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Highlights
« A random walk with a generalised reflecting barrier is examined in this study.
* The ergodicity of the process and the weak convergence of the ergodic distrilfion is sed.
« An inequality is obtained for evaluating the rate of the weak convergence.
* The rate depends only on the probability characteristics of the ladder hej
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In this study, a random walk process wi
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provide a weak convergencejtheorem under certain conditions for the stationary distribution of

the process under cogfsi ign. Nonetheless, one of the most crucial issues in probability theory
Keywords is the convergen il theorems, as it affects the precision and effectiveness of using
Inequality for these theorems in practice. fore, for the rate of convergence for the examined process,
asymptotic rate comparativgly simple inequality esented. The obtained inequality demonstrates that the rate
Weak convergence of convg\‘nce is correlated with e tail of the distribution of ladder heights of the random walk.
Random walk

Reflecting barrier

1. INTRODUCTION

Since the introd(g
of random walk p es pla rucial role, particularly in the fields of quantum physics and mathematical
biolog 'ability, Sj i i

Weak convergence, a critical probabilistic feature of stochastic processes, has been studied in literature [1-
2,7-13]. Because theoretical results are usually complicated [1], some asymptotic approaches are taken into
account ([2,4]), thus the obtained results are able to be applied in practice.

The rate of weak convergence is also important because it influences the precision and efficacy with which
weak convergence theorems can be applied in practice [7,14]. Even though the weak convergence for
stationary distribution of the random walk with reflecting barrier is obtained by asymptotic methods in the
study [2], the rate of the weak convergence is not investigated. Consider the following real-world model
before giving the mathematical design of the process.
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The Model. In this study, a company which its capital level begins from Az > 0 (2,4 > 0) as an initial
level, is considered. The capital level increases with the premiums and the arrivals of the new customers at
T, =X",&,n=12,.. random times. Moreover, the company loses money due to accidents. Let us
consider the variation ({n,,},n = 1) of the capital level over time ({T;,},n = 1) with a stochastic process.
Here, both the sequences {n,,} and {T,,} are random. The process moves up and down over time until the
capital level drops below zero. A capital level falling below zero indicates an unmet cost (—{;) which
means the company encounters with a crisis. If an unmet cost occurs, the company takes out a loan
immediately at A times bigger of the size of the unmet cost. Thus, as soon as the company faces with a
crisis, the process begins from a new initial level (A¢;) and proceeds similarly until it encounters with a
new crisis. Every time the company meets with an unmet cost ({—{,,},n = 1,2, ...), it continues by carrying
out the same procedure. Thus, the process moves by repeating the same kind of cycles. E€nce, a random
walk with a generalized reflecting barrier expresses such a mechanism.

examined asymptotically. The weak convergence presented in the study [.
estimate, however the convergence’s speed depends on more delicate

The rest of the paper is followed
examining the ergodicity of the
section. Finally, the main purpose,
walk with generalized reflagii
obtained result.

1,2, ... take oA both positive and negative values. The following are the distribution functions for them:
P(t)=P{é; <t} F(x)=P{n,<x}t=0,x€R.

Give the following definitions for a renewal sequence {T,,} and a random walk {S,, } as follows:
To=S0=0; T, =X"1&; Sp=Xm,n=12,...

Additionally, introduce the random variables that follows:
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No=0;0,=220;10=0; Ny =N;(A2) =inf{k > 1: 12— S;, < 0 };

Ny = Ny(Ap—1) = infl{k = Ny + 1: 281 — (Sk — Sn,_,) < 0};
N.

n = en 1) = [A8no1 = (Swy = Sy ) T = D & =12,
i=1

Furthermore, set v(t) = max{n > 0:T,, < t}, t > 0. This allows us to construct the stochastic process as
follows:

X(@®) = z (280 = (Suwy = S4)) Hews rnr O
n=0

where I,(t) is an indicator function of the set A. Figure 1 displays a sample pathof t X(t). The
term random walk with a generalized reflecting barrier refers to the process X.
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the rate of the weak convergence for the defined process
the weak convergence for the stationary distribution of the

)E() < E(ny) > 0; iii) E(m?) < o0; iv) n; has non-arithmetic distribution.

Put m;(2) = lim P{{,(1{,—1) < z}. Now, denote by Y;(t) the standardized stochastic process, i.e.,
n—-oo

Y, (t) = X(t)/A, the random variables Y;(0) = z; Y;(t,) = {;;n = 1,2, ... forms an stationary Markov
chain with stationary distribution m; (x). Consequently, it is easily derived that the standardized stochastic
process Y, (t) is also stationary [2].

Furthermore, in [2], the weak convergence theorem for stationary distribution of the standardized process
Y, (t) is presented. Denote Qy(x) = tlim P{Y,(t) < x}.
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Proposition 3.1 [2]. Under the above conditions on {¢,,} and {n,,},n = 1,2, ..., as follows, the stationary
distribution Qy (x) converges weakly to the distribution function R (x):

llm Qy(x) =R(x) = f{f (1 F+(u))du} dv,

where u, = E(xi?) and F,.(x) = P{x; < x}. Here x{ is the first ladder height of random walk {S,,}.

This study aims to evaluate the difference Qy(x) — R(x) for sufficiently large values of 1. To achieve this,
some propositions and lemmas are presented for the preliminary research in the next secti

In terms of having the main result, let us include prlmarlly two essential mde guences,

which are called ladder variables (x;}, v),m = 1,2, .... Let us introduce t ch v{" and the

first ladder height ;" of the random walk {S,;},n = 0 as follows: v; = : X1 = Spr =
+

2121 ;-

The random pairs (y;f,v;), n = 2,3, ..., are mutually indepe t and tical

random pairs (x5, v{), respectively (see [1]).

stributed (iid) with the

By using ladder heights {y,;f,n =1,2,..}, a renewal p
L:Y", xi >t},t >0. Then, the process W )EZ{-I(?)(;L
generated by ladder heights or residual waiting
function (cdf) of W (t) is denoted by H(t, i, i

(t) is defined as H(t) = min{n >
called as residual waiting time

e for shortness. Moreover, the cumulative distribution
(t,x) = P{W(t) < x}.

In order to achieve the fundamental advancement o study, we need to get asymptotic results on cdf and
propositions.

Proposition 4.1. Sup

Since u, 1,2,3, forall x > 0, @, (x) < oo,n = 1,2,3 is hold.

The following corollary can be easily attained from Proposition 4.1.

Corollary 4.1. Regarding Proposition 4.1's requirements, the following inequalities are hold:
xa;(x) < ,Uz_z; x?a,(x) < P;—3 and xa,(x) < P;—3

Proof. From Proposition 4.1, it is easy to see that the relations that follows are hold:
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(o]

MZ—Z Zf vF, (v)dv Zf x F,(v)dv = xa; (x),
X X

l;—3 > f v2F (v)dv = f x? F,(v)dv = x?a,(x),
X X

l;—3 Zf v2F . (v)dv = f xv F,(v)dv = xa,(x).
X X

Here, F, (x) = 1 — F,(x). Therefore, since u; < oo for all x > 0, the desired results are obtained.
By including a,, (x) = fox v"1F, (v)dv and F,(x) = 1 — F,(x), let us give the following proposition.

Proposition 4.2. Suppose that 3 = E(y{3) < . Then, lim a, (x) = % is hold.
X—>00

Proof. By using the alternative definition of the n" order of moment of a positivgévalue variables

and Proposition 4.1, the corresponding result is obtained.
Now, let us examine the limit behavior for the function a,, (x) given in

Proposition 4.3. Suppose that u; = E(x{3) < o.The Jlim

fxw v 1E, (v)dv.
By using Proposition 4.3, we can obtain the following res

Here, a,(x)=

iting time, produced by ladder heights {y;},, where n =
1,2,..and uz = E(x{3) < g asymptotic expansion for the cdf H(t; x) can be given,
when t — oo:

Define andom variable ¢ which has distribution w,(z), ie., P{{<z}=m(2) =

aim, the asymptotic relation of the stationary limit distribution ; (x) can be given in the following lemma.

Lemma 4.2. Suppose that the conditions of Proposition 3.1 are satisfied. Then, the asymptotic relation for
1, (x) can be written as follows, when A — co:

1
7T/1(X) = rlll_l;rc}o P{Zn(AZn—l) < x} = T[+(x) + ig(/l: x).
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Here, m, (x) = #ifox(l —F,(©)dt; uy = E(f); Fo(t) = P{x{ <t} and g(4;x) is a measurable and
bounded function with }im g x)=0.

Proof. The random variable ¢; is a residual waiting time generated by the ladder heights {y;'},n = 1,2, ....
Then, by using the Lemma 4.1, the asymptotic expansion for the distribution function m;;(z) of random
variable ¢; can be written as follows, when 4 — co:

H(Az;x) = P{(;(1z) < x} =m;(Az;x) =, (x) + %gl (Az; x).

Here, }im 91(1z; x) = 0 for the measurable and bounded function g, (1z; x). Then, the disibution of the
random variable ¢, can be written as follows:

[o¢]

my2(Az; x) = P{{,(AQ;) < x} = f H(Av; x)d,H(Az; v).

v=+0

Here, H(Av; x) = m, (x) + % g1(Av; x), when A — oo. By substitutigg H (s in (1)
o 1 1
12050 = [ {r0 +50:Gu0d Gz v) = 1, 10 g)
V=140 A A

is acquired. Here, g,(1z;x) = f;z +091(Av; x)d, H(Az; v asurable and bounded function and
}im g>(Az; x) = 0 is hold (see, [2]). Now, exargdhe the distribution 0% {5 as follows:

€y

(2)

a bounded and measurable function and

}im g3(1z; x) = 0is hold (see, [2 induction, the asymptotic expansion that follows can be

expressed, when A — oo;

Tna(12; x) = P{(,(Ap—1 + %gn()lz; x); n=123,.. .

For convenience, include g(4;x) = lim g, (Az; x). Recall that g(4;x) is a measurable and bounded
n—oo

function and }im g(4;x) = 0. Then,

1
m(x) =my(x) + Ig(/l; x).

Thus, this proves Lemma 4.2.
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Now that we get the asymptotic relation for the stationary distribution 7, (x), let us focus on obtaining the
asymptotic expansion for the characteristic function of the residual waiting time. To do so, give the
following proposition.

Proposition 4.5. Suppose that the measurable function g: R* — R is a bounded function and, g(0) =0
and lim g(x) = 0 are satisfied. It is then possible to write the following relation:
X—>00

T
lim e™dg(x) = 0, a>0.

T=e Jy—o

Proof. Since lim g(x) = 0, for sufficiently large T, |g(T)| — 0. Therefore,
X—00

< =|g(T) — g0)| = [g(D)I.

fo el dg(x) fo gt

Forall € > 0, it is possible to find such T, that |g(T)| < ¢ is satisfied fgfall T & T,. Then,

<ég

T .
j elaxdg(x)
0

is obtained. Therefore, Tlim fOTei“xdxg(x) = 0 is hold

To complete the secondary purpose, the two-t
((p((a)) of the random variable ¢ can be give
Proposition 4.5.

asymptotic e sion for the characteristic function
in the following lemma by means of Lemma 4.2 and

Lemma 4.3. Assume that Proposition 3.1's require are met. Then, the asymptotic expansion for the
characteristic function of the pogiflve-valued random¥ariable ¢ which has the distribution m;(x), can be
expressed as follows:

(3)

(4)

Here, m,(x) = uif(f(l —Fy(w)du; Fy(x)=P{x{ <x} and u, =E(x{). By considering the
1
asymptotic expansion (4) in (3) the following equality is hold, when 1 — co:

, 1 R 1r® .
p;(a) = J- e'*d [7T+(x) + Ig(lz; x)] = f e'*dm, (x) + if e'**d,g(Az; x).
=0 x=0 x=0

xX=

Proposition 4.5 allows us to write the asymptotic expansion as follows when A — oo:
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oo

p¢(a) = f Oei“xdn+(x) +o G) = M_llf"_" e (1 —F,(x))dx + o G)

x= x=0

Denoting u = 1 — F, (x) and v = e'®*, we get ¢, (a) = e+@71 |, ( ) Here, ¢, (a) = E(e“’%) The

iorpy
characteristic function (<p+(a)) of the residual waiting time of the renewal process generated by the ladder

heights (x;7) is @, (a) = "”'(“) 1 [15-16]. Hence, ¢, (@) = @, () + o( ) is obtained.

As intended, the required prellmlnary results are obtained to have the inequality that we are aiming for the
rate of the weak convergence of the random walk with generalized reflecting barrier X (t). Therefore, we
can give the main result in the next section.

5. INEQUALITY FOR RATE OF WEAK CONVERGENCE OF STATIONA IBUTION
FOR PROCESS Y, (t)

varlables N,(Az) = ZHW) viT;

rocess Y, (t) = @ ,A > 0 by definition, can be written by means

rocess X(t) as (py(a) = @y ( ) According to [2],

z qDSNl(Az) (—(Z) -1
@n(_a) -1

dm;(z),a # 0.

LA = e [os, .0 (-5) = 1] L@ =EMAD) [0y (-3) ~ 1] 5)

Include Sy, (az) = S, az) — Az for the shortness. Then,

Psn, a2 (— %) =F (exp (—i% Szvl(,u))) = e~lazg (eXp (—i% .SA'Nl(,lz))) (6)

is obtained. Therefore, when A — oo:
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a ia . 1
E (exp (=i Swn)) = 1 =7 E(Sw,a0) + 0 (;) @)
is hold. The asymptotic expansion for E(Sy, (1)) that follows can be expressed:

E(Sn,z) = E(HA2))uy = 2z + fi; + 0o(1)

where 4; = £2. Note that f; = E(#;") is the expected value of the residual waiting time (7) generated

2uy
by the ladder heights (x;",i = 1,2, ...). Hence,

E(SNl(Az)) =1 +0o(1), iy = pa/(Cuy). (8)
By substituting Equation (8) into Equation (7), the following asymptotic expa is de
a ia | 1
E {exp (_li SNluz))} =1l-—M+to (E) 9

The following asymptotic expansion is obtained for Py, (
Equation (6):

— by su itutig Equation (9) into

a » ol
Py, (—I)—1=e z _1—e ‘“27u1+0(1 (10)

is obtained. By substituting Equation (10) in the definition of I, (4, z) in Equation (5),

, a

Il(Al Z) = elaZ {(pSNl(Az) (_ I) (11)
, a

0= 6 (- o

[ 1
dmy Y= 1 - ge(@) ~ = i +0/5), (12)

A
where ¢, (a)’= E(e'*); the random variable ¢ has the distribution function P{{ < x} = m(x) and g, =
2”72. According to Lemma 4.3, Equation (12) can be given as follows:

1

@ ia 1
L4 2)d =1-¢,(a@)——4 o). 13
| nG2im@ =1-0,@ - F i +o(3) (3)

Here @, (a) = ¢f (a) = %ﬁ_l; p.(@) = E(e!®) and g, = E(¥). Now, obtain two-term
1
asymptotic expansion for I, (1). By definition, I,(A) is as follows:
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L@ = E(N,G0) [ey (- %) -1].

The expression ¢, (— %) can be written as follows:

(—g)—l——i—am {1—i—am2 +o(1>} (14)
Pn\"7 “TA™MU T A 2m, T C\S

Here m; = E(n,),m, = E(n?). According to Wald identity, the following equality can be written for
E(N:(AD):

E(N,(A)) = E(HAD)EW). (15)

Here, E(H(A()) is a renewal function which is generated by the ladder heigh A1) and the
refined renewal theorem allows it to be expressed as the expansion below:

Uz

E(H(Ac))—— 2 2+ o(D).

Here, B = E({) = [, zdm;(2) and lim gy = fiy = % hold
—00 1
expansion that follows:

ossible to write the

Up

2,111 2% .u'Z{ 1
E(H(A = — 1) =1—741+~+
(HGD) w2l @ 213

On the other hand, when m; # 0, E(v; )& u, /M, is hold [1]. By substituting the expansion (14) and
Equation (15) into Equation (13), the fo ptotic expansion

)

,when A - oo:

—iar’ﬁ1+ (1)}
p Vs

(17)

. 1 (o] 1
oy (@), 8, 9y (@) = 7 [ L (A, 2)dmy (2), then @y (@) = 93 (@) + 9 (@) ZE + 2+ 0 (3). Then,
the following calculations are hold:
+ 1 . + A~ . + A 1
ov(@) = 93 (@) = 3 {iapF (@ — iag} (@i} +0(3) (18)
_ ‘Pz(a) 1 + _ ‘P1(“) 1_ . + — ¢+(@)-1 & _ A+ _ M3, ~ _ M2,
Here, 3(0) == =—; pi(@="-—= of(@=="—; L=EQX)= My =k

oi(a) = E(e“"x1 )i e = E(x%); mp = E(n¥); k= 1,2,3.
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Hence, the following inequality is hold by using Equation (18):

000 R =R - TR +o(3). 19
Here, R(x) = %ff(l —AR(t))dt = %fg‘(l —R(t))dt; R(x) = %f;f(l — 1, (1)) dv = if(f{fvm(l B
Fr(w)duldv; iy = E(7Y) = ;2 my = 52

T omy

The expressions R’ (x) and R’(x) can be obtained as follows by utilizing the initial laddepdeight (xi):

1 2
R'G) = —(1-1,(0) = 2 (1 - 1, (), (20)
Hq .Uzl
R'(x) = {ij (1- R(t))dt} = %(1 —R(x)). (21)
H1Jo x M3
By substituting the expression (20) and Equation (21) into Equation ( ef ing expansion is hold:
Qy(X) _ R(x) — ml:uZ(l - R(x)) - mz,bll(l - 7T+(X)) + (22)

Amqp,

Recall that, R(x) ==~ [(1—m()du; my(x)

Hence, [(1—Fy(w)du=["(1—F,(w)
Therefore, for sufficiently large values of 4,

. Here F,(x) =P{y{ <«x}.
- du=p; —a;(x) is obtained.

2m1,u2(1 - R(x)) + 7T+(x))

10y (0) = RG0)| < prt

Thus, the theorem is proved.

The obtained inequality gV
process. This result is g @
the distribution of the resit@igl/®

for the rate of the weak convergence of the considered
to the tail of the distribution of ladder heights and the tail of

asymptotic methods to obtain the weak convergence for stationary distribution of the random walk with
reflecting barrier, but it does not investigate the rate of the weak convergence.

In this study, the asymptotic rate of the weak convergence for the stationary distribution of a random walk
with generalized reflecting barrier is investigated and an inequality is obtained. The acquired inequality
indicates that the rate of convergence is related with the tail of the cdf of residual waiting time of ladder
heights (x,;f,n = 1,2, ...) of a random walk. The presented inequality is, while approximate, practical for
implementation due to its concise form as follows:
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2myp, (1 = R(x)) + 2mauy (1 - 7T+(X))
Amyp,

1Qy(x) = R()| <

Moreover, this inequality gives a bound on maximal error of the weak convergence. Similar asymptotic
results can be investigated for future studies by considering random walk with two reflected barriers which
is frequently encountered in physics. The results under any distribution assumption allow for the evaluation
of various distributions in a variety of dimensions, including inter-arrival times and demands; additionally,
they allow for the evaluation of the ladder height and residual waiting time that arise from demands. When
the results are considered in relation to the specific problem, they become very intriguing. As an upcoming
research project, the obtained result can be applied to a number of real-world problems, from inventory to
quantum physics.
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APPENDIX 1

Proof (Lemma 4.1.). One-dimensional

can be written as H(t;x) = fot_[FJ,(t +x—v)

respresents the renewal functiongvhich is generate

of the residual waiting time H(¢t; x) = P{W (t) < x}
(t —v)]|dU,.(v) (see [1], p.369]). Here, U,(t)

ansform of the function N(t) in the rest of the paper. For

shortness, denote K(t; . (x)]. According to Tauber-Abel theorem, tlim K(t;x) =
lirrésﬁ(s; x) C et ,us examine the function K(s;x). By using property of Laplace
S—

transformation,
1
2T (x)]. €Y)

H(t; x)). For shortness, denote that G (¢; x) = F,.(t) — Fy (¢ + x) where F,.(t) = 1 —
F,(t) and F,.Y8) = P{x; < t}. H(t; x) = G(t;x) * U, (t) can be written, therefore, by applying Laplace
transform to the obtained convolution,

H(s;x) = G(s; x)UL(s) 2)

is obtained, where G(s; x) = [,” e tG(t)dt and U3 (s) = [, e~5tdU,.(t). By means of linearity property
of Laplace transformation, G (s; x) = F, (s) — L{F, (¢t + x)} is hold. By including ¢, (s) = E(e‘s)ff) =
Jy" e~StdF, (t),
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Fo(s) = 1‘+(3) 3)

is obtained. Similarly, L {F, (t + x)} can be written as follows:
LR (t + 0} = e[ (s) — M(s;0)] = e [ — M(s; )| “

Here, M(s; x) = [ _ e™*VF,(v)dv. By means of Equation (3) and Equation (4), the function G (s; x) can

X
v=
be written as follows:
[1— @ (s)][1—e%]

G(s;x) = " + eS*M(s; x). (5)

Moreover, U} (s) is obtained as follows:

Ui (s) = sU4(s) — Up(—0) = sU,(s) = (6)

1—.(s)

Therefore, considering Equation (5) and Equation (6) in Equati (s; x Y8, obtathed as follows:

— _ 1 —- esx esx
H(s;x) = G(s; x)Ui(s) = + M(s; 7
1—-¢.(s)
Let us examine the derivative of Equation (7) wigh respect to s. FO convenience, include
1 _ eSX esx
]1(S,X)— s ) IZ(SJx)_l_ ,X)
where ¢, (s) = E(e‘SXT). Then, H(s; x) canbe e sgd as follows:
H(s; x) = J1(s; x) + ] (s x). (8)
By taking the first derivg @
J a ;
—H(s;x) = J1(5i %) + )
S S
and they are state
(10)
e i (s)M(s;x)  e**M'(s; x)
(11)

(1- <p+(s))2 1—9.(s)’

Here, ¢! (s) = %(p_‘_ (s) and M'(s;x) = %M(s; x). Primarily, examine aha(ss:x). By using Taylor
expansion, the following expansion is hold when s — 0:
s2x? 2
eS*(1—sx)—1=— 5 {1+§sx+o(s)}. (12)

Substituting the expansion in Equation (12) into Equation (10), the following expansion is obtained for
9]1(s:x)

when s = 0:
as
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(s _ 1) _s?x2(, 2 __x
Qaton) { - {1+3sx+0(s)}}— ~ +0(1). (13)

ds s2

]z(

Now, let us examine the expression ). To make the notation more readable, let us express
given in Equation (11) as follows alternatlvely

0a(six) _ R1(s; %) + Ry (s x) + R3(s; x). "

0J,(s;x)
ds

ds
Here, R (S'x) = m R (S x) = w R (S x) _ esxaMa(j;x)
I 1-gi(a Y (1-¢s()* ~ 1-g4(s)

Now, let us focus on R;(s; x), i = 1,2,3. To examine the asymptotic expansio
when s — 0, by using Taylor expansion, since uz; < oo, the expansions that fo

2.2
e’ = 1+sx+52x + o(s%); (15)
11 A i _
m—ﬁ{l+su1—sz (7—/1%)4'0(52)}, (16)
2
M(s;x) = a;(x) {1 —sa,,(x) + = 2 a31(x) + 0(52)} (17)

v IE . (W)dv, n=1.2;

Here a,(x) = fvxz

0 a;(x)’ (k+1Duy’

xeM(s;x)  xmy(x)

=0 (s s (18)

Ri(s;x) =

xaq(x)

Here, €51 (x) =
as follows, when s - 0:

(19)

(20)

my(x) my(x)
Ro(s5;2) = === = =[x = €1 ()] + G2 (x) + 0 (D). 1)
Here C,,(x) = al(x)[ +dy —xay, (x) + a31(x)] d, = 22— j2. Additionally, give the following

Taylor expansion for R3(s, x) when s — 0 by using Equation (17).

OM(s;x)

5y = % )1 —saz,(x) + o(s)}. (22)
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Then, R;(s; x) can be written as follows by the help of the expansions (15), (16) and (22):

&@m=—ﬁ@)

) az;(x) + Cp3(x) + o(1). (23)

Here, Cp3(x) = — aZ”(X) [4; + x — as,(x)]. Substituting the expansions (18), (21) and (23) into (13), the
1

asymptotic expansion that follows can be attain for J;(s; x) when s — 0:

d/(s;

% = Ry(5;x) + Ry(s; %) + Rs(s; %) = — ";(Zx) + C(x) + o(1). (24)
Here, C,(x) = Cy1(x) + Cy5(x) + C,3(x). By considering Equation (13) and Eqyati it Equation
(8), the following asymptotic expansion is hold, when s — 0:

0

&H(s; x) =J1(s;x) + J5(s;%) = —m;(zx) + C(x) +0(1). (25)

Here, C(x) = —X; + C,(x). By substituting Equation (25) in Equation (1);
o J 1
R(s,x) = — | —H(s, %) + —7T+(x)] = —C(x) + (D).

ds 5?2

2
Here, C(x) = —% + C,(x). According to Proposition 4.1, a,, ,n = 1,2,3 is satisfied for all x > 0.
stituting a,, (x) = £2 — @,,(x) in C,(x):

n

Considering that . (x) = “ia1 (x) is hold, by

a; (x)d,

Uq

(26)

—xa,(x)Cr +

a;(x)d,

251

Cr — xay(x)Cp —

a;(x)d,

1

5 3u3
LS, 3
6ur  4py

+ + |a, (x)Cp| + |xa; (x)Cr| +

xc_lz(x)‘
251

Since u; < oo, |C(x)| < oo is hold. Proposition 4.4 suggests that

lim x2a,(x) = 0; lim xa,;(x) = 0and lim xa,(x) = 0.
X—00 X—00 X—

Then for all x € R,

lim C(x) = B

Xm0 6u1
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is obtained. |C(x)| < oo is satisfied for all x € R. By using Equation (25), lim sK(s,x) = lim s(—C)) =
0. Therefore, according to Tauber — Abel Theorem, ll_l)'[(l) sK(s; x) = 0 is satisfied. Then tl:r?o K(t;x) =0is
hold. By using K (t; x), th_}rg K(t;x) = tlLrg t[H(t; x) — m,(x)] = 0. Thus, the asymptotic expansion that
follows can be recorded as t — oo, t[H(t; x) — 7, (x)] = 0(1). Then the following expansion can be given:

H(t:x) = m,(x) + 0 (%)

This completes the proof.

Y
A%
g



