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Abstract 

 

Seawater level prediction is very important in terms of future planning of human living conditions, flood 

prevention and coastal construction. Nevertheless, it is hard to correctly predict the daily future of sea 

water level because of the atmospheric conditions and effects. Therefore, Random Forest (RF), Support 

Vector Regression (SVR) and K-Nearest Neighbor (KNN) methods were used for the prediction of 

seawater level on Erdemli coast of Mersin in this study. In this paper, root mean square error (RMSE) and 

coefficient of determination (R2) were applied as model evaluation criteria. In addition, 15-minute sea 

water level data of Erdemli Station for approximately 18 months were obtained and used as is. The results 

depict that Random Forest model can predict the seawater level for 1st and 2nd days with R2 of 0.80, 0.63, 

respectively, KNN model can predict for 1st and 2nd days with R2 of 0.80, 0.64, respectively, and SVR 

model can predict for 1st and 2nd days with R2 of 0.77, 0.60, respectively. 
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1. Introduction 

 

Due to climate change and human endeavors, seawater 

level around the World has increased significantly in 

recent years [1-3]. Accurate prediction of sea level 

circulation is an important phenomenon for coastal 

areas with increasing population [3-5]. Because, sea 

level rise destructively influences ecological habitat and 

social economy of coastal zones [6,7]. 

 

There are commonly two approaches to predicting water 

levels; physically based modeling and machine learning. 

Unlike physically based models that need various 

hydrological and geomorphological data, machine 

learning methods only need historical water level data to 

predict future vision of water level. This makes machine 

learning methods more cost-effective and time-efficient 

than physically based models. For this reason, machine 

learning methods are widely used in predicting seawater 

level [8]. 

 

Machine learning methods are generally employed in 

ocean engineering, particularly in predicting sea level 

change [3,9,10]. Imani et al. [11] predicted Caspian Sea 

level using satellite altimetry data and they employed 

SVR and gene expression programming. Kişi et al. [12] 

studied on daily water level prediction in Lake Urmia 

by applying hybrid of SVR and firefly algorithm. KNN 

was used to develop a model to predict the water level 

of the river during typhoons [13]. Khaledian et al. [14] 

estimated the Caspian Sea level using a 34-year water 

level dataset using SVR and ANN. Altunkaynak and 

Kartal [15] applied SVR and KNN methods to predict 

the sea level of the Bosphorus for up to 7 days lead 

time. Karsavran et al. [16] used SVR to predict seawater 

level oscillations of the Bosphorus. Sea level 

circulations of western Peninsular Malaysia were 

predicted using SVR [17]. Alshouny et al. [18] used 

both SVR and KNN methods for sea level prediction. 

Guyennon et al. [19] applied RF to predict the water 

level of Lake Bracciano. Karsavran [20] applied SVR, 

ANN and MLR models to forecast the Black Sea coast 

of Sinop. 

 

As seen above, there are many studies in this field, but 

there is a lack of research on the future vision of sea 

water level oscillations on the Mersin Erdemli coast. In 

addition, comparing the prediction performances of RF, 

SVR and KNN methods is a new phenomenon on the 

Mersin coast. I evaluate the future prediction 

performance based on the performances of these 

machine learning methods. 
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Figure 1. The location of the Erdemli Tide Gauge Station. 

 

 
 

Figure 2. Time series of seawater level in Erdemli station. 

 

2. Materials and Methods 

 

2.1. Data and Study Area 

 

In this study, measurements of the Erdemli tide gauge 

station (Figure 1), located in the northeast of the 

Mediterranean, were used. Turkish Sea Level 

Monitoring System (TUDES, 

https://tudes.harita.gov.tr/) provided sea level data at 15-

minute time intervals. Seawater level has been measured 

at Erdemli Station since May 2003, and 18-month 

measurements from February 2021 to August 2022 were 

used in this study (Figure 2). Linear interpolation  

method was employed to estimate the missing data. In 

this study, 30% of the total data was used for testing and 

the remaining 70% was used for training all models 

[16]. Data separation was done randomly and the same 

test and training data were used for each model run. 

 

2.2. Methods 

 

2.2.1. Random Forest 

 

Random Forest (RF), one of the ensemble machine 

learning methods, is a packing (bootstrap collection) 

model. RF creates multiple regression trees constructed 

independently using a bootstrap sample of the dataset 

[19,21,22]. Classification and regression trees (CART) 

algorithm is used to create decision trees. During 

creating these decision trees, a wide variety of randomly 

chosen variables are used by the random subspace 

method. Accordingly, the best-branched variable in each 

leaf node is decided by the random sub-space technique. 

The prediction results are introduced by RF according to 

the individual results of the decision trees and overall 

results are adjusted according to the average predictions 

of the decision trees [23]. 
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2.2.2. Support Vector Regression 

 

SVR is a statistical learning-based neural network used 

in various engineering regression problems [24]. It has a 

hyperplane-driven machine learning algorithm to 

partition data from one dimension into higher 

dimensional space [18]. SVR solves the regression 

problems with Equation 2.1: 

 

1

( ) . ( )
n

i

i

f x w X b
=

= +                                (2.1) 

 

where w=weight, ∅i(X)= Kernel function and b=bias. 

The optimal objective function is shown in Equation 

2.2: 
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The constraint conditions are depicted in Equation 2.3: 
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where C= cost factor, ε= allowable error, ξi and ξi
* are 

relaxation numbers. Both will be greater than zero if 

there are some prediction errors, otherwise both will be 

zero [16,25]. 

 

2.2.3. K-Nearest Neighbor 

 

K-Nearest Neighbor (KNN) method is one of the most 

commonly applied method in machine learning studies. 

The KNN method is a modeling methodology for 

regression and classification based on the value of the K 

parameter, which estimates the distance between the 

sample features. The distance can be estimated applying 

Euclidean, Minkowski and Manhattan distance 

equidistant formulas [26]. In addition to being a plain 

and easy method to put into action, the KNN is also 

very effective in predicting yield. It requires no 

assumptions about data distribution.  Due to example-

based learning algorithm, incremental learning is easily 

achieved, requiring no training before making 

predictions. Thus, KNN has commonly been used for 

various supervised learning tasks [3]. 

 

2.2.4. Model Evaluation Criteria 

 

Model performances were acquired from two different 

numerical error statistics. These are the coefficient of 

determination (R2) and the root mean square error 

(RMSE) depicted in Equation 2.4 and Equation 2.5, 

respectively. 
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where 𝑊𝐿𝑜(𝑖) and 𝑊𝐿𝑓(𝑖) are observed and forecasted 

seawater level, respectively. 𝑊𝐿0′ and 𝑊𝐿𝑓′ shows their 

averages, and n is the number of data [27-28]. 

 

3. Results and Discussion 

 

In this study, the performances of RF, KNN and SVR 

for sea level forecast of Mersin Erdemli coast were 

compared for the next 4 days. First of all, the model 

input set combination is decided by applying RF. 

Comparison of input sets for the next day (t+1) 

prediction results of the RF model at Erdemli Station is 

shown in Table 1. 

 

The input values WL(t) and WL(t-1) increase the value 

of R2 to 0.80, while the next three values WL(t), WL(t-

1) and WL(t-2) reduce the performance of the RF. As a 

result, WL(t) and WL(t-1), which produced the highest 

performance, were used as inputs in all models. 

 

After decision on the input set, seawater level for 

Erdemli was estimated using the RF model for lead 

times of 1, 2, 3 and 4 days. Finally, R2 is 0.80 and 0.63 

for lead times of 1 and 2 days, respectively (Table 2). 

 

In the same way, the KNN was applied to estimate 

seawater level with related lead times [3]. Similar to the 

RF, the results are 0.80 and 0.64 of R2 for lead times of 

1 and 2 days, respectively (Table 2). 

 

Additionally, the SVR model was used to predict 

Erdemli's sea water level with specified lead times. In 

this model, Radial Basis Function (RBF) was applied as 

the Kernel function and the C parameter of the Kernel is 

1000 [16,29]. The best results of SVR model are 0.77 

and 0.60 of R2 for lead times of 1 and 2 days, 

respectively (Table 2). 

 

The results of the RF, KNN and SVR models show that 

the RF and KNN models have similar prediction 

performances, while the SVR model has  slightly worse 

prediction performance than the RF and KNN models. 

The RF and KNN models have the same performance in 

seawater level prediction with R2=0.80 and RMSE=0.07 

for 1-day lead time. Moreover, RF and KNN have 

similar prediction performances with R2=0.63 and 0.64, 

respectively, for 2-day lead time. Similarly, the SVR 
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model provides prediction performance with R2=0.77 

and 0.60 for 1 and 2 days of lead time, respectively. 

However, all model prediction performances decrease 

significantly at 3 and 4 days lead time (Table 2). 

Accordingly, RF and KNN models are more ideal than 

SVR in prediction seawater level in Mersin Erdemli for 

next 1 and 2 days. However, all models have no ability 

to accurately predict the seawater level for next 3 and 4 

days. 

 

Comparison of the RF, KNN and SVR prediction 

performances of the water level on the Mersin coast is 

helpful to choose the accurate method in the machine 

learning methods for future studies in the 

Mediterranean. Additionally, this research can be used 

to create a warning system against sudden increases in 

water levels in Mersin Erdemli. Long-term projections 

can also be produced according to the increase in water 

levels in Mersin coast. The results and the approach 

presented and used in this paper can be applied for the 

analysis of such phenomena. 

 

4. Conclusion 

  

In this article, RF and KNN models achieved higher 

determination coefficient R2 in predicting the sea water 

level at Mersin Erdemli coast for 1 and 2 days lead time, 

but SVR model gave slightly worse results than RF and 

KNN. However, the results of all models show that they 

have no capability to predict seawater level in Mersin 

Erdemli coast for the 3 and 4 day lead time. 

 

I believe that the results presented here can open new 

insights in modeling seawater level. Especially, the 

machine learning methods used in this paper can be 

applied to the other regions of the Mediterranean coast, 

including but not limited to Antalya, Hatay and Adana.

         

Table 1. Model performance of RF for sea level t+1 based on input sets. 

         Inputs               Prediction 

       (t = day)              (t = day) 

 RF KNN SVR 

RMSE                  R2 

     (m) 

RMSE                     R2 

     ( m)               

RMSE                  R2 

    ( m)               
WL(t)WL(t-1) 
WL(t)WL(t-1) 
WL(t)WL(t-1) 
WL(t)WL(t-1) 

WL(t+1) 

WL(t+2) 
WL(t+3) 
WL(t+4) 

0.07 

0.09 

0.11 

0.13 

     0.80 

     0.63 

     0.48 

     0.34 

       0.07 

       0.09 

       0.11 

       0.13 

0.80 

0.64 

0.49 

0.34 

0.07 

0.10 

0.11 

0.13 

        0.77 

        0.60 

        0.45 

        0.31 
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