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I. INTRODUCTION 

Since the invention of steel, hollow section members have been widely used as structural components in numerous 

application fields including construction and aviation due to their special features [1, 2]. The hollow sections are 

generally recognized for their good mechanical performance against different types of loadings such as 

compression, torsion, and bending in all directions [3]. Nevertheless, one of the main drawbacks of hollow sections 

is their higher production costs compared to other sections [3]. Thus, the ubiquity of hollow sections in many 

industrial application fields as well as their higher manufacturing costs make their optimal design more important 

for the reduction of material cost. In a robust optimal design, significant design aspects, including strength and 

material type, need to be taken into consideration in a balanced way [3–7]. 

As with other types of hollow sections, the optimal cross-section dimensions of rectangular hollow sections (RHSs) 

subjected to any type of load can be determined based on either adequate-strength [8–12] or adequate-stiffness 

[10, 13, 14]. In those two approaches, a design objective is to achieve minimum weight by determining the optimal 

cross-section dimensions of RHSs that satisfy strength requirements since a type of material from which a structure 

is manufactured, as well as its associated mechanical properties are known prior to the design. In other words, the 

objective function which gives the optimal cross-section dimensions and therefore minimum mass is defined in 

both approaches based on the satisfaction of strength requirements. Different from them, an optimal design can 
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occasionally be required to be conducted for some specific cases where a made of material of the structure is not 

known before the optimal design [3, 15].  The common approach to specify the optimal dimensions of RHSs in 

these cases is first to minimize the maximum effective stress on the cross-section induced by applied loads, and 

then to select one of the most suitable materials offering higher strength than the minimized maximum effective 

stress. This signifies that a cost-effective design can be accomplished based on the selection of suitable materials 

for the production of RHSs members. 

Despite high material costs brought by the wide use of the RHS members in the industry, an insignificant number 

of rigorous research has been devoted to specifying their optimal cross-section dimensions for the loading 

configuration of oblique bending to reduce their material costs [15–18]. Comparatively speaking, analytical studies 

which determine the optimal cross-section dimensions of RHSs for oblique bending are relatively immature 

compared to other loading configurations like axial compression and pure bending [17–22]. In order to fill this 

noticed deficiency in literature, this analytical study has been dedicated to the identification of the optimal cross-

section dimensions of RHS members subjected to oblique bending. 

Analytical expressions derived for the determination of the optimal cross-section dimensions of RHSs have been 

presented clearly and made available to practical engineering for use in actual designs. The consideration of the 

reported analytical expressions for the optimal design allows the cost-effective use of materials.  The analytical 

expressions have been derived based on the idea of minimizing the maximum effective stress on the cross-section 

of RHSs induced by oblique bending. Since it has been assumed that the RHSs taken into consideration for the 

optimal design are manufactured by hollowing out the rectangular solid sections at different cross-sectional area 

extraction ratios, the minimization of the maximum effective stress on the cross-section has been achieved by 

varying the wall thicknesses of the RHSs, taking into account that the reduction ratio of the cross-sectional area 

remains constant. In order to give a deeper insight into the understanding of a complicated analytical procedure 

developed for the optimal design of RHSs, it has been applied to two different optimization problems and thus the 

optimal dimensions of the RHSs have been determined quantitatively. 

In the first optimization problem addressed, the optimal design has been achieved based on the assumption that 

the material of the RHS member and its associated properties required for strength analysis are given before the 

design. In this case, the limit values of the angles where the oblique bending load can be applied have been first 

determined, and then the optimal cross-sectional dimensions have been specified accordingly. 

In the second optimization problem considered, the optimal design has been performed for a given constant oblique 

bending angle. In this case, the optimal cross-sectional dimensions leading to the minimization of the induced 

maximum effective stress have been first computed with respect to the given bending angle, and then one of the 

most suitable materials offering higher strength than the found minimum value of the maximum effective stress 

has been selected. 

 

II. DESCRIPTION OF THE OPTIMAL DESIGN PROBLEM AND THEORETICAL APPROACH 

Aiming to determine the optimal cross-section dimensions of RHS members subjected to oblique bending by 

means of the analytical procedure that has been developed based on the aspect of the minimization of the maximum 

effective stress, the optimization problem of RHSs addressed in the context of this study is as described in Fig.1. 
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As seen in Fig.1, the RHSs have been assumed to be attained by hollowing out the rectangular solid section with 

the cross-section dimensions of B x H at different cross-section area extraction ratios. 

 

 

 Figure 1. The optimization problem of the RHSs addressed for oblique bending  

 

The analytical procedure has been formulated in terms of the cross-section parameters depicted in Fig.1; however, 

as can be understood from Fig.1, the height (H) and the width (B), of the RHS are constant and therefore not the 

variable design parameters. Thus, the present model consists in specifying the optimum values of the variable 

design parameters such as a thickness of the web (𝛿𝛿) and a thickness of the flange (t), as well as assessing the 

effect of the oblique bending moment (M) angle (𝛽𝛽) on those two cross-section design variables.   

In order to derive the analytical expressions, one of the most important conditions defined is that a reduction ratio 

in the cross-sectional area of the RHSs remains constant while varying the cross-section parameters of t and δ in 

an attempt to find their optimal values which minimize the maximum effective stress taking place on the cross-

section as a result of the applied oblique bending. 

The analytical approach is started with a definition of the reduction ratio for the cross-section area of the 

rectangular solid section, as follows:   

 

∆𝐴𝐴
𝐴𝐴

=
𝐴𝐴 − 𝐴𝐴0
𝐴𝐴

= 𝑐𝑐 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
(1) 

 
 

 
 

where 𝐴𝐴 and 𝐴𝐴0 represent the cross-section areas of the rectangular solid section and the rectangular hollow section, 

respectively. Note that the defined parameter of c characterizes the reduction in the cross-section area of the 

rectangular solid section after hollowing it out and this parameter is given before the optimal design in order to 

facilitate the derivation of the analytical expressions.  

The associated cross-section areas above can readily be defined in terms of the cross-section parameters, as given 

below.   
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𝐴𝐴 = 𝐵𝐵𝐵𝐵 (2) 

  
 
𝐴𝐴0 = 𝐵𝐵𝐵𝐵 − (𝐵𝐵 − 2𝛿𝛿)(𝐵𝐵 − 2𝑐𝑐) (3) 

 

As illustrated in Fig.1, B and H herein are the width and height of both the rectangular solid and hollow sections, 

respectively. Additionally, 𝑐𝑐 and 𝛿𝛿 denote the thickness of the flange and web segments of the RHS as seen in 

Fig.1. 

As mentioned previously, the analytical procedure has been intended to be established based on the target of 

minimizing the maximum effective stress on the cross-section of the RHS caused by the applied oblique bending 

moment in order to specify the optimal values of the cross-section parameters of 𝑐𝑐 and 𝛿𝛿 for a given desired values 

of c. In response to this, the objective function has been described as given below. The analytical expressions 

required to determine the optimal values of the cross-section design variables can be derived by finding the 

extremums of the defined function in Eq.4. 

 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = ��
𝑀𝑀𝑧𝑧

𝐼𝐼𝑧𝑧
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 +

𝑀𝑀𝑦𝑦

𝐼𝐼𝑦𝑦
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚� =  �

𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽
𝑊𝑊𝑧𝑧

+
𝑀𝑀𝑐𝑐𝑀𝑀𝑐𝑐𝛽𝛽
𝑊𝑊𝑦𝑦

�� → min                                     (4) 

 
 

Herein, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum effective stress resulting from the applied oblique bending moment (M). 𝑀𝑀𝑧𝑧 is the 

z-axis component of the applied bending moment (M) axis and defined as 𝑀𝑀𝑧𝑧 = 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽. In the same manner, 𝑀𝑀𝑦𝑦 

denotes the y-axis component of the bending moment (M) and is described as 𝑀𝑀𝑦𝑦 = 𝑀𝑀𝑐𝑐𝑀𝑀𝑐𝑐𝛽𝛽. Note that 𝛽𝛽 is the 

oblique bending moment angle shown in Fig.1 Additionally, 𝐼𝐼𝑧𝑧  and 𝐼𝐼𝑦𝑦  are the moments of inertia about z and y 

axes, respectively. Furthermore, 𝑊𝑊𝑧𝑧 and 𝑊𝑊𝑦𝑦 are the section modulus of the RHS about the z and y axes, 

respectively. 𝑊𝑊𝑧𝑧 and 𝑊𝑊𝑦𝑦 have been derived and written as given below. 

 

𝑤𝑤𝑧𝑧 =
𝐼𝐼𝑧𝑧

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
=
𝐵𝐵𝐵𝐵2

6
�1 − �1 −

2𝛿𝛿
𝐵𝐵
� �1−

2𝑐𝑐
𝐵𝐵
�
3
� (5) 

  

 

𝑤𝑤𝑦𝑦 =
𝐼𝐼𝑦𝑦
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

=
𝐵𝐵𝐵𝐵2

6
�1 − �1 −

2𝑐𝑐
𝐵𝐵
� �1 −

2𝛿𝛿
𝐵𝐵
�
3

� (6) 

 
 

The cross-section area of the RHS(𝐴𝐴0) has been reformulated in terms of the section modulus, as written below. 
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𝐴𝐴0 = 𝐵𝐵𝐵𝐵 �1− ��1−
6𝑤𝑤𝑧𝑧
𝐵𝐵𝐵𝐵2��1 −

6𝑤𝑤𝑦𝑦
𝐵𝐵𝐵𝐵2

��
1/4

� (7) 

 
 

Taking into account Eq.7, the expression given in Eq.1 has been rearranged as given below. 

𝐴𝐴 − 𝐴𝐴0
𝐴𝐴

= �1−
6𝑤𝑤𝑧𝑧
𝐵𝐵𝐵𝐵2��1 −

6𝑤𝑤𝑦𝑦
𝐵𝐵𝐵𝐵2

� − 𝑐𝑐4 = 0 (8) 

 
 

After the subtle mathematical extractions and arrangements, the optimization problem has been brought to the 

determination of the optimum section modulus of the RHS with regard to the z and y axes, which meets the 

objective function requirement documented in Eq.4 as well as the additional design requirement described in Eq.8. 

Thus, the following Lagrangian objective function has been written with the help of Eq.4 and Eq.8. 

 

Ф = �
𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽
𝑊𝑊𝑧𝑧

+
𝑀𝑀𝑐𝑐𝑀𝑀𝑐𝑐𝛽𝛽
𝑊𝑊𝑦𝑦

+ 𝜆𝜆 ��1−
6𝑤𝑤𝑧𝑧
𝐵𝐵𝐵𝐵2��1 −

6𝑤𝑤𝑦𝑦
𝐵𝐵𝐵𝐵2

� − 𝑐𝑐4�� → 𝑚𝑚𝑀𝑀𝑐𝑐 (9) 

 
 

where 𝜆𝜆 is the unknown Lagrange multiplier [23–25].In order to find the minimums of the function given in Eq.9, 

the following  constraints have been defined. 

 

𝜕𝜕Ф
𝜕𝜕𝑊𝑊𝑧𝑧

= 0,
𝜕𝜕Ф
𝜕𝜕𝑊𝑊𝑦𝑦

= 0,
𝜕𝜕Ф
𝜕𝜕𝜆𝜆

= 0 (10) 

 
 

The above expressions have been represented by the set of equations given below. 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜕𝜕Ф
𝜕𝜕𝑊𝑊𝑧𝑧

= −
𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽
𝑤𝑤𝑧𝑧2

+ 𝜆𝜆 ��−
6

𝐵𝐵𝐵𝐵2��1 −
6𝑤𝑤𝑦𝑦
𝐵𝐵𝐵𝐵2

�� = 0

𝜕𝜕Ф
𝜕𝜕𝑊𝑊𝑦𝑦

= −
𝑀𝑀𝑐𝑐𝑀𝑀𝑐𝑐𝛽𝛽
𝑤𝑤𝑦𝑦2

+ 𝜆𝜆 ��−
6

𝐵𝐵𝐵𝐵2
� �1−

6𝑤𝑤𝑧𝑧
𝐵𝐵𝐵𝐵2�� = 0

𝜕𝜕Ф
𝜕𝜕𝜆𝜆

= �1−
6𝑤𝑤𝑧𝑧
𝐵𝐵𝐵𝐵2� �1−

6𝑤𝑤𝑦𝑦
𝐵𝐵𝐵𝐵2

� − 𝑐𝑐4 = 0             

 (11) 

 
 

By solving the set of equations above together, the analytical expressions that give the optimum moment 

resistances of the RHS (𝑊𝑊𝑧𝑧 , 𝑊𝑊𝑦𝑦) have been derived as written below. 
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𝑤𝑤𝑧𝑧 =
(1 − 𝑐𝑐4)𝐵𝐵2𝐵𝐵2

6�𝐵𝐵 + 𝑐𝑐2�𝐵𝐵𝐵𝐵 tan𝛽𝛽�
 (12) 

 
 

𝑤𝑤𝑦𝑦 =
(1 − 𝑐𝑐4)𝐵𝐵2𝐵𝐵2

6�𝐵𝐵 + 𝑐𝑐2�𝐵𝐵𝐵𝐵 cot𝛽𝛽�
 (13) 

 
 

The analytical expressions to determine the variable cross-section parameters of δ and t which satisfy the optimum 

moment resistances of 𝑊𝑊𝑧𝑧  and 𝑊𝑊𝑦𝑦  have been finally obtained as written below after solving Eq.5 and Eq.12 

together as well as solving Eq.6 and Eq.13 simultaneously. 

 

𝑐𝑐 =
𝐵𝐵
2 �

1− �
(𝐵𝐵𝐵𝐵2 − 6𝑤𝑤𝑧𝑧)3

𝐵𝐵𝐵𝐵5�𝐵𝐵𝐵𝐵2 − 6𝑤𝑤𝑦𝑦�
8

� (14) 

 
 
 

 
 

For a given design problem example (𝑀𝑀 = 25 kN.m, 𝐵𝐵 = 200 mm, 𝐵𝐵= 100 mm and  𝑐𝑐 = 0.8), the effects of the 

oblique bending angle (𝛽𝛽) on the important parameters of 𝑐𝑐, 𝛿𝛿 and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  have been assessed accounting for Eq.4 

and Eqs.(12-15)  in order to give a closer look at the proposed procedure. The calculated results are tabulated in 

Table.1. 

 

 

Table 1. The effects of the various oblique bending moment angles on the parameters of 𝑐𝑐,𝛿𝛿 and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 

𝜷𝜷, Degree 𝑾𝑾𝒛𝒛, mm3 𝑾𝑾𝒚𝒚, mm3 𝒕𝒕, mm 𝜹𝜹, mm 𝝈𝝈𝒎𝒎𝒎𝒎𝒎𝒎, MPa 
0 393600 0 28.45 -5.90 63.50 

10 285205 94719 15.43 2.70 132.20 
20 254585 112449 12.10 4.49 168.30 
30 233213 123340 9.85 5.63 194.20 
40 215189 131724 8.00 6.52 211.00 

45.75 205318 136037 7.00 7.00 216.60 
50 197981 139126 6.26 7.33 218.80 

53.50 191796 141655 5.64 7.61 219.40 
60 179630 146444 4.44 8.14 217.40 
70 157425 154593 2.28 9.10 206.30 
80 124737 165374 -0.80 10.32 183.70 
90 0 196800 -11.80 14.22 127.00 

 

𝛿𝛿 =
𝐵𝐵
2 �

1 − �
(𝐵𝐵𝐵𝐵2 − 6𝑤𝑤𝑦𝑦)3

𝐵𝐵𝐵𝐵5(𝐵𝐵𝐵𝐵2 − 6𝑤𝑤𝑧𝑧)
8

� (15) 



 
 J. Innovative Eng. Nat. Sci. vol. 4, no.1, pp. 198-219, 2024.                                                              Oblique bending                  

204 
 

As clearly seen in Fig.2, the web thickness of the RHS (𝛿𝛿) becomes equal to the flange thickness of the RHS (𝑐𝑐) 

at a unique oblique bending moment angle designated 𝛽𝛽0. As can be deduced from Fig.2, if the angle of the oblique 

bending moment with the vertical of the plane (𝛽𝛽) on which the moment, M, is applied is less than  𝛽𝛽0, the flange 

thickness is larger than the web thickness (𝑐𝑐 > 𝛿𝛿). If the opposite is the case (𝛽𝛽 > 𝛽𝛽0), the flange thickness is less 

than the web thickness (𝑐𝑐 < 𝛿𝛿). 

 

 

Figure 2. The effect of oblique bending moment angle on 𝑐𝑐 and 𝛿𝛿, (𝑐𝑐 = 𝑓𝑓(𝛽𝛽) and 𝛿𝛿 = 𝑓𝑓(𝛽𝛽)). 

 

At this specific angle where the web thickness is identical to the flange thickness, the relevant segment thicknesses 

of the RHS, designated 𝑐𝑐0 and 𝛿𝛿0, corresponding to this unique angle can be obtained using the following derived 

expression. 

 

 
 

The analytical expression giving the specific bending moment angle of 𝛽𝛽0 which defines the wall thicknesses of 

the RHS has been derived by accounting for the equality of Eq.14 to Eq.15, as given below. 

 

 
 

where k is the notation and described as follows:  

𝑐𝑐0 = 𝛿𝛿0 =
1
4 �

(𝐵𝐵 + 𝐵𝐵) −�(𝐵𝐵 + 𝐵𝐵)2 − 4𝐵𝐵𝐵𝐵(1 − 𝑐𝑐)� (16) 

𝛽𝛽0 = tan−1 �
1

𝑐𝑐4𝐵𝐵/𝐵𝐵�
1 −

1 − 𝑐𝑐4

1 − 𝑐𝑐𝑘𝑘2�
2

� (17) 
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Taking into account Eq.12 and Eq.13, as well as accounting for Eq.14 and Eq.15, the objective function given in 

Eq.4 has been redefined for its extremum, as written below. 

 

 
 

For the given design problem (𝑀𝑀 = 25 kNm, 𝐵𝐵 = 200 mm, 𝐵𝐵 = 100 mm, 𝑐𝑐 = 0.8), the unknown parameters have 

been calculated to be 𝑐𝑐0 = 𝛿𝛿0 = 7.0 mm, 𝛽𝛽0 = 45.750 and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚= 216.6 MPa. Note that these quantitatively obtained 

results with the exception of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  actually confirm the previously reported outcomes in Fig.2. 

In the light of all the information presented above, the optimum design steps are summarized for the convenience 

of the designers, as follows; 

In the first step, the optimum values of the design variables, 𝑐𝑐 and 𝛿𝛿, are extracted from Eq.14 and Eq.15, 

respectively. 

In the second step, the extremum value of maximum effective stress, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 , is determined by using Eq.19. 

In the third step, a cost-effective material selection for the production of the RHS is carried out based on the design 

requirement of 𝜎𝜎𝑦𝑦/𝑆𝑆 > 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 . 

Herein, 𝜎𝜎𝑦𝑦 represents the yield strength of the selected material and 𝑆𝑆 is regarded as the factor of safety. The 

material qualities of the selected materials need to satisfy the defined strength requirement of 𝜎𝜎𝑦𝑦/𝑆𝑆 > 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  for 

robust design. 

As seen in Table 1, increasing the oblique bending moment angle, 𝛽𝛽, from 0°to 50° leads to an improvement in the 

extremum value of the maximum normal stress. On the contrary, altering the angle of 𝛽𝛽 from 500 to 900 results in 

a decrease in the extremum value of the maximum normal stress. This actually signifies that there is a transition 

point where the maximum normal stress goes from increasing to decreasing. The oblique bending moment angle 

designated 𝛽𝛽𝑘𝑘, corresponding to this transition point can be determined by means of the derived formula given 

below. Note that the following expression has been attained by taking into account Eq.19. 

 

 
 

𝑘𝑘 =
1
2 �

1−
𝐵𝐵
𝐵𝐵
�1−��1 +

𝐵𝐵
𝐵𝐵
�
2
− 4(1 − 𝑐𝑐)

𝐵𝐵
𝐵𝐵
�� (18) 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 =
6𝑀𝑀

(1 − 𝑐𝑐4)𝐵𝐵2𝐵𝐵2 �
𝐵𝐵 sin𝛽𝛽 + 𝐵𝐵 cos𝛽𝛽 + 𝑐𝑐2�2𝐵𝐵𝐵𝐵 sin 2𝛽𝛽� (19) 

𝜕𝜕𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝜕𝜕𝛽𝛽 �
𝛽𝛽=𝛽𝛽𝑘𝑘

= 0 ⇒ 𝐵𝐵 cos𝛽𝛽𝑘𝑘 − 𝐵𝐵 sin𝛽𝛽𝑘𝑘 + 𝑐𝑐2 cos 2𝛽𝛽𝑘𝑘�
2𝐵𝐵𝐵𝐵

sin 2𝛽𝛽𝑘𝑘
= 0 (20) 
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For the addressed design problem, the transition point angle,  𝛽𝛽𝑘𝑘, has been found to be 53.5°, in addition, the 

corresponding maximum stress, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  , has been computed to be 219.4 MPa. Based on this finding, it has been 

concluded that it is recommended to avoid not only the angle of 𝛽𝛽𝑘𝑘 but also its immediate vicinity to impose the 

oblique bending moment on the RHS unless there are no additional requirements specified (technological, 

structural, etc.). This suggestion is made based on the finding that the highest normal stress takes place on the RHS 

at 𝛽𝛽𝑘𝑘. Thus, a high-strength material selection is required for the production of the RHS, which cannot be 

considered the right choice from an economic point of view.  

Table 2 shows the optimum quantitative results of the cross-section design variables computed for different cross-

sectional area extraction ratios of c by using the expressions given in Eq.12-Eq.15 and Eq.19. 

 

Table 2. The computed cross-section design variables for different values of c 
Cross-sectional 
area extraction 

ratio, 𝒄𝒄 

Optimum cross-section parameters Maximum normal stress 

𝒘𝒘𝒛𝒛, mm3 𝒘𝒘𝒚𝒚, mm3 𝒕𝒕, mm 𝜹𝜹, mm 𝝈𝝈𝒎𝒎𝒎𝒎𝒎𝒎, MPa 

 𝑴𝑴= 25.106 N.mm,  𝜷𝜷 = 300,  𝑯𝑯 = 200 mm, 𝑩𝑩 = 100 mm                   
0.40 554299 282706 35.10 19.19 83.28 
0.50 492653 253519 27.75 15.40 93.25 
0.60 418408 217325 21.22 11.92 109.26 
0.70 331862 173970 15.30 8.68 137.10 
0.80 233213 123340 9.85 5.63 194.18 
0.90 122576 65363 4.77 2.74 367.87 

 
 

In contrast to the previously addressed design problem, if a production material of the RHS and therefore its 

associated mechanical properties are known prior to optimal design, the cross-section variables of δ and t are 

defined after determining the limit values of the angle, β, to which the oblique bending moment, M, is applied. In 

this case, the determination of the limits of the bending moment angle, β, can be achieved by using the following 

expression, which has been obtained by redefining the objective function given in Eq.4 for the relation of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 =
𝜎𝜎𝑦𝑦
𝑆𝑆

. 

 

 
 

To give a deeper understanding of what the extremums of the objective function, reported for the different values 

of c in Table 2, signify, the objective function (Eq.4) has been first rewritten as a function of 𝑐𝑐 and 𝛿𝛿  , and then 

the graphical representation of the related extremums has been attained by using the newly defined functions given 

below. 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 =
𝜎𝜎𝑦𝑦
𝑆𝑆
⇒

6𝑀𝑀
(1 − 𝑐𝑐4)𝐵𝐵2𝐵𝐵2 �

𝐵𝐵 sin𝛽𝛽 + 𝐵𝐵 cos𝛽𝛽 + 𝑐𝑐2�2𝐵𝐵𝐵𝐵 sin 2𝛽𝛽� =  
𝜎𝜎𝑦𝑦
𝑆𝑆

 (21) 
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Additionally, the expression defining the parameter of 𝛿𝛿 in terms of  𝑐𝑐 has been obtained as given below. 

                                   
In essence, graphical representations which provide a profound summary of the associated data tabulated in Table 

2 have been obtained by accounting for Eq.22, Eq.23 and Eq.24 and presented for some of the various values of c 

in Fig.3. 

 

 
Figure 3. Graphs of  𝛿𝛿 = 𝑓𝑓(𝑐𝑐), 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓(𝑐𝑐) and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓(𝛿𝛿) attained for some of the different values of c 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) =
6𝑀𝑀 cos𝛽𝛽

𝐵𝐵𝐵𝐵2[1− 𝑐𝑐(1 − 2𝑐𝑐 𝐵𝐵⁄ )2] +
6𝑀𝑀 sin𝛽𝛽(1 − 2𝑐𝑐 𝐵𝐵⁄ )2

𝐵𝐵𝐵𝐵2[(1 − 2𝑐𝑐 𝐵𝐵⁄ )2 − 𝑐𝑐3] 
(22) 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚(𝛿𝛿) =
6𝑀𝑀 sin𝛽𝛽

𝐵𝐵𝐵𝐵2[1 − 𝑐𝑐(1 − 2𝛿𝛿 𝐵𝐵⁄ )2] +
6𝑀𝑀 cos𝛽𝛽 (1 − 2𝛿𝛿 𝐵𝐵⁄ )2

𝐵𝐵𝐵𝐵2[(1 − 2𝛿𝛿 𝐵𝐵⁄ )2 − 𝑐𝑐3]  (23) 

𝛿𝛿(𝑐𝑐) =
𝐵𝐵
2
�1−

𝑐𝑐
1 − 2𝑐𝑐/𝐵𝐵

� (24) 
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III. OPTIMUM DESIGN EXAMPLES WITH THE DEVELOPED ANALYTICAL PROCEDURE 

This section presents the detailed solutions of the two distinct optimal design problems which shed light on the 

developed procedure for a better understating of its application steps. The first problem addressed is the design 

problem in which the production material of the RHS is obvious and the yield strength of this material is known 

before the optimal design. Opposite to the first problem, the second problem handled is the case where a lack of 

information on the manufacturing material of the RHS exists but the oblique bending moment angle is given. 

The RHS taken into consideration in both optimal design problems has been assumed to be attained by hollowing 

out the rectangular solid section with a dimension of 200x100 mm (ℎ × 𝑏𝑏 = 200×100 mm) at the cross-section 

extraction ratio of 0.8 (c=0.8). Additionally, the RHS has been presumed to be subjected to the oblique bending 

moment of 25 kN.m (M=25 kN.m). 

An application of the derived analytical expressions to the first addressed optimal design problem of finding the 

optimal dimensions of the RHSs is as follows: 

In this case, allowable stress that can be taken in the RHS has been given as 162 MPa (𝜎𝜎𝑦𝑦/𝑆𝑆 = 162 MPa) prior to 

the optimal design. Additionally, the RHS taken into consideration for the optimum design is assumed to be 

produced from Grade-250 medium-strength steel that is widely utilized as load-carrying components in structural 

applications. The elastic and plastic material properties of Grade-250 steel are found in the literature as; mean 

elastic modulus E = 209 GPa, Poisson's ratio ν = 0.3, and mean yield strength 𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  = 290 MPa [26, 27]. 

Since the oblique bending moment angle (𝛽𝛽) is not known, the calculations begin with the determination of the 

limit values that the oblique bending moment angle (𝛽𝛽) can take. This has been achieved by substituting the 

applied moment of 25 kN.m and allowable stress of 162 MPa into Eq.20, as a result of this, the limit values of 𝛽𝛽 

have been found to be 18° and 86°. The variation of the maximum normal stress (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚) with the oblique bending 

moment angle (𝛽𝛽) is graphically presented in Fig.4. The limit values for the oblique bending moment angle can 

also be readily extracted from Fig.4. The presented results in Fig.4 are actually a graphical representation of the 

results obtained by using Eq.17. 

Of these two limit values, only the angle of 18° has been taken into account and accordingly, the section 

modulus(𝑤𝑤𝑧𝑧,𝑤𝑤𝑦𝑦) and cross-section design variables (𝑐𝑐, 𝛿𝛿) have been computed as follows:   

 

𝑤𝑤𝑧𝑧 =
(1 − 𝑐𝑐4)𝐵𝐵2𝐵𝐵2

6�𝐵𝐵 + 𝑐𝑐2�𝐵𝐵𝐵𝐵 tan𝛽𝛽�
=

(1 − 0.84)1002 ∙ 2002

6�100 + 0.82√100 ∙ 200 ∙ tan 180�
=  259644 mm3 

 
 

𝑤𝑤𝑦𝑦 =
(1 − 𝑐𝑐4)𝐵𝐵2𝐵𝐵2

6�𝐵𝐵 + 𝑐𝑐2�𝐵𝐵𝐵𝐵 cot𝛽𝛽�
=

(1 − 0.84)1002 ∙ 2002

6�200 + 0.82√100 ∙ 200 ∙ cot 180�
=  109704 mm3 
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𝑐𝑐 =
𝐵𝐵
2
�1 − �

(𝐵𝐵𝐵𝐵2 − 6𝑤𝑤𝑧𝑧)3

𝐵𝐵𝐵𝐵5�𝐵𝐵𝐵𝐵2 − 6𝑤𝑤𝑦𝑦�
8

� =
200

2
�1 − �

(100 ∙ 2002 − 6 ∙ 259644)3

100 ∙ 2005(200 ∙ 1002 − 6 ∙ 109704)
8

� =  12.64 mm 

 
 

𝛿𝛿 =
𝐵𝐵
2
�1 − �

(𝐵𝐵𝐵𝐵2 − 6𝑤𝑤𝑦𝑦)3

𝐵𝐵𝐵𝐵5(𝐵𝐵𝐵𝐵2 − 6𝑤𝑤𝑧𝑧)
8

� =
100

2
�1 − �

(200 ∙ 1002 − 6 ∙ 109704)3

200 ∙ 1005(100 ∙ 2002 − 6 ∙ 259644)
8

� =  4.21 mm 

 

Maximum normal stress taken place in the RHS has been found to be 162 MPa, as given below. 

 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀cos𝛽𝛽
𝑊𝑊𝑧𝑧

+ 𝑀𝑀sin𝛽𝛽
𝑊𝑊𝑦𝑦

= 25∙106∙cos180

259644
+ 25∙106∙sin180

109704
 = 162 MPa = 𝜎𝜎𝑦𝑦

𝑆𝑆
 

 

 
Figure 4. The variation of maximum normal stress with oblique bending moment angle of 𝛽𝛽 

 

Note that the identical result for maximum normal stress above can also be obtained by using Eq.19 that has been 

previously derived to identify the extremums of maximum normal stress. By using Eq.19, maximum normal stress 

has been calculated as given below.  

 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 6𝑀𝑀
(1−𝑐𝑐4)𝐻𝐻2𝐵𝐵2

�𝐵𝐵 sin𝛽𝛽 + 𝐵𝐵 cos𝛽𝛽 + 𝑐𝑐2�2𝐵𝐵𝐵𝐵 sin 2𝛽𝛽� = 6∙25∙106

(1−0.84)∙2002∙1002
�200 ∙

sin 180 + 100 ∙ cos 180 + 0.82�2 ∙ 200 ∙ 100 ∙ sin(2 ∙ 180)� = 162 MPa. 
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The second optimal design problem dealt with is the case in which the oblique bending moment angle is constant 

and equal to 𝛽𝛽 = 30°. Thus, the following calculations are associated with the solution of the referred problem. 

First, the optimum section modulus of the RHS about z and y axes have been determined for 𝛽𝛽 = 30° by using 

Eq.12 and Eq.13, respectively, as follows:  

 

𝑤𝑤𝑧𝑧 = (1−𝑐𝑐4)𝐵𝐵2𝐻𝐻2

6�𝐵𝐵+𝑐𝑐2�𝐵𝐵𝐻𝐻 tan𝛽𝛽�
= (1−0.84)1002∙2002

6�100+0.82√100∙200 ∙tan 300�
 = 233213 mm3 

 
 

𝑤𝑤𝑦𝑦 = (1−𝑐𝑐4)𝐵𝐵2𝐻𝐻2

6�𝐻𝐻+𝑐𝑐2�𝐵𝐵𝐻𝐻 cot𝛽𝛽�
= (1−0.84)1002∙2002

6�200+0.82√100∙200 ∙cot300�
 = 123340 mm3 

 

Second, the optimum design variables of  𝑐𝑐 and 𝛿𝛿 have been specified by means of Eq.14 and Eq.15, respectively, 

as given below. 

 

𝑐𝑐 = 𝐻𝐻
2
�1 − �

(𝐵𝐵𝐻𝐻2−6𝑤𝑤𝑧𝑧)3

𝐵𝐵𝐻𝐻5�𝐻𝐻𝐵𝐵2−6𝑤𝑤𝑦𝑦�
8 � = 200

2
�1 − � (100∙2002−6∙233213)3

100∙2005(200∙1002−6∙123340)
8 � = 9.85 mm  

 
 

𝛿𝛿 = 𝐵𝐵
2
�1 − � (𝐻𝐻𝐵𝐵2−6𝑤𝑤𝑦𝑦)3

𝐻𝐻𝐵𝐵5(𝐵𝐵𝐻𝐻2−6𝑤𝑤𝑧𝑧)
8 � = 100

2
�1 − � (200∙1002−6∙123340)3

200∙1005(100∙2002−6∙233213)
8 � = 5.63 mm 

 

Third, in order to make sure of the section modulus-related calculations above, the determined optimum values of 

𝑤𝑤𝑧𝑧  and 𝑤𝑤𝑦𝑦  have been verified using both Eq.5 and Eq.6 which have been previously derived for the determination 

of the section modulus of the RHS, as given below. 

 

𝑤𝑤𝑧𝑧 =
𝐵𝐵𝐵𝐵2

6
�1 − �1 −

2𝛿𝛿
𝐵𝐵
� �1 −

2𝑐𝑐
𝐵𝐵
�
3

� =
100 ∙ 2002

6
�1 − �1 −

2 ∙ 5.63
100

� �1 −
2 ∙ 9.85

200
�
3

� = 233230 𝑚𝑚𝑚𝑚3 

 

𝑤𝑤𝑦𝑦 =
𝐵𝐵𝐵𝐵2

6
�1 − �1 −

2𝑐𝑐
𝐵𝐵
� �1 −

2𝛿𝛿
𝐵𝐵
�
3

� =
200 ∙ 1002

6
�1 − �1 −

2 ∙ 9.85
200

� �1 −
2 ∙ 5.63

100
�
3

� =  123341 𝑚𝑚𝑚𝑚3 

 

Finally, the maximum normal stress occurring in the cross-section of the RHS has been found as follows: 
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𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀cos𝛽𝛽
𝑊𝑊𝑧𝑧

+ 𝑀𝑀sin𝛽𝛽
𝑊𝑊𝑦𝑦

= 25∙106∙cos300

233230
+ 25∙106∙sin300

123341
 = 194.17 MPa 

 

The maximum normal stress has been further calculated by using Eq.19 to validate the above result, as given 

below.  

 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 6𝑀𝑀
(1−𝑐𝑐4)𝐻𝐻2𝐵𝐵2

�𝐵𝐵 sin𝛽𝛽 + 𝐵𝐵 cos𝛽𝛽 + 𝑐𝑐2�2𝐵𝐵𝐵𝐵 sin 2𝛽𝛽� = 6∙25∙106

(1−0.84)∙2002∙1002
�200 ∙

sin 300 + 100 ∙ cos 300 + 0.82�2 ∙ 200 ∙ 100 ∙ sin(2 ∙ 300)� = 194.18 MPa. 

 

Based on the determined maximum normal stress of 194.18 MPa, a designer is suggested to select one of the most 

suitable materials with a higher yield strength than 194.18 MPa for a robust and cost-effective design. 

As a summary of this section, two distinct optimal design problems have been solved by applying the derived 

analytical expressions to the problems step by step. The analytical expressions, which have been derived and well-

documented for use in the optimal design of the RHSs subjected to oblique bending, can be easily used by any 

designer who encounters similar design cases in industrial applications. 

 

IV. FINITE ELEMENT MODELING 

Aiming to validate the obtained analytical results, finite element analyses have been implemented on the RHS 

subjected to oblique bending using the finite element code of Abaqus. The grid geometries of the RHSs have been 

meshed using the incompatible mode eight-node brick elements, designated C3D8I [28]. Using this element type 

in such numerical implementations in which linear elements are subject to bending is highly recommended for 

high accuracy [28]. Particularly, the C3D8I element removes shear locking as well as significantly reducing 

volumetric locking [28].  The geometric nonlinearity option in Abaqus has been activated during the numerical 

analyses because of the nonlinear geometry of the RHSs. The finite element model of the RHS under oblique 

bending including the imposed boundary conditions and bending moments is depicted in Fig.5. The elastic and 

plastic mechanical properties of the RHS material given below [26, 27] have been successfully introduced to the 

finite element model to predict the deformation behavior of the RHS subject to the oblique bending moment. 

 

E=209000 MPa,  ν = 0.3, and  𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  = 290 MPa. 

 

The boundary conditions and bending moments have been applied to the reference points defined at the geometric 

center of both ends, as shown in Fig.5. These imposed boundary conditions and loads have been transferred from 

the reference points to the RHS via the defined kinematic couplings [4, 29]. After studying a mesh convergence, 

an average number of elements of 55680 corresponding to a number of nodes of 70795 have been decided to use 
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in the numerical implementations. The result of the mesh convergence study obtained for the RHS with equal wall 

thicknesses (δ=t=7 mm) subject to the oblique bending moment applied at 𝛽𝛽 = 45.75° is illustrated in Fig. 9. As 

comprehended from the results presented in Fig.9, the numerical results start to converge when the finite element 

model comprises 52800 elements with an average size of 2.23. Therefore, this mesh convergence study has given 

a concrete idea of whether the solution converged or not [30, 31]. 

The numerical analyses have been first performed to verify the analytical results reported in Section 3. After the 

validation of the results given in Section 3, the finite element analysis has also been carried out to validate the 

analytical results for some of the oblique bending moment angles documented in Table 1, in order to be completely 

sure that the analytical results are validated. 

 
 

 
 

Figure 5. The finite element model of the RHS under oblique bending 

 
 

V. RESULTS AND VALIDATION 

The numerically obtained effective stress contour of the RHS subjected to an oblique bending moment at the angle 

of 180 is depicted in Fig. 6. Previously, the maximum effective stress for this case has been analytically found to 

be 162 MPa. As can be seen in Fig.6, the maximum effective stress extracted from the numerical analysis has also 

been found to be 162 MPa, implying that the analytical results are in an identical agreement with the numerical 

prediction. 
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                                                               (a)                                               (b) 
Figure 6. Maximum effective stress contour of the RHS under oblique bending (𝑐𝑐 = 12.64 𝑚𝑚𝑚𝑚,𝛿𝛿 = 4.21 𝑚𝑚𝑚𝑚, 𝑐𝑐𝑐𝑐𝑎𝑎 𝛽𝛽= 180), (a) Cross-
sectional view, (b) Isometric view 

 
Previously, the ranges of angles to which the oblique bending moment of M is allowed to be applied have been 

determined to be (0° – 18°) and (86° - 90°), as depicted in Fig.4. Nevertheless, the ranges of angles of (0° – 3°) and 

(78° - 90°) are not the viable ranges to which the oblique bending moment can be applied since the flange thickness 

takes a negative value in the range of (0° – 3°) as well as the web thickness in the range of (78° - 90°). Therefore, 

the oblique bending simulation has been performed for the angle of 18°. As seen in Fig.4, the RHS subjected to 

oblique bending in the interval of 18° < 𝛽𝛽 < 86° does not meet the defined strength requirement of  𝜎𝜎𝑦𝑦
𝑆𝑆

 = 162 MPa 

since maximum bending stresses occurring in the RHS are higher than the allowable stress of 162 MPa in this 

interval.  

Fig.7 shows the effective stress contour of the RHS imposed to an oblique bending moment at the angle of 30°. 

The maximum effective stress has been predicted to be 194.4 MPa, as seen in Fig.7. For this optimal design 

problem, the maximum effective stress has been calculated to be 194.17 MPa using the derived expressions earlier. 

Thus, a very insignificant error ratio of 0.14% has been found between the numerical predictions and analytical 

calculations. 

By means of the above simulations, the analytical solutions of the optimum design problems documented under 

Section 3 have been verified. Additional simulations have been performed to predict the oblique bending response 

of the RHS for some of the different angles given in Table 1, in order to make sure of the verification of the 

developed analytical procedure. 

As can be seen in Fig.7 and Fig.8, the maximum effective stress takes place in the upper left and lower right corners 

of the RHS. The stress distribution in the RHS resulting from the oblique bending moment has been determined 

by several researchers [32–34]. It has been seen that the stress distribution in the RHS (Fig.7, and Fig. 8) extracted 

from the numerical analyses is in good agreement with the results reported by those studies [32–34]. 
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                                                 (a)                                      (b) 
Figure 7. Maximum effective stress contour of the RHS under oblique bending (t=9.85 mm,δ=5.63 mm, and β= 30°), (a) Cross-sectional view, 
(b) Isometric view 

 

The effective stress contours of the RHS subjected to oblique bending at various moment angles ranging from 10° 

to 70° are illustrated in Fig.8. In terms of the maximum effective stress, the numerically predicted results are 

favorably compared to the analytical results as shown in Fig.10. 

As deduced from both Fig.2 and Fig.8, increasing the oblique bending moment angle (𝛽𝛽) leads to a decrease in 

the flange thickness of RHS (𝑐𝑐) but an increase in the web thickness of RHS (𝛿𝛿). This can be mainly due to the 

following reasons. 

According to the angle of the applied moment, the graphics presented in Fig.2 can be divided into four distinct 

regions including  0° ≤ 𝛽𝛽 < 30° ,  3° ≤ 𝛽𝛽 ≤ 45.75° ,  45.75° < 𝛽𝛽 < 78°  and 78° ≤ 𝛽𝛽 ≤ 90°. 

In the region where the angle ranges from 0° to 3°, the optimum cross-section parameter of δ takes negative values 

signifying that this angle range is not feasible to apply the oblique bending moment. 

In the angle range from 3° to 45.75°, the optimum flange thickness of the RHS is always larger than the optimum 

web thickness(𝑐𝑐 > 𝛿𝛿). This is because, since Mz >My in this range, the optimum resistance required for major and 

minor axis bending is mostly met by the flange segments [35]. In addition, it should be noted that the flange and 

web thicknesses are equal to 20 mm and 0 mm, respectively when 𝛽𝛽 = 3°. This actually implies that the RHS 

consists of only the flange segments at this angle  𝛽𝛽 = 3°. In this case, the optimum resistance required for major 

and minor axis bending is completely compensated by the flange segments since the moment of Mz is much larger 

than the moment of My (𝑀𝑀𝑧𝑧 ≫ 𝑀𝑀𝑦𝑦) [32, 36, 37]. 

Furthermore, the flange thickness becomes equal to the web thickness (𝛿𝛿 = 𝑐𝑐 = 7 ) when the 𝛽𝛽 reaches its value 

of 45.75° (𝑀𝑀𝑧𝑧 ≅ 𝑀𝑀𝑦𝑦). This suggests that the deformation mechanism of the RHS under oblique bending is equally 

controlled by both segments [32, 36, 37]  
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Figure 8. Effective stress contours of the RHS under oblique bending with different moment angles 
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In the angle range from 45.75° to 78°, the RHS is under 𝑀𝑀𝑦𝑦-dominated bending which results in a higher thickness 

in the web than the flange. In other words, the flange thickness is always less than the web thickness in this region. 

The web segments play a primary role in providing the optimum resistance to major and minor axis bending. 

In the region where the angle ranges from 78° to 90°, the flange takes negative thickness values as illustrated in 

Fig.2, which indicates that applying the oblique bending moment in this angle range is not practicable for optimum 

design. Besides this, the flange and web thickness at 𝛽𝛽 = 78° are equal to 0 and 10 mm, respectively(𝑐𝑐 = 0 and 

𝛿𝛿 = 10𝑚𝑚𝑚𝑚). At this angle of 78°, the flange segments of the RHS begin to vanish, pointing out that the RHS 

comprises only the web segments. In essence, the deformation mechanism of the RHS is totally controlled by the 

web segments when 𝑀𝑀𝑦𝑦 ≫ 𝑀𝑀𝑧𝑧 [32, 36, 37] 

 

 

Figure 9. The result of the mesh convergence study obtained for the RHS with equal wall thicknesses (𝛿𝛿 = 𝑐𝑐 = 7 𝑚𝑚𝑚𝑚) subject to the oblique 
bending moment applied at 𝛽𝛽 = 45.750 

 
The result of the mesh convergence study obtained for the RHS with an identical wall segment thickness ( 𝛿𝛿 =

𝑐𝑐 = 7 𝑚𝑚𝑚𝑚) subjected to the oblique bending moment imposed at 𝛽𝛽 = 45.75° is illustrated in Fig.9. It is clearly 

seen in Fig. 9 how the simulation results converge with the number of elements used in the numerical analysis. 

The number of elements used in finite elements plays an important role in calculation accuracy. Therefore, it is 

imperative to determine how many elements should be used in the simulations by performing a mesh convergence 

study. 

As illustrated in Fig.10, accomplishing a very good agreement between the analytical and numerical results 

confirms the developed analytical procedure, and therefore the analytical expressions derived in the context of this 

study.   

Nevertheless, the numerical results insignificantly deviate from the theoretical results as the oblique bending 

moment angle 𝛽𝛽 increases, as seen in Fig.10. At the 𝛽𝛽=70°, the discrepancy between the numerical and theoretical 

results becomes slightly obvious. As noted before, as the oblique bending moment angle 𝛽𝛽 increases, the 
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component of the oblique bending moment of the y-axis ( 𝑀𝑀𝑦𝑦) enhances, while its component about the z-axis ( 

𝑀𝑀𝑧𝑧) decreases. These two moment components are equal at 𝛽𝛽=45°, in addition, 𝑀𝑀𝑦𝑦 is always larger than 𝑀𝑀𝑧𝑧 for 

the values of 𝛽𝛽 larger than 45°. This signifies that the web segments of the RHS become more prone to bending 

with increasing oblique bending moment angle. The reason for the insignificant inconsistency found between the 

numerical and analytical results may be that the side walls become more susceptible to bending due to the 

increasing angle. 

 

 

 
Figure 10. The comparison of the analytical maximum effective stress with the numerical predictions for different oblique bending moment 
angles 

 
VI. CONCLUDING REMARKS 

The following conclusions have been drawn from the findings of this study. 

The analytical expressions which define the optimum cross-section dimensions of the RHS subjected to oblique 

bending moment have been derived and successfully applied to the two distinct optimal design problems. The 

analytical procedure has been developed based on the aspect of minimizing the maximum effective stress on the 

cross-section of RHS caused by the applied oblique bending moment. Since the RHSs addressed in this study have 

been assumed to be produced by hollowing out the rectangular solid sections at different cross-section area 

extraction ratios, the analytical procedure allows specifying the optimal cross-section dimensions for different 

cross-section area subtraction ratios. 

After the subtle mathematical calculations, the derived analytical expressions have been made available to practical 

engineering in a simple and understandable math form for use in real design applications. 

The cost-effective design can be achieved following the steps of the analytical procedure for two distinct optimal 

design cases.  
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 If a manufacturing material of the RHS is known prior to the design, the analytical procedure first defines the 

limit values of the oblique bending moment angle and then, based on this, minimizes the maximum effective stress 

by finding the optimum values of the cross-section design variables.     

If a production material of the RHS is not known but the oblique bending moment angle is given before the design, 

the analytical procedure optimizes the cross-section variables to minimize the maximum effective stress by taking 

into account the given bending moment angle. In this optimal design case, one of the most cost-effective materials 

offering a higher yield strength than the found maximum effective stress can be selected from a relevant table. The 

application steps of the derived analytical expressions to these two different design problems have been well 

documented under Section 3, in order to give a deep insight into the analytical procedure. By following the 

analytical procedure steps presented in Section 3, the optimal design can be achieved by any designer who 

encounters one of the two aforementioned problems. 

The analytical procedure has been validated against the numerical results that have been extracted from the finite 

element analysis carried out in Abaqus engineering software. 

In essence, the analytical procedure developed within the scope of this study has helped paved the way to meet the 

need for analytical procedures related to this field. 

 

REFERENCES 

[1] Chavan V, Nimbalkar V, Jaiswal A (2007) Economic Evaluation of Open and Hollow Structural Sections in 
Industrial Trusses. Int J Innov Res Sci Eng Technol 3297:2319–8753 
[2] Mendoza JMG, Montes SA, Lomelí JJ, Campos JAF (2017) Size optimization of rectangular cross section 
members subject to fatigue constraints. J Theor Appl Mech 55:547–557 
[3] Wardenier J, Packer JA, Zhao X-L, Van der Vegte GJ (2002) Hollow sections in structural applications. 
Bouwen met staal Rotterdam,, The Netherlands 
[4] Dundar MA, Nuraliyev M, Sahin DE (2022) Determination of Optimal Dimensions of Polymer-Based 
Rectangular Hollow Sections Based on Both Adequate-Strength and Local Buckling Criteria: Analytical and 
Numerical Study. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2022.2139720 
[5] Shigley JE, Mitchell LD, Saunders H (1985) Mechanical engineering design 
[6] Wardenier J, Dutta D, Yeomans N (1995) Design guide for structural hollow sections in mechanical 
applications. Verlag TÜV Rheinland 
[7] Weaver PM, Ashby MF (1996) The Optimal Selection of Material and Section-shape. J Eng Des 7(2):129–
150. https://doi.org/10.1080/09544829608907932 
[8] Deshpande VS, Fleck NA (2001) Collapse of truss core sandwich beams in 3-point bending. Int J Solids Struct 
38(36):6275–6305. https://doi.org/https://doi.org/10.1016/S0020-7683(01)00103-2 
[9] Wicks N, Hutchinson JW (2001) Optimal truss plates. Int J Solids Struct 38(30):5165–5183. 
https://doi.org/https://doi.org/10.1016/S0020-7683(00)00315-2 
[10] Ashby M, Evans A, Fleck N, Gibson L, Hutchinson J, Wadley HNG (2002) Metal Foams: a Design Guide. 
Mater Des 23:119. https://doi.org/10.1016/S0261-3069(01)00049-8 
[11] Zok FW, Rathbun HJ, Wei Z, Evans AG (2003) Design of metallic textile core sandwich panels. Int J Solids 
Struct 40(21):5707–5722. https://doi.org/https://doi.org/10.1016/S0020-7683(03)00375-5 
[12] Wadley HNG, Fleck NA, Evans AG (2003) Fabrication and structural performance of periodic cellular metal 
sandwich structures. Compos Sci Technol 63(16):2331–2343. https://doi.org/https://doi.org/10.1016/S0266-
3538(03)00266-5 
[13] Zenkert D (1995) An Introduction to Sandwich Construction. Engineering Materials Advisory Services 
[14] Gibson LJ (2003) Cellular Solids. MRS Bull 28(4):270–274. https://doi.org/DOI: 10.1557/mrs2003.79 
[15] Ivanovich SA (2016) Оптимальные размеры прямоугольного сечения бруса при косом изгибе. Вестник 
евразийской науки 8(2 (33)):134 
[16] Wang W, Qiu X (2018) Analysis of the Carrying Capacity for Tubes Under Oblique Loading. J Appl Mech 
85(3). https://doi.org/10.1115/1.4038921 
[17] Chen DH, Masuda K (2015) Estimation of Collapse Load for Thin-Walled Rectangular Tubes Under Bending. 



 
Oblique bending                                                              J. Innovative Eng. Nat. Sci. vol. 4, no.1, pp. 198-219, 2024. 
 

219 
 

J Appl Mech 83(3). https://doi.org/10.1115/1.4032159 
[18] Paulsen F, Welo T (2001) Cross-sectional deformations of rectangular hollow sections in bending: Part II — 
analytical models. Int J Mech Sci 43(1):131–152. https://doi.org/https://doi.org/10.1016/S0020-7403(99)00107-1 
[19] Su R, Tangaramvong S, Van TH (2023) An BESO Approach for Optimal Retrofit Design of Steel 
Rectangular-Hollow-Section Columns Supporting Crane Loads. Buildings 13(2):328 
[20] Kuhn J, Packer JA, Fan Y (2019) Rectangular hollow section webs under transverse compression. Can J Civ 
Eng 46(9):810–827 
[21] Bedair O (2015) Novel design procedures for rectangular hollow steel sections subject to compression and 
major and minor axis bending. Pract Period Struct Des Constr 20(4):4014051 
[22] Rincón-Dávila D, Alcalá E, Martín Á (2022) Theoretical–experimental study of the bending behavior of thin-
walled rectangular tubes. Thin-Walled Struct 173:109009. 
https://doi.org/https://doi.org/10.1016/j.tws.2022.109009 
[23] Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic press 
[24] Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete 
continuous optimization and its applications to mechanical design 
[25] Ito K, Kunisch K (2008) Lagrange multiplier approach to variational problems and applications. SIAM 
[26] Erasmus LA, Smaill JS (1990) The Mechanical Properties of BHP Structural Sections. Trans Inst Prof Eng 
New Zeal Civ Eng Sect 17(1):19–25 
[27] Mahendran M (1996) The modulus of elasticity of steel-is it 200 gpa? 
[28] Dassault Systèmes (2012) Abaqus Analysis User’s Manual 6.12. Documentation 
[29] Sellittoa A, Borrelli R, Caputo F, Riccio A, Scaramuzzino F (2011) Methodological approaches for kinematic 
coupling of non-matching finite element meshes. Procedia Eng 10:421–426 
[30] Zhao W, Ji S (2019) Mesh convergence behavior and the effect of element integration of a human head injury 
model. Ann Biomed Eng 47:475–486 
[31] Tso C-F, Molitoris DP, Snow S (2012) Propped cantilever mesh convergence study using hexahedral 
elements. Packag Transp Storage Secur Radioact Mater 23(10–2):30–35 
[32] Gardner L, Fieber A, Macorini L (2019) Formulae for Calculating Elastic Local Buckling Stresses of Full 
Structural Cross-sections. Structures 17:2–20. https://doi.org/https://doi.org/10.1016/j.istruc.2019.01.012 
[33] Vieira L (2018) On the local buckling of RHS members under axial force and biaxial bending. Thin-Walled 
Struct 129:10–19. https://doi.org/10.1016/j.tws.2018.03.022 
[34] Shen H-X (2019) A new simple method for the strength of high-strength steel thin-walled box columns 
subjected to axial force and biaxial end moments. Adv Civ Eng 2019 
[35] Razzaq Z, McVinnie WW (1982) Rectangular tubular steel columns loaded biaxially. J Struct Mech 
10(4):475–493 
[36] Bock M, Theofanous M, Dirar S, Lipitkas N (2021) Aluminium SHS and RHS subjected to biaxial bending: 
Experimental testing, modelling and design recommendations. Eng Struct 227:111468 
[37] Zhao O, Rossi B, Gardner L, Young B (2015) Behaviour of structural stainless steel cross-sections under 
combined loading–Part II: Numerical modelling and design approach. Eng Struct 89:247–259 
 


	I. INTRODUCTION
	II. Description of the Optimal Design Problem and Theoretical Approach
	III. Optimum Design Examples with the Developed Analytical Procedure
	IV. Finite Element Modeling
	V. Results and Validation
	VI. Concluding Remarks

