Konuralp Journal of Mathematics
Volume 5 No. 2 Pp. 168-171 (2017) ©KJM

ERRATUM: "UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING TWO FINITE SETS IN C WITH FINITE WEIGHT " [KONURALP J. MATH., 2(2)(2014), 42-52.]

ABHIJIT BANERJEE AND GOUTAM HALDAR

First of all the statements of Theorem 1.1 and Theorem 1.2 should be the following.

Theorem 1.1. Let $S_{1}=\left\{0,-a \frac{n-1}{n}\right\}, S_{2}=\left\{z: z^{n}+a z^{n-1}+b=0\right\}$ where $n(\geq 7)$ be an integer and a and b be two nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no multiple root. If f and g be two non-constant meromorphic functions having no simple pole such that $E_{f}\left(S_{1}, 0\right)=E_{g}\left(S_{1}, 0\right)$ and $E_{f}\left(S_{2}, 2\right)=E_{g}\left(S_{2}, 2\right)$, then $f \equiv g$. Theorem 1.2. Let $S_{i}, i=1,2$ and f and g be taken as in Theorem 1.1 where $n(\geq 8)$ is an integer. If $E_{f}\left(S_{1}, 0\right)=E_{g}\left(S_{1}, 0\right)$ and $E_{f}\left(S_{2}, 1\right)=E_{g}\left(S_{2}, 1\right)$, then $f \equiv g$.

Next by calculation it can be shown that in Lemma-2.2 we would always have $p=0$. So in Lemma-2.2 we should replace $\bar{N}(r, 0 ; f \mid \geq p+1)+\bar{N}\left(r,-a \frac{n-1}{n} ; f \mid \geq p+1\right)$ by $\bar{N}(r, 0 ; f)+\bar{N}\left(r,-a \frac{n-1}{n} ; f\right)$. In that case the statement of the Lemma-2.2. should be replaced by

Lemma-2.2. Let S_{1} and S_{2} be defined as in Theorem 1.1 and F, G be given by (2.1). If for two non-constant meromorphic functions f and $g, E_{f}\left(S_{1}, 0\right)=$ $E_{g}\left(S_{1}, 0\right), E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right)$, where $H \not \equiv 0$ then

$$
\begin{aligned}
N(r, H) \leq & \bar{N}(r, 0 ; f)+\bar{N}\left(r,-a \frac{n-1}{n} ; f\right)+\bar{N}_{*}(r, 1 ; F, G) \\
& +\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)
\end{aligned}
$$

where $\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)$ is the reduced counting function of those zeros of f^{\prime} which are not the zeros of $f\left(f-a \frac{n-1}{n}\right)(F-1)$ and $\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)$ is similarly defined.

Since throughout the paper we would have $p=0$, so Lemma-2.5 used in the paper is redundant.

There is also a gap in the analysis of the proof of Lemma-2.7. But the lemma can be proved in a more simpler way with the support of Corollary of Theorem
4.1, p. 216, \{ H.X. Yi and C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press and Kluwer Academic Publishers (2003)\}, when $n \geq 3$. As this supposition will not hamper the statement as well as the proof of the main theorem, we replace the old Lemma-2.5 as used in the main paper by the following Corollary of Theorem 4.1, p. 216, \{ H.X. Yi and C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press and Kluwer Academic Publishers (2003)\}.

Lemma-2.5. Let f, g be two non-constant meromorphic functions. If f and g share four distinct values $0,1, \infty, c \mathrm{CM}$ and $c \neq-1, \frac{1}{2}, 2$, then $f \equiv g$.

In view of Lemma-2.2, Lemma-2.6 will be changed which is given below in its corrected form.

Lemma-2.6. Let S_{1}, S_{2} be defined as in Theorem 1.1 and F, G be given by (2.1). If for two non-constant meromorphic functions f and $g, E_{f}\left(S_{1}, 0\right)=E_{g}\left(S_{1}, 0\right)$ and $E_{f}\left(S_{2}, m\right)=E_{g}\left(S_{2}, m\right)$, where $1 \leq m<\infty$ and $H \not \equiv 0$, then

$$
\begin{aligned}
& (n+1)\{T(r, f)+T(r, g)\} \\
\leq & 3\left\{\bar{N}(r, 0 ; f)+\bar{N}\left(r,-a \frac{n-1}{n} ; f\right)\right\}+2\{\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)\} \\
& +\frac{1}{2}[N(r, 1 ; F)+N(r, 1 ; G)]-\left(m-\frac{3}{2}\right) \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) .
\end{aligned}
$$

Proof. By the second fundamental theorem we get

$$
\begin{align*}
& (n+1)\{T(r, f)+T(r, g)\} \tag{2.4}\\
\leq & \bar{N}(r, 1 ; F)+\bar{N}(r, 0 ; f)+\bar{N}\left(r,-a \frac{n-1}{n} ; f\right)+\bar{N}(r, \infty ; f)+\bar{N}(r, 1 ; G)+\bar{N}(r, 0 ; g) \\
& +\bar{N}\left(r,-a \frac{n-1}{n} ; g\right)+\bar{N}(r, \infty ; g)-N_{0}\left(r, 0 ; f^{\prime}\right)-N_{0}\left(r, 0 ; g^{\prime}\right)+S(r, f)+S(r, g)
\end{align*}
$$

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we note that

$$
\begin{align*}
& \bar{N}(r, 1 ; F)+\bar{N}(r, 1 ; G) \tag{2.5}\\
\leq & \frac{1}{2}[N(r, 1 ; F)+N(r, 1 ; G)]+N(r, 1 ; F \mid=1)-\left(m-\frac{1}{2}\right) \bar{N}_{*}(r, 1 ; F, G) \\
\leq & \frac{1}{2}[N(r, 1 ; F)+N(r, 1 ; G)]+\bar{N}(r, 0 ; f)+\bar{N}\left(r,-a \frac{n-1}{n} ; f\right) \\
& +\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)-\left(m-\frac{3}{2}\right) \bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
& +S(r, f)+S(r, g)
\end{align*}
$$

Using (2.5) in (2.4) and noting that $\bar{N}(r, 0 ; f)+\bar{N}\left(r,-a \frac{n-1}{n} ; f\right)=\bar{N}(r, 0 ; g)+$ $\bar{N}\left(r,-a \frac{n-1}{n} ; g\right)$ the lemma follows.

Corresponding to the Lemmas 2.5, corrected version of Lemma-2.7 would be as follows.
Lemma-2.7. Let f, g be two non-constant meromorphic functions such that $E_{f}\left(\left\{0,-a \frac{n-1}{n}\right\}, 0\right)=E_{g}\left(\left\{0,-a \frac{n-1}{n}\right\}, 0\right)$ then $f^{n-1}(f+a) \equiv g^{n-1}(g+a)$ implies $f \equiv g$, where $n(\geq 3)$ is an integer and a is a nonzero finite constant.

Proof. Since $E_{f}\left(\left\{0,-a \frac{n-1}{n}\right\}, 0\right)=E_{g}\left(\left\{0,-a \frac{n-1}{n}\right\}, 0\right)$, so from

$$
f^{n-1}(f+a) \equiv g^{n-1}(g+a)
$$

we have f, g share $(0, \infty),(-a, \infty)$ and (∞, ∞). Again differentiating

$$
f^{n-1}(f+a) \equiv g^{n-1}(g+a)
$$

we have

$$
n f^{n-2}\left(f+\frac{a(n-1)}{n}\right) f^{\prime} \equiv n g^{n-2}\left(g+\frac{a(n-1)}{n}\right) g^{\prime}
$$

which implies f, g share $\left(-a \frac{n-1}{n}, \infty\right)$. It follows that $f_{1}=\frac{f}{-a}, g_{1}=\frac{g}{-a}$ share $(0, \infty),\left(\frac{n-1}{n}, \infty\right),(1, \infty)$ and (∞, ∞). As $\frac{n-1}{n} \neq-1, \frac{1}{2}, 2$ when $n \geq 3$, so in view of Lemma 2.5, we have $f \equiv g$.

In view of Lemma-2.2, Lemma-2.6 and Lemma-2.7, the proof of the main theorems will be changed. Below the corrected forms are given.

Proof of Theorem 1.1. Let F, G be given by (2.1). Then F and G share (1,3). We consider the following cases.
Case 1. Let $H \not \equiv 0$. Then using Lemma 2.6 for $m=2$ and Lemma 2.4 we obtain

$$
\begin{align*}
& (n+1)\{T(r, f)+T(r, g)\} \tag{3.1}\\
\leq & 3\left\{\bar{N}(r, 0 ; f)+\bar{N}\left(r,-a \frac{n-1}{n} ; f\right)\right\}+2\{\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)\} \\
& +\frac{1}{2}[N(r, 1 ; F)+N(r, 1 ; G)]-\frac{3}{2} \bar{N}_{*}(r, 1 ; F, G) \\
& +S(r, f)+S(r, g) \\
\leq & 3[T(r, f)+T(r, g)]+2\left[\frac{1}{2}\{N(r, \infty ; f)+N(r, \infty ; g)\}\right]+\frac{1}{2}[N(r, 1 ; F)+N(r, 1 ; G)] \\
& +S(r, f)+S(r, g) \\
\leq & \left(\frac{n}{2}+4\right)\{T(r, f)+T(r, g)\}+S(r, f)+S(r, g)
\end{align*}
$$

which gives a contradiction for $n \geq 7$.
Case 2 Let $H \equiv 0$. Now the conclusion of the theorem can be obtained from Lemmas 2.10, 2.8 and 2.7.

Proof of Theorem 1.2. Let F, G be given by (2.1). Then F and G share (1,3). We consider the following cases.
Case 1. Let $H \not \equiv 0$. Then using Lemma 2.6, Lemma 2.9 for $m=1$ and Lemma
2.4 we obtain

$$
\begin{align*}
& (n+1)\{T(r, f)+T(r, g)\} \tag{3.2}\\
\leq & 3\left\{\bar{N}(r, 0 ; f)+\bar{N}\left(r,-a \frac{n-1}{n} ; f\right)\right\}+2\{\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)\} \\
& +\frac{1}{2}[N(r, 1 ; F)+N(r, 1 ; G)]+\frac{1}{2} \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leq & 3[T(r, f)+T(r, g)]+2\left[\frac{1}{2}\{N(r, \infty ; f)+N(r, \infty ; g)\}\right]+\frac{1}{2}[N(r, 1 ; F)+N(r, 1 ; G)] \\
& +\frac{1}{4}\left\{\bar{N}(r, 0 ; f)+\bar{N}\left(r,-a \frac{n-1}{n} ; f\right)+\bar{N}(r, 0 ; g)+\bar{N}\left(r,-a \frac{n-1}{n} ; g\right)\right\} \\
& +S(r, f)+S(r, g) \\
\leq & \left(\frac{n}{2}+4+\frac{1}{2}\right)\{T(r, f)+T(r, g)\}+S(r, f)+S(r, g),
\end{align*}
$$

which leads to a contradiction for $n \geq 8$.
We now omit the rest of the proof since the same is similar to that of Theorem 1.1.

