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• Laplace transform is applied to bending problem of the microbeam. 

• Size dependency is considered with the modified couple stress theory. 

• Perforation properties are investigated with size effects for the deflections of the microbeam. 

• The results presented with this study can be used by designers to model the perforated micro or macro 

structural elements. 
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ABSTRACT: In recent years, the analysis of materials and elements with dimensions at nano/micro levels 

has gained momentum. While analyzing these small-scale materials and elements, higher-order elasticity 

theories have started to be used instead of classical elasticity theories (CETs). One of these theories, which 

includes a small-scale parameter in its constitutive equations, is the modified couple stress theory (MCST). 

In this study, the bending analysis of a cantilever perforated microbeam is investigated by MCST and 

Euler-Bernoulli (EB) beam theory. First, the perforation characteristics of the microbeam are described and 

incorporated into the equation governing the bending problem based on the modified couple stress theory 

found in the literature. Then, the Laplace transform is applied to the governing equation. The known 

boundary conditions of the cantilever microbeam are substituted into the equation and the inverse Laplace 

transform is applied to obtain the deflection equation. 

 

Keywords: Laplace transform, Perforated microbeam, Modified couple stress theory, Bending 

1. INTRODUCTION 

Materials containing regular holes at equal intervals in a sequential manner are called perforated 

materials. In nuclear power plants, ships, offshore structures, micro-electro-mechanical systems and nano-

electro-mechanical systems, a perforated structure is created due to design requirements [1-3]. One-

dimensional bending elements made of perforated materials are also called perforated beams. Due to their 

wide range of applications, the analysis of perforated beams has recently attracted great interest. 

Almitani et al. [2] have investigated the perforation effects on the multilayered beam structure. Luschi 

and Pieri [4] have presented a study investigating the parameters of perforated beams. Abdelrahman et 

al. [5] have studied the free and forced dynamics of perforated thick and thin beams. For this purpose, 

Euler-Bernoulli (EB) and Timoshenko beam theories have been considered and also, the rotary inertia 

effect has been investigated in the study [5]. Assie et al. [6] have examined the vibration response of a 

perforated Timoshenko beam affected by a moving load by using the Ritz method.  Also in the study, the 

authors have adopted the Newmark average acceleration method to obtain the time response. Almitani et 

al. [7] have examined the free and forced vibrations of perforated thin beams by using the semi-analytical 

mixed Galerkin Laplace method. Eltaher et al. [8] have analyzed the vibrations and stresses of perforated 

rotated beams via a computational finite element model.  

As can be seen from Refs. [5-8], free vibration, forced vibration and stress analyses of perforated beams 

are presented with various solution techniques. Then, the analysis of perforated beams at nano and micro 

scales attracted attention. Many authors who presented the analyses at these scales have carried out their 

studies by taking into account the theories of higher-order elasticity. Bourouina et al. [9] have considered 

the size effect based on the nonlocal elasticity theory in conjunction with EB and shear deformable beam 

theories for perforated nanobeams. Kerid and Bounnah [10] have investigated the pull-in voltage of 

perforated cantilever nanobeam (nanoswitch) via nonlocal elasticity theory. Kafkas et al. [11] have 

investigated the vibrational frequencies of perforated nanobeams affected by thermal loads based on the 

nonlocal strain gradient theory. Abdelrahman et al. [1,12] have presented the vibration and bending of 

perforated beams based on the modified couple stress theory (MCST). 
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In this study, the MCST will be used as the size-effective theory and the Laplace transform will be 

used as the solution method. These two main themes are also adopted by the many researchers. Park and 

Gao [13] have proposed the modified couple stress solution of bending of the Euler-Bernoulli cantilever 

beam affected by a concentrated point load. Sobhy and Zenkour [14] have studied the static of viscoelastic 

nano-scaled beams resting on visco-Pasternak foundations via the MCST and different beam theories. 

Awrejcewicz et al. [15] have studied the thermoelastic vibrations of a nonlinear thick microbeam by using 

the MCST. Yaylı [16] has proposed the bending analysis of a homogeneous microbeam in conjunction with 

the Laplace transform and the MCST. Nazmul and Devnath [17] have explored the bending deflection of 

bi-directional functionally graded nanobeams based on the nonlocal elasticity theory and Laplace 

transform. Bian and Qing [18] have adopted the Laplace transform method to investigate the stability and 

dynamic of the nonlocal strain gradient integral model of the Bernoulli-Euler beam. Ike et al. [19] have 

applied the Laplace transform to solve the buckling problem of moderately thick beams. Li et al. [20] have 

studied the size-dependent bending response of the Euler–Bernoulli beam based on the Laplace transform. 

In this study, the static equation of a perforated microbeam based on the MCST is solved using the 

Laplace transform. As a continuation of the work presented by Yaylı [16], this study aims to investigate 

the parameters describing the properties of a perforated microbeam and also to show the effect of size. 

The bending equation for the perforated microbeam including the filling ratio, the number of holes and 

the material length scale parameter is obtained. Then, the static displacement curves of a uniformly 

distributed loaded perforated microbeam are analyzed to show the effect of the filling ratio, number of 

holes and material length scale parameter. 

2. MATERIAL AND METHODS 

In this part of the study, for the first step, the calculation of the properties of a microbeam composed 

of perforated material will be shown. The properties of a microbeam made of perforated material depend 

on the number of holes and the filling ratio. Then the bending relations based on the MCST will be 

presented in a form adapted to the perforated microbeam. Finally, the formula for the deflection of a 

cantilever microbeam will be calculated by applying the Laplace transform. 

2.1. Properties of perforated materials 

Figure 1 shows a perforated microbeam with length L, width b and height h. To calculate the bending 

stiffness (𝐸𝐼̅̅ ̅) of this perforated microbeam to be investigated, the following equation is presented [4]: 

 

𝐸𝐼̅̅ ̅ = 𝐸𝐼
𝛽(𝑁 + 1)(𝑁2 + 2𝑁 + 𝛽2)

(1 − 𝛽2 + 𝛽3)𝑁3 + 3𝛽𝑁2 + 𝛽2𝑁(3 + 2𝛽 − 3𝛽2 + 𝛽3) + 𝛽3
 

(1) 

 

 

In Equation (1), E represents the modulus of elasticity, I specifies the moment of inertia and is 

caculated by I=bxh3/12, 𝛽 is the filling ratio and N is the number of holes. Similarly, shear stiffness (𝐺𝐴̅̅ ̅̅  ) is 

introduced as follows [4]: 

 

𝐺𝐴̅̅ ̅̅ = 𝐸𝐴
𝛽3(𝑁 + 1)

2𝑁
 

(2) 

Here, A is the cross-sectional area of the solid beam and is defined by A=bxh.  
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Figure 1. Demonstration of a perforated microbeam 

 

2.2. Bending based on the modified couple stress theory 

MCST is a higher-order elasticity theory presented by Yang et al. [21] and introduced to perform size 

effect-dependent analyses of nano/microelements. This theory defines the strain energy (𝑈) for a linear 

elastic material as follows [21]: 

 

𝑈 = ∫(𝝈: 𝜺 +𝒎:𝝌)𝑑𝑉

𝑉

 
(3) 

 

here, 𝜎, 𝜀, 𝑚 and 𝜒 are the tensors of stress, strain, deviatoric part of couple stress and symmetric curvature, 

respectively. By using the defined parameters and displacement fields of Euler-Bernoulli beam, 𝑈 is re-

written as follows [13]: 

 

𝑈 = −
1

2
∫𝑀𝑦

𝑑2𝑤(𝑥)

𝑑𝑥2

𝐿

0

𝑑𝑥 −
1

2
∫𝑌𝑥𝑦

𝑑2𝑤(𝑥)

𝑑𝑥2

𝐿

0

𝑑𝑥 
(4) 

 

here, 𝑤(𝑥) is the transverse deflection, 𝑀𝑦 and 𝑌𝑥𝑦  are the resultant moment and couple moment, 

respectively and they are defined by [13]: 

 

𝑀𝑦 = ∫ 𝜎𝑥𝑥𝑧𝑑𝐴

𝐴

 
(5) 

 

𝑌𝑥𝑦 = ∫ 𝑚𝑥𝑦𝑑𝐴

𝐴

 
(6) 

 

For a microbeam affected by transverselly uniformly distributed loads, the work done by the external 

forces is defined as follows: 

 

𝑊 = ∫𝑞(𝑥)𝑤(𝑥)

𝐿

0

𝑑𝑥 
(7) 
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Figure 2. A cantilever perforated microbeam 

 

The total minimum potential energy principle (𝛿𝛱 = 0) can be used to solve this problem and the 

following equation is established according to this rule: 

 

𝛱 = 𝑈 −𝑊 = −
1

2
∫𝑀𝑦

𝑑2𝑤(𝑥)

𝑑𝑥2

𝐿

0

𝑑𝑥 −
1

2
∫𝑌𝑥𝑦

𝑑2𝑤(𝑥)

𝑑𝑥2

𝐿

0

𝑑𝑥 − ∫𝑞(𝑥)𝑤(𝑥)

𝐿

0

𝑑𝑥 
(8) 

 

With the above equation, the fundamental lemma of calculus of variation is derived as follows [13]: 

  

𝑑2𝑀𝑦

𝑑𝑥2
+
𝑑2𝑌𝑥𝑦

𝑑𝑥2
+ 𝑞(𝑥) = 0 

(9) 

 

here, 𝑀𝑦 and 𝑌𝑥𝑦  are defined by: 

 

𝑀𝑦 = −𝐸𝐼̅̅ ̅
𝑑2𝑤(𝑥)

𝑑𝑥2
 

(10) 

𝑌𝑥𝑦 = −𝐺𝐴̅̅ ̅̅ 𝑙2
𝑑2𝑤(𝑥)

𝑑𝑥2
 

(11) 

 

here, 𝑙 is the material length scale parameter and gives the small-scale effect to the problem. Also, the 

moment expression (M(x)) based on MCST is obtained as follows: 

 

𝐸𝐼̅̅ ̅
𝑑2𝑤(𝑥)

𝑑𝑥2
+ 𝐺𝐴̅̅ ̅̅ 𝑙2

𝑑2𝑤(𝑥)

𝑑𝑥2
= 𝑀(𝑥) 

(12) 

 

If the moment of the beam in Figure 2 is calculated [16]: 

 

−
𝑞(𝑥)𝐿2

2
−
𝑞(𝑥)𝑥2

2
+ 𝑞(𝑥)𝐿𝑥 = 𝑀(𝑥) 

(13) 

 

When this moment expression is substituted in equation (12), the following equation is obtained [16]: 

 

𝐸𝐼̅̅ ̅
𝑑2𝑤(𝑥)

𝑑𝑥2
+ 𝐺𝐴̅̅ ̅̅ 𝑙2

𝑑2𝑤(𝑥)

𝑑𝑥2
= −

𝑞(𝑥)𝐿2

2
−
𝑞(𝑥)𝑥2

2
+ 𝑞(𝑥)𝐿𝑥 

(14) 

 

If the Laplace transform is applied to both sides of equation (14): 
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(𝐸𝐼̅̅ ̅ + 𝐺𝐴̅̅ ̅̅ 𝑙2)(𝑠𝑤[0] + 𝑠2𝑤[𝑆] − 𝑤′[0]) = −
𝑞(𝑥)𝐿

𝑠2
−
𝑞(𝑥)

𝑠3
+
𝑞(𝑥)𝐿2

2𝑠
 

(15) 

 

is found. From here, 𝑤[𝑆] is calculated as follows: 

 

𝑤[𝑆] =
−𝑞(𝑥)(2 + 𝐿𝑠(−2 + 𝐿𝑠)) + 2𝑠3(𝑠𝑤[0] + 𝑤′[0])(𝐸𝐼̅̅ ̅ + 𝐺𝐴̅̅ ̅̅ 𝑙2)

2𝑠5(𝐸𝐼̅̅ ̅ + 𝐺𝐴̅̅ ̅̅ 𝑙2)
 

(16) 

 

When the boundary conditions 𝑤[0] and 𝑤′[0] are considered for the clamped end of the beam and 

the inverse Laplace transform is applied, 𝑤(𝑥) is found as follows: 

 

𝑤(𝑥) = −
𝑞(𝑥)𝑥2(𝑥2 + 6𝐿2 − 4𝐿𝑥)

24(𝐸𝐼̅̅ ̅ + 𝐺𝐴̅̅ ̅̅ 𝑙2)
 

(17) 

3. RESULTS AND DISCUSSION 

In this section, using the deflection expression obtained in equation (17), the deflection curves of a 

perforated microbeam are investigated for various parameters. The material properties of the microbeam 

are chosen as follows: E=1.44 GPa, ν=0.38 [13]. The microbeam properties are as follows: b=17.6 μm, h=2b 

μm, L=10h μm. Also, 𝑙 is considered as 17.6 μm. Finally, the following equation is used to calculate the 

shear modulus: 

 

𝐺 =
𝐸

2(1 + ν)
 

(18) 

 

First, the effect of the filling ratio β on the deflection value of the cantilever perforated microbeam is 

analyzed by presenting Figure 3. For this example, four different filling ratios with N=4 are compared. It 

is seen that lower deflection occurs at higher β values. As the stiffness of the perforated microbeam 

increases as β increases, the deflection decreases. 

 

 
Figure 3. Effect of β on the deflection of a perforated microbeam 
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In the second example, the effect of the number of holes N on the deflection value of the cantilever 

perforated microbeam is examined in figure 4. For this example, four different N values with β=0.8 are 

compared. It is observed that lower deflection occurs at lower N values. Since increasing the number of 

holes reduces the rigidity of the microbeam, higher deflection values are obtained. 

 

 
Figure 4. Effect of hole number on the deflection of a perforated microbeam 

 

In the third example, the effect of the MCST on the deflection value of the cantilever perforated 

microbeam is examined in figure 5. For this example, deflection values based on classical theory and MCST 

with N=2 and β=0.8 are compared. As can be seen, the deflections obtained with the MCST are smaller 

than the results of the CET. 

 

 
Figure 5. Effect of theory on the deflection of a perforated microbeam 
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Finally, the effects of 𝑙 are examined via figure 6. In this example, while the same 𝛽 and N are used as 

the previous example, 𝑙 takes different values from 0 μm to 4b μm. It is understood from the results that 

as the value of the material length scale parameter increases, the deflection value decreases. It is also worth 

emphasizing again that at l = 0 μm the results reduce to classical elasticity theory. 

 

 
Figure 6. Effect of 𝑙 on the deflection of a perforated microbeam 

 

4. CONCLUSIONS 

In this study, the effect of perforation properties on the deflection of the microbeam is examined with 

the MCST. The equation governing the bending of the cantilever microbeam under the effect of distributed 

load and containing the perforation properties is solved by Laplace transform. From the results obtained, 

it is revealed that the deflection decreased by increasing the filling ratio of the microbeam, and the 

deflection increased by increasing the number of holes. However, it is revealed that the MCST 

strengthened the beam and reduced deflection. Taking the material length scale parameter as zero reduces 

the results to the classical theory, and the deflection values of the microbeam are higher. 
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