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Abstract: The present study investigates a mathematical model for HBVcarried out in a district of Ker-
man. The statistical sample comprises all men and women living in that district. Two different mathematical
models are introduced for HBV related to this population. Data analysis was carried out with MATLAB pro-
gramming. The results indicate that there is a meaningful relationship between the vaccination and epidemic
disease.
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1. Introduction

Spreading infection is a cause of a great anxiety for the human population. In the past centuries,

when an epidemic disease appeared in a society, a large number of people would die consequently.

For instance, small-pox appeared in Mexico in the 16th century, leading to a population decrease

from 30 million to 2 million within 50 years [2]. To prevent and control an infectious disease, it is

important to know the mechanism of spread and the dynamic of transmission [7, 15].

Albeit the mathematical modeling of infectious diseases dates back to 1760, when Bernoulli used

mathematical modeling to describe the small-pox for the first time [26]. The comprehensive study

of infectious diseases by mathematical models was inaugurated at the beginning of the 20th cen-

tury [1, 2, 18]. Notably, Hamer introduced a model for the Measles in 1906. In 1911, the physicist

Ross applied differential mathematical modeling techniques in order to model the transmission of

Malaria from Mosquito to human. Then, in 1926, Kermak and Makendrick introduced the famous

SIR model so as to describe the epidemic plague that happenedin London in 1666 [7, 26, 34].

To prevent and control an infectious disease more effectively, it is of high importance to entirely

understand the mechanism of the spread and dynamics of the transmission of the disease, and then

provide applicable predictions and guidance so as to establish strategies that can be applied in

practice. It is remarkable that during 20th century, a variety of mathematical models for infectious

disease have been formulated and described based on population dynamics, behavior of disease
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transmissions, features of the infectious agents and othersocial and physiological factors [4, 5, 6,

17, 29, 30, 35].

2. Literature Review

Hepatitis B, HBV for short, is one of the prevalent diseases in developing countries. It is caused

by the Hepanda virus, which attacks the liver. It can cause both acute and chronic disease [3, 16,

19, 21].

The transmission of HBV to a healthy individual is by contactwith the blood or body fluid of an

infected person in the same way as HIV. However, HBV is 50 to 100 times more infectious than

HIV [27, 28].

The major factors in getting infected with HBV are

• from mother to baby at birth,

• unsafe injections and transfusions,

• unprotected sexual contact.

In general, viral diseases do not respond to any specific treatment [23, 24]. In this case, either

patients would regard for their health conditions or patients’ bodies naturally produce proper an-

tibodies to act against the virus. Vaccination is the most preferable strategy to protect a society

against epidemic disease [23, 28, 30].

The virus starts to replicate increasing just 3 days after entering the liver cells. Nonetheless, the

illness manifests itself after approximately 45 days [31].It is detectable that HBV has an infectious

period of 3 months [24, 25, 29].

About 2 billion people have been infected with the virus around the world and about 350 million

suffer from chronic infection [9, 21, 22, 27]. It is estimated that around 600000 people die every

year due to acute and chronic consequences of hepatitis B, and 50 million new cases are diag-

nosed annually. Furthermore, about 25 percent of adults whobecome chronically infected during

childhood die from liver cancer or cirrhosis [9, 25, 28].

Recent collected data demonstrates that the overall prevalence of HBV in Iran is less than 3 percent

[10]. Making attempt to raise general public awareness about HBV transmission along with per-

forming the vaccination program for all newborns, health care workers and those at risk of HBV

infection, initiated from 1993, have influenced the health outcome [10]. The reported prevalence

of HBV infection in Iran have been on the fall from about 3.5 percent in 1990s to 2.14 percent in

2000s [11].

Researches show that the prevalence of HBV in Iran has a geographical variation. Several re-

searches have been conducted into the rate of infectious transmission in different provinces of
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Iran. In 2006, Behbahani et al. worked on 2000 samples and 131(6.55 percent) blood samples

were found to be positive for anti-HBC. The study was undertaken to assess the prevalence of

HBV in Fars [12].

In 2009, Merat et al considered 6583 randomly chosen subjects from three provinces in Iran,

namely Tehran, Golestan and Hormozgan. The subjects aged between 18 and 65. The prevalence

of hepatitis B surface antigen and anti-hepatitis B core antibody were 2.3 percent and 14.2 percent,

respectively in Tehran. The corresponding items in Hormozgan were 13.3 percent and 2.7 percent,

respectively, and in the case of Golestan, they were 5.1 percent and 36.9 percent, respectively [13].

Moreover, Fathimogaddam et al. perceived 1652 randomly chosen healthy individuals aged 1 to

90 from Mashhad, located in the Khorasan-e-Rasavi province, in 2011. The prevalence of HBV

was found to be 1.39 percent [14].

According to the aforementioned researches, in spite of nationwide vaccination of newborns

against HBV starting from 1992, hepatitis B virus infectionhad remained a key components of

chronic liver disease in Iran.

In this paper, we introduce two mathematical models for HBV.We predict the number of infec-

tious people in a city in the Kerman province by data information and number analysis. Although

we can use these models for any population, we consider a statistical community of 77369 indi-

viduals living in the aforesaid vicinity. This statisticalcommunity has been observed during 2012.

Moreover, should someone from this population consult a doctor in concern with HBV, then either

all of their family will be vaccinated 3 times in 6 months or they will fall ill.

In the case of these models, we divide the population into fiveseparate parts. Susceptible, exposed,

vaccinated, infected and recovered individuals in which recovered ones are immune to the disease.

The statistical population is divided regarding the genders of its members. The applied models are

time dependent, because the population will change in different courses of time.

The paper is organized as follows. In the next section, we present the mathematical models and

describe their structure. In section 3, we employ the numerical method, Runge-Kutta, to solve

the differential equation system. In the end, we make projections and provide descriptions of the

future of the disease by presenting diagrams that were drawnutilizing MATLAB programming.

3. Mathematical Models

In this section, we introduce two mathematical models for HBV considering two different cases.

The first case concerns the situation in which there is enoughvaccine available for everyone who

needs it. Moreover, all newborns and those at risk receive vaccine. The second one arises when

there is not enough vaccine and only newborns who are at risk receive vaccine.
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We divide the population into five boxes as susceptible, exposed, vaccinated, infected and recov-

ered class which are denoted byS,E,V, I andR respectively [20, 22, 32, 33]. LetS(t), E(t), I(t)

andV (t) be the number of individuals who are in the classS, E, I andV at timet respectively,

and suppose thatN(t) is the total population size at timet. Hence,N(t) = S(t)+E(t)+ I(t)+

V (t)+R(t). We also put the total population and the population of each class into two major parts.

Women who are denoted byS1,E1, I1,V1,R1,N1 and men who are indicated byS2,E2, I2,V2 andR2

respectively. Thus

N1(t) = S1(t)+E1(t)+ I1(t)+V1(t)+R1(t),

N2(t) = S2(t)+E2(t)+ I2(t)+V2(t)+R2(t).

It is noticeable that newborns are delivered by individualsof groupN1 (women), ergo, onlyN1

gives rise to the population increase.

In the first situation, there is enough vaccine for the population. Therefore, all the newborns are

immune to receive vaccine, unless either mother is to be infected or to be exposed to the disease.

In this model, an average member of the population makes contact with βN individuals per unit

time, whereN is total population size. The number of new infected individuals per unit time in

concern with every infective contact is(βN)S1
N , giving a new rate for infected classβS1I, where

I = I1+ I2. A susceptible woman leaves the classS1 at a rate ofµS1 or mS1 per unit time, where

the positive parametersµ andm are natural death and vaccination rates respectively. It issupposed

that the rate at which the transfer from the exposed class to the infected class occurs isk. It is also

supposed thatαE1 is the rate at which the individuals in the exposed period receive vaccine at

time t.

λ is the birth rate. We assume that the birth rate of newborn boys and girls are equal. If the mother

of a newborn is to be healthy, the baby will be included inR1 or R2. Otherwise, due to his or her

health conditions, the baby will be included in one of the classesE1,E2, I1 or I2. 1
γ is the average

length of the period of infection. Hence, infected individuals leave the classI at a rate ofγI per

unit of time. We assume that the fractionf of theγI members who leave the infected class at timet

will recover and the remaining fraction,(1− f ), will die of the disease. Since the vaccination is not

perfect, we suppose that a fraction of vaccinated individuals, sayσ will get infected. Moreover, a

fraction fv of ηV1 members will leave the infected class at timet and recover. Similarly, we can

write equations for men.
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Therefore, the model is

Ṡ1 =−β (1−m)S1I −µS1−mS1,

Ė1 = β (1−m)S1I− (α +(1−α)k+µ)E1+λE1,

İ1 = (1−α)kE1− (µ + γ)I1+βσ IV1+λ I1,

V̇1 = αE1+mS1−βσ IV1−ηV1,

Ṙ1 = γ f I1+η fvV1+λ (S1+R1)−µR1,

Ṅ1 =−(1− f )γI1− (1− fv)ηV1+λN1−µN1,

Ṡ2 =−βS2(1−m)I−µS2−mS2,

Ė2 = βS2(1−m)I− (α +(1−α)k+µ)E2+λE1,

İ2 = (1−α)kE2− (µ + γ)I2+βσ IV2+λ I1,

V̇2 = αE2+mS2−βσ IV2−ηV2,

Ṙ2 = γ f I2+η fvV2+λ (S1+R1)−µR2,

Ṅ2 =−(1− f )γI2− (1− fv)ηV2+λN1−µN2.

The flow chart for this model is given in the following figure.

FIGURE 1. Flow chart for the model with enough vaccine for the population

In the second case, it is presumed that there is not enough vaccine, and as a result, only newborns

who are at risk will receive it. Therefore,λ = λ1+λ2, in whichλ1 is the rate of newborns that are
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at risk andλ2 is the rate of the others. Considering these assumptions, the mathematical model is

Ṡ1 =−β (1−m)S1I−µS1−mS1+λ2S1,

Ė1 = β (1−m)S1I − (α +(1−α)k+µ)E1+λE1,

İ1 = (1−α)kE1− (µ + γ)I1+βσ IV1+λ I1,

V̇1 = αE1+mS1−βσ IV1−ηV1,

Ṙ1 = γ f I1+η fvV1+λ1(S1+R1)−µR1,

Ṅ1 =−(1− f )γI1− (1− fv)ηV1+λN1−µN1,

Ṡ2 =−βS2(1−m)I−µS2−mS2+λ2S1,

Ė2 = βS2(1−m)I− (α +(1−α)k+µ)E2+λE1,

İ2 = (1−α)kE2− (µ + γ)I2+βσ IV2+λ I1,

V̇2 = αE2+mS2−βσ IV2−ηV2,

Ṙ2 = γ f I2+η fvV2+λ1(S1+R1)−µR2,

Ṅ2 =−(1− f )γI2− (1− fv)ηV2+λN1−µN2.

The corresponding flow chart is as follows

FIGURE 2. Flow chart for the model without enough vaccine for the population

Notations and values used in model are described in the following table.

In next sections, by using the Runge-Kutta method, we predict the future of the disease for the

population under consideration with the two different cases.



CUJSE 14, No. 1 (2017) 35

Parameter Description Value
N Total population size 77369
S Number of susceptibles 76537
I Number of infected individuals 48
E Number of exposed individuals 118
V Number of vaccinated individuals 1401
β Infection rate 1.29×10−4

µ Natural death rate 0.005
γ Recovery rate 0.005
m Rate of vaccinated susceptible individuals 0.01
λ Birth rate 0.014

1/k Average time for exposed class 45
TABLE 1. Parameters and values for the model

4. The Numerical Method

First, we make a fruitful introduction to the Runge-Kutta method of order four [8]. Consider a

differential equation system of order one.

du1

dt
= f1(t,u1,u2, ...,um),

du2

dt
= f2(t,u1,u2, ...,um),

...

dum

dt
= fm(t,u1,u2, ...,um).

with initial conditions u1(a) = α1,u2(a) = α2, ...,um(a) = αm, wherea ≤ t ≤ b. We wish to

find the functionsu1,u2, ...,um. Let N be a natural number. Seth = b−a
N and t j = a + jh for

all j = 0,1,2, ...,N. Additionally, for i = 0,1, ...,m and j = 0,1, ...,N, assume thatwi, j is an

approximation ofui(t j), wherewi, j is the ith solution of ui at the endpoint. Hence, the initial

conditions arew1,0 = α1,w2,0 = α2, ...,wm.0 = αm.

Consideringw1, j,w2, j, ...,wm, j to be computed, the values ofw1, j+1,w2, j+1, ...,wm, j+1 can be ob-

tained by the following formula

wi, j+1 = wi, j +
1
6
(k1,i +2k2,i +3k3,i + k4,i), (1)
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where for everyi, we have

k1,i = h fi(t j,w1, j,w2, j, ...,wm, j),

k2, j = h fi(t j +
h
2
,w1, j +

k1,1

2
,w2, j +

k1,2

2
, ...,wm, j +

k1,m

2
),

k3, j = h fi(t j +
h
2
,w1, j +

k2,1

2
,w2, j +

k2,2

2
, ...,wm, j +

k2,m

2
),

k4, j = h fi(t j +
h
2
,w1, j + k3,1,w2, j + k3,2, ...,wm, j + k3,m).

Now, the initial conditions can be written asw1,0 = S1(0),w2,0 = E1(0),w3,0 = I1(0),w4,0 =

V1(0),w5,0 = N(0),w6,0 = S2(0),w7,0 = E2(0),w8,0 = I2(0),w9,0 =V2(0). By applying these con-

ditions to Matlab programming, we solved the differential equation systems of our models, after

that utilizing a couple of diagrams, we made a prediction about the future of disease.

In the course of the study, the statistical population that is considered in this paper included 38684

women of which 21 were infected, 56 were in exposed period, 681 had received the vaccine and

18 had recovered. During the same period, there were also 38685 men of which 27 were infected,

62 were in the exposed class, 720 had received the vaccine and23 people had recovered. There

were 1143 newborns and 429 dead individuals.

In our models, the rate at which individuals leave the classE is k = 1
45 = 0.02 where 45 is the

average time spent in the exposed class. The recovery rate isγ = η = 1
180 = 0.005 where 180 is

the average time that was spent in infected class. The ways bywhich the disease is transmitted

are varied. The most prevalent ones are: being in direct contact with an infected person’s blood

or body fluids, from mother to her baby and using an infected person’s cosmetics. Thus, an

infected person can effectively be in contact with his/her family and five to six people out of

home. Furthermore, the average population of each family inthe city was 4 in our study. Hence,

an average number of the population who makes contact per unit of time sufficient to transmit the

infection isβN. Ergo,β = 10
77369= 1.29×10−4.

We know that the vaccination is not complete and around 90 percent of individuals who receive

the vaccine will be immune. Therefore, the risk of infectionfor individuals who have received

the vaccine isσ = 0.1. We can compute the other parameters in a similar way. In fact, we get

λ = 0.014,µ = 0.005,m = 0.01,α = 0.001, andf = fv = 0.99.

Now by utilizing this information in Matlab programming, weare capable of drawing diagrams for

females and males. In these diagrams,Si(t),Ei(t), Ii(t),Vi(t) andRi(t) are consideredai,bi,ci,di

andei for i = 1,2 respectively.
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5. Implementation

In the first case, we assumed that there is enough vaccine for the population and all the newborns

received it. The number of susceptible individuals was supposed to decrease, owing to the fact that

nobody went to classS and the members ofS were going to leave the class, partly due to receiving

the vaccine and the others on account of being exposed to the infection and transferring to classE

as a consequence. In fact, the susceptible individuals transferred to the exposed class at a fraction

of β (1−m). Consequently, the curve is on the fall.

On the other hand, due to the high rate of vaccination, a good many individuals in classE received

the vaccine and recovered. Hence, after a while, the curve issteady at a constant level. Similarly,

the number of individuals who are infected was expected to beon the rise. Nevertheless, the

growth rate was in a lower slope. Therefore, the epidemic of HBV is not bound to happen for the

considered population as can be seen in Figure 3 and 4.
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FIGURE 3. A solution of the system for women with initial conditionsthat are
set as(S1(0),E1(0), I1(0),V1(0),R1(0)) = (37908,56,21,681,18). In this case,
all the newborns and people who at risk will received the vaccine.

It is noticeable that the occurrence of the second model is contingent upon two key components.

Consequently, the second model occurs, in case the birth rate is on the increase and the vaccination

rate to be on the decline in a way that only the individuals whoare at risk receive the vaccine. We

consideredλ = 0.1, notably 0.1 of newborns were at risk. Figures 5 and 6 illustrate the disease

in the second model for women and men respectively. As the figures illustrate, the number of

susceptible individuals was on the increase at the beginning. Nonetheless, as time went by, their

number declined and eventually, remained steady at a constant level on account of the fact that

loads of them get infected and transferred to classE.
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FIGURE 4. A solution of the system for men with initial conditions that are set as
(S2(0),E2(0), I2(0),V2(0),R2(0)) = (37853,62,27,720,23). In this case, all the
newborns and people who at risk will received the vaccine.
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FIGURE 5. A solution of the system for women with initial conditionsthat are set
as(S1(0),E1(0), I1(0),V1(0),R1(0)) = (37908,56,21,681,18). In this case, there
is not enough vaccine for the population.

Thus, the curves forE andI have upward trends. As a result, the probability that the epidemic will

happen in the future would be high.
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FIGURE 6. A solution of the system for men with initial conditions that are set
as(S2(0),E2(0), I2(0),V2(0),R2(0)) = (37853,62,27,720,23). In this case, there
is not enough vaccine for the population.

6. Conclusion

In this paper, two mathematical models for HBV related to a statistical sample were investigated.

Specifically, the models are analyzed by applying a numerical method in MATLAB programming.

In the end, the relationship between the vaccination and epidemic is investigated.
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