

ERRATUM: "UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING TWO FINITE SETS IN C WITH FINITE WEIGHT " [KONURALP J. MATH., 2(2)(2014), 42-52.]

ABHIJIT BANERJEE AND GOUTAM HALDAR

First of all the statements of *Theorem 1.1* and *Theorem 1.2* should be the following.

Theorem 1.1. Let $S_1 = \{0, -a\frac{n-1}{n}\}$, $S_2 = \{z : z^n + az^{n-1} + b = 0\}$ where $n(\geq 7)$ be an integer and a and b be two nonzero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root. If f and g be two non-constant meromorphic functions having no simple pole such that $E_f(S_1, 0) = E_g(S_1, 0)$ and $E_f(S_2, 2) = E_g(S_2, 2)$, then $f \equiv g$. **Theorem 1.2.** Let S_i , i = 1, 2 and f and g be taken as in *Theorem 1.1* where $n(\geq 8)$ is an integer. If $E_f(S_1, 0) = E_g(S_1, 0)$ and $E_f(S_2, 1) = E_g(S_2, 1)$, then $f \equiv g$.

Next by calculation it can be shown that in Lemma-2.2 we would always have p = 0. So in Lemma-2.2 we should replace $\overline{N}(r, 0; f \geq p+1) + \overline{N}(r, -a\frac{n-1}{n}; f \geq p+1)$ by $\overline{N}(r, 0; f) + \overline{N}(r, -a\frac{n-1}{n}; f)$. In that case the statement of the Lemma-2.2. should be replaced by

Lemma-2.2. Let S_1 and S_2 be defined as in *Theorem 1.1* and F, G be given by (2.1). If for two non-constant meromorphic functions f and g, $E_f(S_1, 0) = E_g(S_1, 0)$, $E_f(S_2, 0) = E_g(S_2, 0)$, where $H \neq 0$ then

$$\begin{split} N(r,H) &\leq \overline{N}(r,0;f) + \overline{N}\left(r,-a\frac{n-1}{n};f\right) + \overline{N}_*(r,1;F,G) \\ &+ \overline{N}(r,\infty;f) + \overline{N}(r,\infty;g) + \overline{N}_0(r,0;f') + \overline{N}_0(r,0;g'), \end{split}$$

where $\overline{N}_0(r, 0; f')$ is the reduced counting function of those zeros of f' which are not the zeros of $f\left(f - a\frac{n-1}{n}\right)(F-1)$ and $\overline{N}_0(r, 0; g')$ is similarly defined.

Since throughout the paper we would have p = 0, so Lemma-2.5 used in the paper is redundant.

There is also a gap in the analysis of the proof of *Lemma-2.7*. But the lemma can be proved in a more simpler way with the support of Corollary of Theorem

4.1, p. 216, { H.X. Yi and C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press and Kluwer Academic Publishers (2003)}, when $n \ge 3$. As this supposition will not hamper the statement as well as the proof of the main theorem, we replace the old *Lemma-2.5* as used in the main paper by the following Corollary of Theorem 4.1, p. 216, { H.X. Yi and C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press and Kluwer Academic Publishers (2003)}.

Lemma-2.5. Let f, g be two non-constant meromorphic functions. If f and g share four distinct values $0, 1, \infty, c$ CM and $c \neq -1, \frac{1}{2}, 2$, then $f \equiv g$.

In view of *Lemma-2.2*, *Lemma-2.6* will be changed which is given below in its corrected form.

Lemma-2.6. Let S_1 , S_2 be defined as in *Theorem 1.1* and F, G be given by (2.1). If for two non-constant meromorphic functions f and g, $E_f(S_1, 0) = E_g(S_1, 0)$ and $E_f(S_2, m) = E_g(S_2, m)$, where $1 \le m < \infty$ and $H \ne 0$, then

$$\begin{array}{l} (n+1) \left\{ T(r,f) + T(r,g) \right\} \\ \leq & 3 \left\{ \overline{N}(r,0;f) + \overline{N}\left(r,-a\frac{n-1}{n};f\right) \right\} + 2\{\overline{N}(r,\infty;f) + \overline{N}(r,\infty;g)\} \\ & \quad + \frac{1}{2} \left[N(r,1;F) + N(r,1;G) \right] - \left(m - \frac{3}{2}\right) \overline{N}_*(r,1;F,G) + S(r,f) + S(r,g). \end{array}$$

Proof. By the second fundamental theorem we get

$$(2.4) \qquad (n+1)\{T(r,f)+T(r,g)\} \\ \leq \overline{N}(r,1;F) + \overline{N}(r,0;f) + \overline{N}\left(r,-a\frac{n-1}{n};f\right) + \overline{N}(r,\infty;f) + \overline{N}(r,1;G) + \overline{N}(r,0;g) \\ + \overline{N}\left(r,-a\frac{n-1}{n};g\right) + \overline{N}(r,\infty;g) - N_0(r,0;f') - N_0(r,0;g') + S(r,f) + S(r,g).$$

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we note that

$$\begin{aligned} (2.5) & \overline{N}(r,1;F) + \overline{N}(r,1;G) \\ & \leq \frac{1}{2} \left[N(r,1;F) + N(r,1;G) \right] + N(r,1;F \mid = 1) - \left(m - \frac{1}{2} \right) \overline{N}_*(r,1;F,G) \\ & \leq \frac{1}{2} \left[N(r,1;F) + N(r,1;G) \right] + \overline{N}(r,0;f) + \overline{N} \left(r, -a \frac{n-1}{n}; f \right) \\ & + \overline{N}(r,\infty;f) + \overline{N}(r,\infty;g) - \left(m - \frac{3}{2} \right) \overline{N}_*(r,1;F,G) + \overline{N}_0(r,0;f') + \overline{N}_0(r,0;g') \\ & + S(r,f) + S(r,g). \end{aligned}$$

Using (2.5) in (2.4) and noting that $\overline{N}(r,0;f) + \overline{N}\left(r,-a\frac{n-1}{n};f\right) = \overline{N}(r,0;g) + \overline{N}\left(r,-a\frac{n-1}{n};g\right)$ the lemma follows.

Corresponding to the Lemmas 2.5, corrected version of Lemma-2.7 would be as follows.

Lemma-2.7. Let f, g be two non-constant meromorphic functions such that $E_f(\{0, -a\frac{n-1}{n}\}, 0) = E_g(\{0, -a\frac{n-1}{n}\}, 0)$ then $f^{n-1}(f+a) \equiv g^{n-1}(g+a)$ implies $f \equiv g$, where $n \geq 3$ is an integer and a is a nonzero finite constant.

Proof. Since $E_f(\{0, -a\frac{n-1}{n}\}, 0) = E_g(\{0, -a\frac{n-1}{n}\}, 0)$, so from

$$f^{n-1}(f+a) \equiv g^{n-1}(g+a)$$

we have f, g share $(0, \infty), (-a, \infty)$ and (∞, ∞) . Again differentiating

$$f^{n-1}(f+a) \equiv g^{n-1}(g+a)$$

we have

$$nf^{n-2}(f + \frac{a(n-1)}{n})f' \equiv ng^{n-2}(g + \frac{a(n-1)}{n})g',$$

which implies f, g share $(-a\frac{n-1}{n}, \infty)$. It follows that $f_1 = \frac{f}{-a}, g_1 = \frac{g}{-a}$ share $(0, \infty), (\frac{n-1}{n}, \infty), (1, \infty)$ and (∞, ∞) . As $\frac{n-1}{n} \neq -1, \frac{1}{2}, 2$ when $n \ge 3$, so in view of Lemma 2.5, we have $f \equiv g$.

In view of *Lemma-2.2*, *Lemma-2.6* and *Lemma-2.7*, the proof of the main theorems will be changed. Below the corrected forms are given.

Proof of Theorem 1.1. Let F, G be given by (2.1). Then F and G share (1,3). We consider the following cases.

Case 1. Let $H \not\equiv 0$. Then using Lemma 2.6 for m = 2 and Lemma 2.4 we obtain

$$(3.1) \qquad (n+1) \left\{ T(r,f) + T(r,g) \right\} \\ \leq 3 \left\{ \overline{N}(r,0;f) + \overline{N} \left(r, -a \frac{n-1}{n}; f \right) \right\} + 2 \left\{ \overline{N}(r,\infty;f) + \overline{N}(r,\infty;g) \right\} \\ + \frac{1}{2} \left[N(r,1;F) + N(r,1;G) \right] - \frac{3}{2} \overline{N}_*(r,1;F,G) \\ + S(r,f) + S(r,g) \\ \leq 3 \left[T(r,f) + T(r,g) \right] + 2 \left[\frac{1}{2} \left\{ N(r,\infty;f) + N(r,\infty;g) \right\} \right] + \frac{1}{2} \left[N(r,1;F) + N(r,1;G) \right] \\ + S(r,f) + S(r,g) \\ \leq \left(\frac{n}{2} + 4 \right) \left\{ T(r,f) + T(r,g) \right\} + S(r,f) + S(r,g),$$

which gives a contradiction for $n \geq 7$.

Case 2 Let $H \equiv 0$. Now the conclusion of the theorem can be obtained from Lemmas 2.10, 2.8 and 2.7.

Proof of Theorem 1.2. Let F, G be given by (2.1). Then F and G share (1,3). We consider the following cases.

Case 1. Let $H \neq 0$. Then using Lemma 2.6, Lemma 2.9 for m = 1 and Lemma

170

$$2.4$$
 we obtain

$$\begin{array}{ll} (3.2) & (n+1) \left\{ T(r,f) + T(r,g) \right\} \\ & \leq & 3 \left\{ \overline{N}(r,0;f) + \overline{N} \left(r, -a \frac{n-1}{n};f \right) \right\} + 2 \{ \overline{N}(r,\infty;f) + \overline{N}(r,\infty;g) \} \\ & & + \frac{1}{2} \left[N(r,1;F) + N(r,1;G) \right] + \frac{1}{2} \overline{N}_*(r,1;F,G) + S(r,f) + S(r,g) \\ & \leq & 3 [T(r,f) + T(r,g)] + 2 [\frac{1}{2} \{ N(r,\infty;f) + N(r,\infty;g) \}] + \frac{1}{2} \left[N(r,1;F) + N(r,1;G) \right] \\ & & + \frac{1}{4} \left\{ \overline{N}(r,0;f) + \overline{N} \left(r, -a \frac{n-1}{n};f \right) + \overline{N}(r,0;g) + \overline{N} \left(r, -a \frac{n-1}{n};g \right) \right\} \\ & & + S(r,f) + S(r,g) \\ & \leq & \left(\frac{n}{2} + 4 + \frac{1}{2} \right) \{ T(r,f) + T(r,g) \} + S(r,f) + S(r,g), \end{array}$$

which leads to a contradiction for $n \ge 8$. We now omit the rest of the proof since the same is similar to that of *Theorem* 1.1.

171