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HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER
TYPE INEQUALITIES FOR (k, h)-CONVEX FUNCTION VIA
KATUGAMPOLA FRACTIONAL INTEGRALS

ERHAN SET AND AL KARAOGLAN

ABSTRACT. In this paper, we obtain some new Hermite-Hadamard and Hermite-
Hadamard-Fejér type inequalities for (k,h)-convex functions via Katugampola
fractionals which are a generalization of Riemann-Liouville and the Hadamard
fractional integrals in to a single form.

1. INTRODUCTION

Definition 1.1. The function f : [a,b] C R — R, is said to be convex if the
following inequality holds

(1.1) fOz+ (1= Ny) <Af(@) + (1 =N f(y)

for all x,y € [a,b] and X € [0,1]. We say that f is concave if (—f) is convez.

Let f : I — R be a convex function defined on a real interval I and fix a,b € T
with a < b. The following double inequality

(1.2) f<a+b)< ! /abf(x)dx<f(a)+f(b)

2 b—a 2

is known in the literature as the Hermite-Hadamard inequality for convex functions
(see [18] for the historical background). Note that some of the classical inequalities
for means can be derived from (1.2) for appropriate particular selections of the
function f. Both inequalities hold in the reversed direction if f is concave.

In [8] Fejér gave the important generalization of the inequality (1.2) as follows.
If f:[a,b] = R is a convex function and g : [a,b] — R is nonnegative, integrable
and symmetric with respect to the point “T'H’, then

(13) f(‘j”) / () < / ' falgla)da < LOHIO) / " ().
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For various modifications of (1.2) and (1.3), we refer the reader to the recent
papers (see [5, 6, 7, 11, 20, 21, 25, 27],).
We recall some previously known definitions of different type of convexity.

Definition 1.2. The function f : I C R — R, is said to be Jensen-convex or
J-convez if the following inequality holds

(1.4) f<$+?/> - f(x);rf(y)

2
forallz,yel.
Definition 1.3. (see [4],[19]) Let 0 < s < 1. A function f : [0,00) — R, is said

to be s-Orlicz convex or s-convex in the first sense, if for every xz,y € [0,00) and
a, >0 with o® + p° = 1, we have:

(1.5) flaz + By) < o f(z) + B°f(y).

We denote the set of all s-convex functions in the first sense by K.

Definition 1.4. (see [1],[10]) Let 0 < s < 1. A function f : [0,00) — R, is said to
be s-Breckner convex or s-convez in the second sense, if for every x,y € [0,00) and

a, B >0 with o+ f =1, we have inequality (1.5). The set of all s-convex functions
in the second sense is denoted by K?2.

Definition 1.5. ([9]) A function f: I CR — R is a Godunova-Levin function or
that f belongs to the class of Q(I), if it is nonnegative and, for all x,y € I and
A € [0,1], satisfies the following inequality;

(1.6) fOz+ (1 =Ny <=~

h +
Definition 1.6. ([16]) A function f : (0,1) — R is said to be subadditive if the
following inequalities holds
(1.7) fls+1) < f(s)+ (1)
s, t > 0.
Definition 1.7. ([7]) A function f: I CR — R is P function or that f belongs to

the class of P(I), if it is nonnegative and, for all x,y € I and X € [0,1], satisfies
the following inequality;

(1.8) Fz+(1=Ny) < f(z)+ f(y).

Definition 1.8. ([30])Let I be a real interval and let h : (0,1) — R be a nonnegative
function, h # 0. A nonnegative function f : I — R is then called h-convez if, for
allz,y € I andt € (0,1). We have

(1.9) [tz + (1 =1)y) <h(t)f(x) +h(1 =) f(y).
We now give the more general concepts of some different type of convexity.

Definition 1.9. ([17]) Let k: (0,1) — R be a given function. Then a subset D of
a real linear space X will be called k-convex if k(t)x+ k(1 —t)y € D for all x,y € D
and t € (0,1).

This definition agrees with the one of classical convexity for k(t) = t.
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Definition 1.10. ([17]) Let k,h : (0,1) — R be two given functions and suppose
that D C X is a k-convez set. Then a function [ : D — R is (k, h)-convez, if for all
x,y €D andt € (0,1),

(1.10) fk@)z + k(1 = t)y) < h(t)f(z) +h(1—1)f(y).

If (1.10) can be replaced with the corresponding equality, f will be called (k, h)-
affine (more genarel functions of this type are subject of the paper [15]).

For suitable functions h and k, the condition (1.10) produces the families of
convex, Jensen-convex, h-convex, s-Orlicz convex, s-Breckner convex, P-function,
Godunova-Levin, Starshaped functions and subadditive mapping. In the follow-
ing theorem a new inequality of Hermite-Hadamard-Fejér types for (k, h)-convex
functions is proved.

Theorem 1.1. ([17])(The first Fejér inequality for (k, h)-convex functions)

Let f : D — R be a (k,h)-convex function with h(1/2) > 0, fix a < b such that
[a,b] C D and let g : [a,b] — R be a nonnegative function which is symmetric with
respect to (a + b)/2. Then

Fk/D @+ b)) o :
(1.11) ( L3 ) / g(x)dz < / f(2)g(x)dz.

Now, we give information about Riemann-Liouville fractional integrals.

Definition 1.11. Let f € L[a,b]. The Riemann-Liouville integrals J&, and J of
order a > 0 with a > 0 are defined by

I b0 = s [ o= 0" it > 0
and
b
T f@) = gy [ =2 e <

respectively, where I'(t) is the Gamma function defined by T'(a) = [ e 't~ dt
and JO, f(2) = JO_ f(x) = f(2).

Because of the wide applications of Hermite-Hadamard type inequalities and
fractional integrals, many researchers extend their studies to Hermite-Hadamard
type inequalities involving fractional integrals not limited to integer integrals. Re-
cently, more and more Hermite-Hadamard inequalities involving fractional integrals
have been obtained for different classes of functions; (see [3, 23, 24, 25, 28, 29]).

Some important results that is related Riemann-Liouville fractional integrals are
as follow;

Theorem 1.2. ([23])Let f f : [a,b] — R be a positive function with 0 < a < b
and f € Lla,b]. If f is a convex function on [a,b], then following inequalities for
fractional integrals hold

w7 (5) =g m e + 5 ) <

fla) + f(b)
2

with o > 0.
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Theorem 1.3. ([11]) Let f : [a,b] — R be convex function with a < b and f €
Lla,b]. If g : [a,b] — R is nonnegative, integrable and symmetric to (a+b)/2, then
the following inequalities for fractional integrals hold

113) 7(“50) [0+ Sg@)] =[50 + 3210l
<TI0 e g0) 4 35 g(a)

with « > 0.

Theorem 1.4. ([26])Let f: D — R be a (k,h)-convexr function with h(1/2) > 0,
fix a < b such that [a,b] C D and let g : [a,b] — R be a nonnegative function which
is symmetric with respect to (a +b)/2. Then the following inequality holds

[ (k(1/2)(a + b))
(1.14) /2]

[T 90) + 75 g(a)]| < [T Sa) + T Fota)]
with o > 0
Now, we give information about Hadamard fractional integrals.

Definition 1.12. ([22])Let a > 0 withn—1 < a <n,n €N, anda < z < b.
The left- and right-side Hadamard fractional integrals of order a of a function f
are given bye

(1.15) HE, f(z) P(la)/x (m%)a_l@dt and

e f(z) = F(la)/b (mi)a_lff)dt.

Recently, Katugampola introduced a new fractional integral that generalizes the
Riemann-Liouville and the Hadamard fractional integrals in to a single form(see
[12, 14]).

Definition 1.13. ([13]) Let [a,b] C R be a finite interval. Then, the left-and right-
side Katugampola fractional integrals of order a(> 0) of f € XP(a,b) are defined

by,

o B plfa T tpfl N B plfoz b tpfl
1) = iy || e S0 and M0 = s [ o

with a < x < b and p > 0, if the integrals exist.

Theorem 1.5. ([13])Let o > 0 and p > 0. Then for z > a,
1l PI (2) = I (@),

2. lim+ PIY f(x) = HY f(x).

p—0

In [2], Chen and Katugampola established the Hermite-Hadamard inequalities
for Katugampola fractional integrals as follows.

Theorem 1.6. ([2]) Let &« > 0 and p > 0. Let f : [a?,b°] — R be a positive
function with 0 < a < b and f € XP(a?,b?). If f is also a convex function on [a,b],
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then the following inequalities hold:

a® 4+ bP p°T(a+1) [P f(a”) + f(b°)
(116) 1 ( 2 )SWW —

where the fractional integrals are considered for the function f(xf) and evaluated
at a and b, respectively.

15 () +7 T3 f ()| <

Theorem 1.7. ([2])If f is convex function on [a,b] and f € Lla,b]. Then F(x) is
also integrable and the following inequalities hold

(117)  F <a;b) < g(abi(f‘ ;)12 12, F () + 15 Fla)] < M

with « > 0 and p > 0, where F(z) := f(z) + f(a+b—x).

Chen and Katugampola gave a generalization of the inequalities (1.16)-(1.17) as
follows.

Theorem 1.8. ([2])Let f : [a,b] = R be convex function with a < b and f € Lla,b].
Then F(x) is also convex and F € Lla,b]. If g : [a,b] — R is nonnegative and
integrable,then the following inequalities hold:

F(U50) [0 15 00)] <[00+ T 6F)@)
(118) < X FO P g0 4015 o]

with a > 0 and p > 0, where F(z) := f(x) + f(a+b—x).

The aim of this paper is to establish Hermite-Hadamard and Hermite-Hadamard-
Fejér type inequalities for (k, h)-convex functions via Katugampola fractional inte-
grals.

2. MAIN RESULTS

Theorem 2.1. Let o > 0 and p > 0. Let f : [a”,b”] — R be a positive function
with 0 < a <b and f € XP(a?,b"). Let f: D — R is a (k, h)-convex function with
h(1/2) > 0, fir a < b such that [a?,b"] C D then the following inequality hold;

h(1/2) p°T(a +1) P12 (f 0 9)(b) +° 1Y (f © g)(a)]

(1) F R/ ) <

where g(z) = x”.
Proof. Let t € [0,1]. Consider z,y € [a,b],a > 0, defined by ¥ = wPa® + (1 —w?)b?,
y? = (1 —wP)a’ +wPb? for w € [0,1]. Since f: D — R is (k, h)-convex function on
[a?, bP], we have

(22) f(E()a? + k(L= t)y?) < h(t) f(2”) + h(1 = 1) f(y").
By writing ¢t = 1/2 in (2.2), we get;
(2.3) fR(1/2)(a” +07)) = f(k(1/2)2" + k(1/2)y”)

IN

h(1/2) {f(wpap + (1 —w?)b)

+f((1 = wP)a” + wpbp)].
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We may now multiply both sides of (2.3) by w* ™1, o > 0 and then integrate it
over [0, 1] with respect to w, getting;

f(k:(l/Z)(ap+b”))/0 W du

< h(1/2) [/0 w* ™ f(wPa? + (1 — w”)bP)dw

+/0 wP~ f((l—w”)ap—i—w”b”))dw}.

Then we have
1

;pf(k(l/Z)(ap+b”))

@/l — P\ [ aP — bP P!
h(l/Q)[/b (af’—b/’> <a:f’—b/’>f(xp)ap—b/’dm

bl —aP\® [ bP — aP p—1
Y’ —a a Y
Jr/a (bp_ap) <?Jp_ap>f(y )bp_apdy]'

IN

Then
aipf (k(1/2)(a” + b))
< h(l/Q)[/ab EZZ:;‘Z;Z (bfp_;p) fa")da
[ e
| aipf (k(1/2)(a” + b))
< ot | /: LA

pl—a b yp—l ,
T |, G ’dyl‘

Using the definition of Katugampola fractional integrals, we can write;

1 h(1/2)T (a)

;pf(k(l/2)(ap +07)) < W —ar)y® plo [P I3+ (f 0 9)(b) +° I (f © g)(a)] .-

This implies;

1/2) p°T (a + 1)
(b —a)"

[ (k(1/2)(a” +b7)) < il [P I+ (f 0 9)(b) +° ;- (f 0 g)(a)]

the proof is complete. O
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Corollary 2.1. If we write p =1 in inequality (2.1), we obtain;

h(1/2)T (a + 1)

Fk(1/2)(a+) < PG

[T 10) + g f(@)]
with a > 0.

Corollary 2.2. If we write o = 1 in inequality (2.1), we obtain;

1 . 2n(1/2) [* 4
S1 kD + 1) < B [ o g) @)

with p > 0, where g(x) = z.

Remark 2.1. If a function f : D — R is convex i.e for k(t) =t and h(t) =t the
inequality (2.1) becomes the left-hand side of the inequality (1.16).

Remark 2.2. If we write p =1, k(t) =t and h(t) =t in inequality (2.1) becomes
the left-hand side of the inequality (1.12).

Theorem 2.2. Let f : D — R be a (k,h)-convex function with h(1/2) > 0, fix
0 <a<b< oo such that [a,b] C D and f € Lla,b]. If f is nonnegative function
which is symmetric with respect to (a + b)/2 then the following inequality holds

h(1/2)p°T(c+ 1) p

(2.4) S (k(1/2)(a b)) < =0

15 () + 15 f(a)]
with o > 0 and p > 0.

Proof. If a function f: D — R is (k, h)-convex for all z,y € D, t € (0,1) then;
(2.5) FOk(E)z + k(1 = t)y) < h(t) (@) + h(1 1) £ (y).

If f is nonnegative function which is symmetric with respect to (a+b)/2 and writing
(2.5) witht =1/2, v = wa+ (1 —w)b and y = (1 — w)a + wb for w € [0, 1], we get;

(2.6) f(k(1/2)(a+b) = [f(k(1/2)x+k(1/2)y)
h(1/2)[f (wa + (1 — w)b) + £((1 — w)a + wb)]
= 2h(1/2)f((1 —w)a + wb).

We may now multiply both sides of (2.6) by
(1 —w)a +wb)* ™"

b — (1 — w)a + wb)’] ~*

and integrating the resulting inequality over [0, 1], we get;
(1 —w)a + wb)* ™"

b — (1 — w)a+wb)’]'
(1 —w)a +wb)* ™"

b — (1 — w)a+wb)’)'

IN

(2.7)

dw

1
£ (k(1/2)(a+ 1)) / [

1
< 2 h(1/2)/0 [ £((1 = w)a) + wb) dw.

Then we have
b Pl dx
£ (k(1/2) (a+ b)) / [

T /(@) b—a

xP~1 dz

b —ar] " b—a

g2h<1/2>/b[
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i.e

f(k(1/2) (a +1))

(b” —a)* _ 2h(1)2) T(a) pt=@ [°  zr?
ap(b—a) = (b—a) pl== F(a)/a [bp_xp]l—(x f(z)dz.

Using the definition of Katugampola fractional integrals, we can write

2h(1/2) p* T(a+1) ,
o 10

(2.8) f(k(1/2) (a+b)) <
Similarly multiplying both sides of (2.6) by

(1 —w)a +wb)* ™"

2.9
(2:9) [(1 —w)a + wb)’ — ar]

11—

and integrating the resulting inequality over [0, 1], we get;
2h(1/2) p* T(a+1)
o —ar)e
By adding inequalities (2.8) and (2.10), we obtain;
h(1/2) p* T(a+ 1)
b —ar)e

(2.10) F(k(1/2) (a+1b)) < oI f(a).

f(k(1/2) (a+1)) <

[P I5+ £ (b) +7 I~ f(a)]
and the proof is complete. ([

Corollary 2.3. If a function f : D — R is convex i.e for k(t) =t and h(t) =t
inequality (2.4) becomes the following inequality

a+b p*T(a+1)
f( 2 )S 2 (b —ar)e

[PTa+ (b) +° T~ f(a)]

Corollary 2.4. If we write p =1 in inequality (2.4), we obtain;

h(1/2) T(a + 1)

FOR(L/2) (a4 1) < T2

[Ja+ f(b) + J5- f(a)]
with o« > 0.

Corollary 2.5. If we write « =1 in inequality (2.4), we obtain;

1 . 2h(1/2) bxp,l o
(k120 1) < G [ e

with p > 0.

Remark 2.3. If we write p =1, k(t) =t and h(t) =t in inequality (2.4) becomes
the left-hand side of the inequality (1.12).

Theorem 2.3. Let f : D — R be a (k,h)-convex function with h(1/2) > 0, fix
0 < a<b< oo such that [a,b] C D and f € Lla,b]. If f is nonnegative function
which is symmetric with respect to (a +b)/2 and g : [a,b] — R is nonnegative and
integrable, then the following inequality holds

f(k(1/2)(a+ b)) r°
h(1/2)

with a > 0 and p > 0.

(2.11) 2o9(0) + T g(@)] < [T Fo(b) + T fo(a)



INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS 189

Proof. If a function f: D — R is (k, h)-convex for all z,y € D, t € (0,1) then;
(2.12) fk(t)z + k(L —=t)y) < h(t)f(z) + h(1 - 1) f(y).

If f is nonnegative function which is symmetric with respect to (a+b)/2 and writing
(2.12) witht =1/2, z = wa+ (1 —w)b and y = (1 —w)a+wb for w € [0, 1], we get;

(2.13) f (k(1/2)(a + b)) f(k(1/2)z + k(1/2)y)
< h(1/2)[f(wa+ (1 —w)b) + f((1 — w)a+wb)]
2h(1/2)f((1 — w)a + wb).
We may now multiply both sides of (2.13) by
(1 — w)a + wb)* ™"
[P — (1 — w)a + wb)’]
and integrating the resulting inequality over [0, 1], we get;
V(= w)a+wb)’ !
£ (k(1/2)(a + b)) /0 e e T
(1 —w)a +wb)* ™"
b — (1 — w)a+wb)’]'

(2.14)

g((1 — w)a + wb)

g((1 — w)a + wb)dw

1
< 2h(1/2)/0 [ f((1=w)a) +wb) g((1—w)a+ wb)dw.

Then we have

b
£ (k(1/2) (a+ b)) / ;

Pl dz b

s g S 2h072) [

a [bp — P

P — P

ie

a) pt—e b P11
f (k(1/2) (a + b)) (b i (1) Zl(—o)z 1p"(a) / [bp — P

2h(1/2) T(a) pt=> [b  gr!
— (b—a) p T(e) / [br — zr)' ™
Using the definition of Katugampola fractional integral, we can write
(2.15) f(k(1/2) (a+1))" Ig.g(b) < 2 h(1/2)" I3+ fg(b).
Similarly multiplying both sides of (2.13) by
(1 —w)a + wb)* ™"
(1 —w)a+ wb)” — ar]
and integrating the resulting inequality over [0, 1], we get;
(2.17) f(k(1/2) (a+1))" Ij-g(a) < 2 h(1/2)° I fg(a).
By adding inequalities (2.15) and (2.17), we obtain;

f(k(1/2) (a+1b))
2 h(1/2)
and the proof is complete. (I

f(x)g(z)dz.

(2.16) g((1 — w)a + wb)

-«

[P Io+9(b) +° I-g(a)] < [P+ fg(b) +7 I~ fg(a)]

Corollary 2.6. If a function f : D — R is conver i.e for k(t) =t and h(t) =t
inequality (2.11) becomnes the following inequality

f (a;b) [PIog(b) +° Ty g(a)] < [PIg4 fg(b) +° T fg(a)]
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Corollary 2.7. If we write a = 1 in inequality (2.11), we obtain;

b b
£ ((1/2)(a + b)) / 2 g(x)dz < 2 h(1/2) / 1 f(2)g(x)da

with p > 0.

Remark 2.4. If we write p = 1 in inequality (2.11) we obtain inequality (1.14).
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