𝜆(𝑧) in the interval 
[0, ∞]: 
 

∫ 𝐼1(𝜆, 𝑧)𝑑𝜋𝜆(𝑧)
∞

0

= 1 − 𝜑𝜁(𝛼) −
𝑖𝛼

𝜆
�̂�1 +

1

𝜆
∫ 𝑔(𝜆𝑧)𝑑𝜋𝜆(𝑧)

∞

0

. 

 

Here, ∫ 𝑔(𝜆𝑧)𝑑𝜋𝜆(𝑧)
∞

0
→ 0 is hold as 𝜆 → ∞ (see [2], Prop 3.1., p.254), then,  

 

∫ 𝐼1(𝜆, 𝑧)𝑑𝜋𝜆(𝑧)
∞

0

= 1 − 𝜑𝜁(𝛼) −
𝑖𝛼

𝜆
�̂�1 + 𝑜 (

1

𝜆
), (12) 

 

where 𝜑𝜁(𝛼) ≡ 𝐸(𝑒𝑖𝛼𝜁); the random variable 𝜁 has the distribution function 𝑃{𝜁 ≤ 𝑥} = 𝜋𝜆(𝑥) and �̂�1 =
𝜇2

2𝜇1
. According to Lemma 4.3, Equation (12) can be given as follows: 

 

∫ 𝐼1(𝜆, 𝑧)𝑑𝜋𝜆(𝑧)
∞

0

= 1 − �̂�+(𝛼) −
𝑖𝛼

𝜆
�̂�1 + 𝑜 (

1

𝜆
). (13) 

 

Here �̂�+(𝛼) ≡ 𝜑1
+(𝛼) =

𝜑+(𝛼)−1

𝑖𝛼𝜇1
;   𝜑+(𝛼) ≡ 𝐸(𝑒𝑖𝛼𝜒1

+
) and �̂�1 ≡ 𝐸(�̂�1

+). Now, obtain two-term 

asymptotic expansion for 𝐼2(𝜆). By definition, 𝐼2(𝜆) is as follows: 

 



Basak GEVER, Tahir KHANIYEV/ GU J Sci, 38(1): x-x (2025) 

 

𝐼2(𝜆) ≡ 𝐸(𝑁1(𝜆𝜁)) [𝜑𝜂 (−
𝛼

𝜆
) − 1]. 

 

The expression 𝜑𝜂 (−
𝛼

𝜆
) can be written as follows: 

 

𝜑𝜂 (−
𝛼

𝜆
) − 1 = −

𝑖𝛼

𝜆
𝑚1 {1 −

𝑖𝛼

𝜆

𝑚2

2𝑚1
+ 𝑜 (

1

𝜆
)}. (14) 

Here 𝑚1 ≡ 𝐸(𝜂1), 𝑚2 ≡ 𝐸(𝜂1
2). According to Wald identity, the following equality can be written for 

𝐸(𝑁1(𝜆𝜁)): 

 

𝐸(𝑁1(𝜆𝜁)) = 𝐸(𝐻(𝜆𝜁))𝐸(𝜈1
+). (15) 

 

Here, 𝐸(𝐻(𝜆𝜁)) is a renewal function which is generated by the ladder heights ({𝜒𝑛
+}, 𝑛 ≥ 1) and the 

refined renewal theorem allows it to be expressed as the expansion below: 

 

𝐸(𝐻(𝜆𝜁)) =
𝜆𝛽1

𝜇1
+

𝜇2

2𝜇1
2 + 𝑜(1). 

 

Here, 𝛽1 ≡ 𝐸(𝜁) = ∫ 𝑧𝑑𝜋𝜆(𝑧)
∞

0
 and lim

𝜆→∞
𝛽1 = �̂�1 =

𝜇2

2𝜇1
 holds (see [2]). Thus, it is possible to write the 

expansion that follows: 

 

𝐸(𝐻(𝜆𝜁)) =
𝜆

𝜇2
2𝜇1

 

𝜇1
+

𝜇2

2𝜇1
2 + 𝑜(1) = 𝜆

𝜇2

2𝜇1
2 {1 +

1

𝜆
+ 𝑜 (

1

𝜆
)}. 

 

On the other hand, when 𝑚1 ≠ 0, 𝐸(𝜈1
+) = 𝜇1/𝑚1 is hold [1]. By substituting the expansion (14) and 

Equation (15) into Equation (13), the following asymptotic expansion 

 

𝐸(𝑁1(𝜆𝜁)) = 𝐸(𝐻(𝜆𝜁))𝐸(𝜈1
+) = 𝜆

𝜇2

2𝑚1𝜇1
{1 +

1

𝜆
+ 𝑜 (

1

𝜆
)} (16) 

 

can be written. By substituting the expansions Equation (14) and Equation (16) in the definition 𝐼2(𝜆), the 

asymptotic expansion that follows is attained, when 𝜆 → ∞: 

 

𝐼2(𝜆) =  𝐸(𝑁1(𝜆𝜁)) [𝜑𝜂 (−
𝛼

𝜆
) − 1] = (−𝑖𝛼�̂�1) {1 +

1 − 𝑖𝛼�̂�1

𝜆
+ 𝑜 (

1

𝜆
)}. 

 

Therefore, the following can be written:  

 
1

𝐼2(𝜆)
= −

1

𝑖𝛼�̂�1
{1 −

1 − 𝑖𝛼�̂�1

𝜆
+ 𝑜 (

1

𝜆
)}. (17) 

 

Here, �̂�1 =
𝜇2

2𝜇1
; �̂�1 =

𝑚2

2𝑚1
. Substitute the expansions Equation (13) and Equation (17) in the definition of 

𝜑𝑌(𝛼), i.e., 𝜑𝑌(𝛼) =
1

𝐼2(𝜆)
∫ 𝐼1(𝜆, 𝑧)𝑑𝜋𝜆(𝑧)

∞

0
, then 𝜑𝑌(𝛼) = 𝜑2

+(𝛼) + 𝜑2
+(𝛼)

(𝑖𝛼�̂�1−1)

𝜆
+

1

𝜆
+ 𝑜 (

1

𝜆
). Then, 

the following calculations are hold: 

 

𝜑𝑌(𝛼) − 𝜑2
+(𝛼) =

1

𝜆
{𝑖𝛼𝜑2

+(𝛼)�̂�1 − 𝑖𝛼𝜑3
+(𝛼)�̂̂�1} + 𝑜 (

1

𝜆
). (18) 

 

Here, 𝜑3
+(𝛼) ≡

𝜑2
+(𝛼)−1

𝑖𝛼�̂̂�1
; 𝜑2

+(𝛼) ≡
𝜑1

+(𝛼)−1

𝑖𝛼�̂�1
=; 𝜑1

+(𝛼) ≡
𝜑+(𝛼)−1

𝑖𝛼𝜇1
; �̂̂�1 ≡ 𝐸(�̂̂�1

+) =
𝜇3

3𝜇2
; �̂�1 =

𝑚2

2𝑚1
; 

𝜑+(𝛼) ≡ 𝐸(𝑒𝑖𝛼𝜒1
+

); 𝜇𝑘 = 𝐸(𝜒1
+𝑘); 𝑚𝑘 ≡ 𝐸(𝜂1

𝑘); 𝑘 = 1,2,3.  
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Hence, the following inequality is hold by using Equation (18): 

 

𝑄𝑌(𝑥) − 𝑅(𝑥) =
�̂̂�1

𝜆
�̂�′(𝑥) −

�̂�1

𝜆
𝑅′(𝑥) + 𝑜 (

1

𝜆
). (19) 

 

Here, �̂�(𝑥) ≡
1

�̂̂�1
∫ (1 − 𝑅(𝑡))𝑑𝑡

𝑥

0
=

3𝜇2

𝜇3
∫ (1 − 𝑅(𝑡))𝑑𝑡

𝑥

0
; 𝑅(𝑥) ≡

1

�̂�1
∫ (1 − 𝜋+(𝑣))𝑑𝑣

𝑥

0
=

2

𝜇2
∫ {∫ (1 −

∞

𝑣

𝑥

0

𝐹+(𝑢))𝑑𝑢}𝑑𝑣 ; �̂̂�1 ≡ 𝐸(�̂̂�1
+) =

𝜇3

3𝜇2
; �̂�1 =

𝑚2

2𝑚1
.  

 

The expressions 𝑅′(𝑥) and �̂�′(𝑥) can be obtained as follows by utilizing the initial ladder height (𝜒1
+): 

 

𝑅′(𝑥) =
1

�̂�1
(1 − 𝜋+(𝑥)) =

2𝜇1

𝜇2
(1 − 𝜋+(𝑥)), (20)  

�̂�′(𝑥) = {
1

�̂̂�1

∫ (1 − 𝑅(𝑡))𝑑𝑡
𝑥

0

}
𝑥

′

=
3𝜇2

𝜇3
(1 − 𝑅(𝑥)). (21) 

By substituting the expression (20) and Equation (21) into Equation (19), the following expansion is hold: 

 

𝑄𝑌(𝑥) − 𝑅(𝑥) =
𝑚1𝜇2(1 − 𝑅(𝑥)) − 𝑚2𝜇1(1 − 𝜋+(𝑥))

𝜆𝑚1𝜇2
+ 𝑜 (

1

𝜆
). (22) 

 

Recall that, 𝑅(𝑥) =
1

�̂�1
∫ (1 − 𝜋+(𝑢))𝑑𝑢

𝑥

0
;   𝜋+(𝑥) =

1

𝜇1
∫ (1 − 𝐹+(𝑢))𝑑𝑢

𝑥

0
. Here 𝐹+(𝑥) ≡ 𝑃{𝜒1

+ ≤ 𝑥}. 

Hence, ∫ (1 − 𝐹+(𝑢))𝑑𝑢
𝑥

0
= ∫ (1 − 𝐹+(𝑢))𝑑𝑢

∞

0
− ∫ (1 − 𝐹+(𝑢))𝑑𝑢

∞

𝑥
= 𝜇1 − �̅�1(𝑥) is obtained. 

Therefore, for sufficiently large values of 𝜆, 

 

|𝑄𝑌(𝑥) − 𝑅(𝑥)| ≤
2𝑚1𝜇2(1 − 𝑅(𝑥)) + 2𝑚2𝜇1(1 − 𝜋+(𝑥))

𝜆𝑚1𝜇2
. 

 

Thus, the theorem is proved. 

 

The obtained inequality gives an upper bound for the rate of the weak convergence of the considered 

process. This result is essentially proportional to the tail of the distribution of ladder heights and the tail of 

the distribution of the residual waiting time generated by ladder heights. Moreover, the first two moments 

of the first jump and the first ladder height are also used in the expression of the obtained inequality. Further 

discussion and interpretation are made in the next section. 

 

6. CONCLUSION 

 

The literature has examined weak convergence, a crucial probabilistic aspect of stochastic processes [1-

2,7-13]. As theoretical results are frequently complex [1], asymptotic methods are considered [2,10], 

allowing for the practical application of the results. Because it affects the accuracy and practical usefulness 

of weak convergence theorems, the rate of weak convergence is also significant [1,14]. The study [2] uses 

asymptotic methods to obtain the weak convergence for stationary distribution of the random walk with 

reflecting barrier, but it does not investigate the rate of the weak convergence. 

 

In this study, the asymptotic rate of the weak convergence for the stationary distribution of a random walk 

with generalized reflecting barrier is investigated and an inequality is obtained. The acquired inequality 

indicates that the rate of convergence is related with the tail of the cdf of residual waiting time of ladder 

heights (𝜒𝑛
+, 𝑛 = 1,2, … ) of a random walk. The presented inequality is, while approximate, practical for 

implementation due to its concise form as follows: 
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|𝑄𝑌(𝑥) − 𝑅(𝑥)| ≤
2𝑚1𝜇2(1 − 𝑅(𝑥)) + 2𝑚2𝜇1(1 − 𝜋+(𝑥))

𝜆𝑚1𝜇2
. 

 

Moreover, this inequality gives a bound on maximal error of the weak convergence. Similar asymptotic 

results can be investigated for future studies by considering random walk with two reflected barriers which 

is frequently encountered in physics. The results under any distribution assumption allow for the evaluation 

of various distributions in a variety of dimensions, including inter-arrival times and demands; additionally, 

they allow for the evaluation of the ladder height and residual waiting time that arise from demands. When 

the results are considered in relation to the specific problem, they become very intriguing. As an upcoming 

research project, the obtained result can be applied to a number of real-world problems, from inventory to 

quantum physics. 
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APPENDIX 1 

 

Proof (Lemma 4.1.). One-dimensional distribution of the residual waiting time 𝐻(𝑡; 𝑥) ≡ 𝑃{𝑊(𝑡) ≤ 𝑥} 

can be written as 𝐻(𝑡; 𝑥) = ∫ [𝐹+(𝑡 + 𝑥 − 𝑣) − 𝐹+(𝑡 − 𝑣)]𝑑𝑈+(𝑣)
𝑡

0−  (see [1], p.369]). Here, 𝑈+(𝑡) 

respresents the renewal function which is generated by ladder heights {𝜒𝑛
+}, 𝑛 = 1,2, …, i.e., 𝑈+(𝑡) =

∑ 𝐹+
∗(𝑛)

(𝑡)∞
𝑛=0 . Moreover 𝐹+

∗(𝑛)
(𝑡) is the nth convolution that is 𝐹∗(𝑛)(𝑡) = ∫ 𝐹+

∗(𝑛−1)
(𝑡 − 𝑣)𝑑𝐹+(𝑣)

𝑡

0
. The 

aim is to prove that lim
𝑡→∞

𝑡[𝐻(𝑡, 𝑥) − 𝜋+(𝑥)] = 0. Note that �̃�(𝑠) ≡ 𝐿𝑠(𝑁(𝑡)) denotes Laplace transform 

and 𝑁∗(𝑠) represents Laplace – Stiltijes Transform of the function 𝑁(𝑡) in the rest of the paper. For 

shortness, denote 𝐾(𝑡; 𝑥) ≡ 𝑡[𝐻(𝑡; 𝑥) − 𝜋+(𝑥)]. According to Tauber-Abel theorem, lim
𝑡→∞

𝐾(𝑡; 𝑥) =

lim
𝑠→0

𝑠�̃�(𝑠; 𝑥) can be written. Let us examine the function �̃�(𝑠; 𝑥). By using property of Laplace 

transformation, �̃�(𝑠; 𝑥) can be written as follows: 

 

�̃�(𝑠; 𝑥) = − [
𝜕

𝜕𝑠
�̃�(𝑠; 𝑥) +

1

𝑠2
𝜋+(𝑥)]. (1) 

 

Here �̃�(𝑠; 𝑥) ≡ 𝐿𝑠(𝐻(𝑡; 𝑥)). For shortness, denote that 𝐺(𝑡; 𝑥) ≡ �̅�+(𝑡) − �̅�+(𝑡 + 𝑥) where �̅�+(𝑡) = 1 −

𝐹+(𝑡) and 𝐹+(𝑡) ≡ 𝑃{𝜒1
+ ≤ 𝑡}. 𝐻(𝑡; 𝑥) = 𝐺(𝑡; 𝑥) ∗ 𝑈+(𝑡) can be written, therefore, by applying Laplace 

transform to the obtained convolution,  

 

�̃�(𝑠; 𝑥) = �̃�(𝑠; 𝑥)𝑈+
∗ (𝑠) (2) 

 

is obtained, where �̃�(𝑠; 𝑥) ≡ ∫ 𝑒−𝑠𝑡𝐺(𝑡)𝑑𝑡
∞

0
 and 𝑈+

∗ (𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝑈+(𝑡)
∞

−0
. By means of linearity property 

of Laplace transformation, �̃�(𝑠; 𝑥) = �̃̅�+(𝑠) − 𝐿𝑠{�̅�+(𝑡 + 𝑥)} is hold. By including 𝜑+(𝑠) ≡ 𝐸(𝑒−𝑠𝜒1
+

) =

∫ 𝑒−𝑠𝑡𝑑𝐹+(𝑡)
∞

0
, 
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�̃̅�+(𝑠) =
1 − 𝜑+(𝑠)

𝑠
 (3) 

 

is obtained. Similarly, 𝐿𝑠{�̅�+(𝑡 + 𝑥)} can be written as follows:  

 

𝐿𝑠{�̅�+(𝑡 + 𝑥)} = 𝑒𝑠𝑥[�̃̅�+(𝑠) − 𝑀(𝑠; 𝑥)] =  𝑒𝑠𝑥 [
1−𝜑+(𝑠)

𝑠
− 𝑀(𝑠; 𝑥)]. (4) 

 

Here, 𝑀(𝑠; 𝑥) ≡ ∫ 𝑒−𝑠𝑣�̅�+(𝑣)𝑑𝑣
𝑥

𝑣=0
. By means of Equation (3) and Equation (4), the function �̃�(𝑠; 𝑥) can 

be written as follows: 

 

�̃�(𝑠; 𝑥) =
[1 − 𝜑+(𝑠)][1 − 𝑒𝑠𝑥]

𝑠
+ 𝑒𝑠𝑥𝑀(𝑠; 𝑥). (5) 

 

Moreover, 𝑈+
∗ (𝑠) is obtained as follows: 

 

𝑈+
∗ (𝑠) = 𝑠�̃�+(𝑠) − 𝑈+(−0) = 𝑠�̃�+(𝑠) =

1

1 − 𝜑+(𝑠)
. (6) 

 

Therefore, considering Equation (5) and Equation (6) in Equation (2), �̃�(𝑠; 𝑥) is obtained as follows: 

 

�̃�(𝑠; 𝑥) = �̃�(𝑠; 𝑥)𝑈+
∗ (𝑠) =

1 − 𝑒𝑠𝑥

𝑠
+

𝑒𝑠𝑥

1 − 𝜑+(𝑠)
𝑀(𝑠; 𝑥). (7) 

 

Let us examine the derivative of Equation (7) with respect to 𝑠. For the convenience, include  

𝐽1(𝑠; 𝑥) =
1 − 𝑒𝑠𝑥

𝑠
;        𝐽2(𝑠; 𝑥) =

𝑒𝑠𝑥

1 − 𝜑+(𝑠)
𝑀(𝑠; 𝑥) 

 

where 𝜑+(𝑠) ≡ 𝐸(𝑒−𝑠𝜒1
+

). Then, �̃�(𝑠; 𝑥) can be expressed as follows: 

 

�̃�(𝑠; 𝑥) = 𝐽1(𝑠; 𝑥) + 𝐽2(𝑠; 𝑥). (8) 

 

By taking the first derivative of Equation (8),  

 
𝜕

𝜕𝑠
�̃�(𝑠; 𝑥) =

𝜕𝐽1(𝑠; 𝑥)

𝜕𝑠
+

𝜕𝐽2(𝑠; 𝑥)

𝜕𝑠
 (9) 

 

and they are stated as follows: 

 
𝜕𝐽1(𝑠; 𝑥)

𝜕𝑠
=

𝑒𝑠𝑥(1 − 𝑠𝑥) − 1

𝑠2
; (10) 

𝜕𝐽2(𝑠; 𝑥)

𝜕𝑠
=

𝑥𝑒𝑠𝑥𝑀(𝑠; 𝑥)

1 − 𝜑+(𝑠)
+

𝑒𝑠𝑥𝜑+
′ (𝑠)𝑀(𝑠; 𝑥)

(1 − 𝜑+(𝑠))
2 +

𝑒𝑠𝑥𝑀′(𝑠; 𝑥) 

1 − 𝜑+(𝑠)
. (11) 

 

Here, 𝜑+
′ (𝑠) =

𝑑

𝑑𝑠
𝜑+(𝑠) and 𝑀′(𝑠; 𝑥) =

𝑑

𝑑𝑠
𝑀(𝑠; 𝑥). Primarily, examine 

𝜕𝐽1(𝑠;𝑥)

𝜕𝑠
. By using Taylor 

expansion, the following expansion is hold when 𝑠 → 0: 

 

𝑒𝑠𝑥(1 − 𝑠𝑥) − 1 = −
𝑠2𝑥2

2
{1 +

2

3
𝑠𝑥 + 𝑜(𝑠)}. (12) 

 

Substituting the expansion in Equation (12) into Equation (10), the following expansion is obtained for 
𝜕𝐽1(𝑠;𝑥)

𝜕𝑠
 when 𝑠 → 0: 
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𝜕𝐽1(𝑠;𝑥)

𝜕𝑠
=

1

𝑠2 {−
𝑠2𝑥2

2
{1 +

2

3
𝑠𝑥 + 𝑜(𝑠)}} = −

𝑥2

2
+ 𝑜(1). (13) 

 

Now, let us examine the expression 
𝜕𝐽2(𝑠;𝑥)

𝜕𝑠
. To make the notation more readable, let us express 

𝜕𝐽2(𝑠;𝑥)

𝜕𝑠
 

given in Equation (11) as follows alternatively: 
𝜕𝐽2(𝑠; 𝑥)

𝜕𝑠
= 𝑅1(𝑠; 𝑥) + 𝑅2(𝑠; 𝑥) + 𝑅3(𝑠; 𝑥). (14) 

 

Here, 𝑅1(𝑠; 𝑥) =
𝑥𝑒𝑠𝑥𝑀(𝑠;𝑥)

1−𝜑+(𝑠)
;       𝑅2(𝑠, 𝑥) =

𝑒𝑠𝑥𝜑+
′ (𝑠)𝑀(𝑠;𝑥)

(1−𝜑+(𝑠))
2 ;   𝑅3(𝑠, 𝑥) =

𝑒𝑠𝑥𝜕𝑀(𝑠;𝑥)

𝜕𝑠
 

1−𝜑+(𝑠)
.  

 

Now, let us focus on 𝑅𝑖(𝑠; 𝑥), 𝑖 = 1,2,3. To examine the asymptotic expansion of the function 𝑅1(𝑠; 𝑥) 

when 𝑠 → 0, by using Taylor expansion, since 𝜇3 < ∞, the expansions that follows can be written: 

 

𝑒𝑠𝑥 = 1 + 𝑠𝑥 +
𝑠2𝑥2

2
+ 𝑜(𝑠2); (15) 

1

1 − 𝜑+(𝑠)
=

1

𝑠𝜇1
{1 + 𝑠�̂�1 − 𝑠2 (

�̂�2

2
− �̂�1

2) + 𝑜(𝑠2)} ; (16) 

𝑀(𝑠; 𝑥) = 𝑎1(𝑥) {1 − 𝑠𝑎21(𝑥) +
𝑠2

2
𝑎31(𝑥) + 𝑜(𝑠2)}. (17) 

 

Here 𝑎𝑛(𝑥) = ∫ 𝑣𝑛−1�̅�+(𝑣)𝑑𝑣
𝑥

𝑣=0
, 𝑛 = 1,2; 𝑎𝑛1(𝑥) =

𝑎𝑛(𝑥)

𝑎1(𝑥)
, 𝑛 = 2,3; �̂�𝑘 =

𝜇𝑘+1

(𝑘+1)𝜇1
, 𝑘 = 1,2; 𝜇𝑘 ≡

𝐸(𝜒1
+𝑘), 𝑘 = 1,2. By using expansions Equation (15) - Equation (17), 𝑅1(𝑠; 𝑥) can be given as follows: 

 

𝑅1(𝑠; 𝑥) =
𝑥𝑒𝑠𝑥𝑀(𝑠; 𝑥)

1 − 𝜑+(𝑠)
=

𝑥𝜋+(𝑥)

𝑠
+ 𝐶21(𝑥) + 𝑜(1). (18) 

 

Here, 𝐶21(𝑥) =
𝑥𝑎1(𝑥)

𝜇1
[�̂�1 + 𝑥 − 𝑎21(𝑥)]. Similarly, since 𝜇3 < ∞ is hold, Taylor expansion can be written 

as follows, when 𝑠 → 0: 

 

𝜑+
′ (𝑠) = −𝜇1 {1 − 2�̂�1𝑠 +

3�̂�2

2
𝑠2 + 𝑜(𝑠2)}. (19) 

 

By using Equation (19),  

 
𝜑+

′ (𝑠)

(1 − 𝜑+(𝑠))
2 = −

1

𝑠2𝜇1
{1 + 𝑠2 (

�̂�2

2
− �̂�1

2) + 𝑜(𝑠2)} (20) 

 

is obtained. By the help of Equation (15), Equation (17) and Equation (20), 𝑅2(𝑠; 𝑥) can be recorded as 

follows when 𝑠 → 0: 
 

𝑅2(𝑠; 𝑥) = −
𝜋+(𝑥)

𝑠2
−

𝜋+(𝑥)

𝑠
[𝑥 − 𝑎21(𝑥)] + 𝐶22(𝑥) + 𝑜(1). (21) 

 

Here 𝐶22(𝑥) = −
𝑎1(𝑥)

𝜇1
[

𝑥2

2
+ 𝑑1 − 𝑥𝑎21(𝑥) + 𝑎31(𝑥)] ; 𝑑1 =

�̂�2

2
− �̂�1

2. Additionally, give the following 

Taylor expansion for 𝑅3(𝑠, 𝑥) when 𝑠 → 0 by using Equation (17): 

 
𝜕𝑀(𝑠; 𝑥)

𝜕𝑠
= −𝑎2(𝑥){1 − 𝑠𝑎32(𝑥) + 𝑜(𝑠)}. (22) 
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Then, 𝑅3(𝑠; 𝑥) can be written as follows by the help of the expansions (15), (16) and (22): 

 

𝑅3(𝑠; 𝑥) = −
𝜋+(𝑥)

𝑠𝜇1
𝑎21(𝑥) + 𝐶23(𝑥) + 𝑜(1). (23) 

 

Here, 𝐶23(𝑥) = −
𝑎2(𝑥)

𝜇1
[�̂�1 + 𝑥 − 𝑎32(𝑥)]. Substituting the expansions (18), (21) and (23) into (13), the 

asymptotic expansion that follows can be attain for 𝐽2
′ (𝑠; 𝑥) when 𝑠 → 0: 

 
𝜕𝐽2(𝑠; 𝑥)

𝜕𝑠
= 𝑅1(𝑠; 𝑥) + 𝑅2(𝑠; 𝑥) + 𝑅3(𝑠; 𝑥) = −

𝜋+(𝑥)

𝑠2
+ 𝐶2(𝑥) + 𝑜(1). (24) 

 

Here, 𝐶2(𝑥) = 𝐶21(𝑥) + 𝐶22(𝑥) + 𝐶23(𝑥). By considering Equation (13) and Equation (24) into Equation 

(8), the following asymptotic expansion is hold, when 𝑠 → 0: 

 
𝜕

𝜕𝑠
�̃�(𝑠; 𝑥) = 𝐽1

′ (𝑠; 𝑥) + 𝐽2
′ (𝑠; 𝑥) = −

𝜋+(𝑥)

𝑠2
+ 𝐶(𝑥) + 𝑜(1). (25) 

Here, 𝐶(𝑥) = −
𝑥2

2
+ 𝐶2(𝑥). By substituting Equation (25) in Equation (1),  

 

�̃�(𝑠, 𝑥) = − [
𝜕

𝜕𝑠
�̃�(𝑠, 𝑥) +

1

𝑠2
𝜋+(𝑥)] = −𝐶(𝑥) + 𝑜(1). 

 

Here, 𝐶(𝑥) = −
𝑥2

2
+ 𝐶2(𝑥). According to Proposition 4.1, �̅�𝑛(𝑥) < ∞, 𝑛 = 1,2,3 is satisfied for all 𝑥 ≥ 0. 

Considering that 𝜋+(𝑥) =
1

𝜇1
𝑎1(𝑥) is hold, by substituting 𝑎𝑛(𝑥) =

𝜇𝑛

𝑛
− �̅�𝑛(𝑥) in 𝐶2(𝑥): 

 

𝐶2(𝑥) = −
𝜇3

6𝜇1
+

𝑥2

2
−

𝑥2�̅�1(𝑥)

2𝜇1
+

𝑥�̅�2(𝑥)

𝜇1
+ �̅�2(𝑥)𝐶𝐹 − 𝑥�̅�1(𝑥)𝐶𝐹 +

�̅�1(𝑥)𝑑1

𝜇1
 (26) 

 

is obtained. Considering Equation (26) in definition of 𝐶(𝑥), 

 

𝐶(𝑥) = −
𝜇3

6𝜇1
−

𝑥2�̅�1(𝑥)

2𝜇1
+

𝑥�̅�2(𝑥)

𝜇1
+ �̅�2(𝑥)𝐶𝐹 − 𝑥�̅�1(𝑥)𝐶𝐹 −

�̅�1(𝑥)𝑑1

𝜇1
  

 

is hold. According to Corollary 4.1, 

 

𝑥2�̅�1(𝑥) ≤
𝜇3

3
;   𝑥�̅�2(𝑥) ≤

𝜇3

3
;   �̅�2(𝑥) ≤

𝜇2

2
;   𝑥�̅�1(𝑥) ≤

𝜇2

2
;   �̅�1(𝑥) ≤ 𝜇1 

 

is known. Then, the inequality that follows can be expressed for |𝐶(𝑥)|: 
 

|𝐶(𝑥)| = |
𝜇3

6𝜇1
| + |

𝑥2�̅�1(𝑥)

2𝜇1
| + |

𝑥�̅�2(𝑥)

𝜇1
| + |�̅�2(𝑥)𝐶𝐹| + |𝑥�̅�1(𝑥)𝐶𝐹| + |

�̅�1(𝑥)𝑑1

𝜇1
| ≤

5𝜇3

6𝜇1
+

3𝜇2
2

4𝜇1
2 . 

 

Since 𝜇3 < ∞, |𝐶(𝑥)| < ∞ is hold. Proposition 4.4 suggests that  

 

lim
𝑥→∞

𝑥2�̅�1(𝑥) = 0; lim
𝑥→∞

𝑥�̅�1(𝑥) = 0 and lim
𝑥→∞

𝑥�̅�2(𝑥) = 0. 

 

Then for all 𝑥 ∈ 𝑅,  

 

lim
𝑥→∞

𝐶(𝑥) = −
𝜇3

6𝜇1
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is obtained. |𝐶(𝑥)| < ∞ is satisfied for all  𝑥 ∈ 𝑅. By using Equation (25), lim
𝑠→0

𝑠�̃�(𝑠, 𝑥) = lim
𝑠→0

𝑠(−𝐶(𝑥)) =

0. Therefore, according to Tauber – Abel Theorem, lim
𝑠→0

𝑠�̃�(𝑠; 𝑥) = 0 is satisfied. Then lim
𝑡→∞

𝐾(𝑡; 𝑥) = 0 is 

hold. By using 𝐾(𝑡; 𝑥), lim
𝑡→∞

𝐾(𝑡; 𝑥) = lim
𝑡→∞

𝑡[𝐻(𝑡; 𝑥) − 𝜋+(𝑥)] = 0. Thus, the asymptotic expansion that 

follows can be recorded as 𝑡 → ∞, 𝑡[𝐻(𝑡; 𝑥) − 𝜋+(𝑥)] = 𝑜(1). Then the following expansion can be given:  

𝐻(𝑡; 𝑥) = 𝜋+(𝑥) + 𝑜 (
1

𝑡
). 

 

This completes the proof. 


