
Eastern Anatolian Journal of Science 

Volume IX, Issue II, 2023, 27-36  Eastern Anatolian Journal of Science  

 

 

A Large Class of Closed, Bounded and Convex Subsets in Köthe-Toeplitz Duals of 

Certain Generalized Difference Sequence Spaces with Fixed Point Property 
 

Veysel NEZİR1* and Nizami MUSTAFA2 

1Kafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Türkiye, 

 veyselnezir@yahoo.com  

2Kafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Türkiye,  

nizamimustafa@gmail.com  

 

Abstract 

 

        In the present study, we consider the Köthe-

Toeplitz duals for the 2nd order and 3rd order types 

difference sequence space generalizations by Et and 

Esi studied in 2000. We work on Goebel and 

Kuczumow analogy for those spaces to obtain large 

classes of closed, bounded and convex subsets 

satisfying the fixed point property. In the study, we 

also study some other Banach spaces in connection 

with the Köthe-Toeplitz duals for the 2nd order and 3rd 

order generalized difference sequence spaces. 

 

Keywords: Fixed point property, nonexpansive 

mapping, Köthe-Toeplitz dual. 

 

1. Introduction 

 

When a Banach space satisfies the condition that 

every invariant nonexpansive mappings defined on any 

closed, bounded and convex (cbc) nonemtpy subset 

has a fixed point, then it is said that the space has the 

fixed point property for nonexpansive mappings. We 

need to note that distances between images of distant 

points under nonexpansive mapping cannot exceed the 

distances between the points taken. Researchers have 

considered categorizing Banach spaces with this 

property. 
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Firstly, in (Browder 1965) it is found that Hilbert 

spaces have the property and the result was generalized 

in (Kirk 1965) to reflexive Banach spaces with normal 

structure.  

Then, researchers have especially investigated 

nonreflexive classical Banach spaces and wondered if 

they can be renormable and falls in the same category 

with their equivalent norm while they fail to be 

members of the category with their usual norm but they 

were able to detect some nonreflexive Banach spaces 

which have equivalent norms and they become to have 

the fixed point property with those renormings. The 

first example was given by Lin (2008) for ℓ1. Then 

even it has been asked if the same could have been 

done for 𝑐0, but the answer still remains open. Since 

the researchers have considered trying to obtain the 

analogous results for well-known other classical 

nonreflexive Banach spaces, another experiment was 

done for Lebesgue integrable functions space 𝐿1[0,1]   

by Hernandes Lineares and Maria (2012) but they were 

able to obtain the positive answer when they restricted 

the nonexpansive mappings by assuming they were 

affine as well. One can say that there is no doubt most 

tries have been inspired by the ideas of the study 

(Goebel and Kuczumow 1979) where Goebel and 

Kuczumow proved that while ℓ1 fails the fixed point 

property since one can easily find a cbc nonweakly 

compact subset there and a fixed point free invariant 

nonexpansive map, it is possible to find a very large 

class subsets in target such that invariant nonexpansive 

mappings defined on the members of the class have 

fixed points. In fact, it is easy to notice the traces of 

those ideas in (Lin 2008) work. Even Goebel and 

Kuczumow’s work has inspired many other 

researchers to investigate if there exist more example 

of nonreflexive Banach spaces with large classes 
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satisfying fixed point property.  For example, Kaczor 

and Prus (2004) wanted to generalize Goebel and 

Kuczumow’s findings by investigating if the same 

could be done for asymptotically nonexpansive 

mappings. Then, as their result, they proved that under 

affinity condition, asymptotically nonexpansive 

invariant mappings defined on a large class of cbc 

subsets in ℓ1 can have fixed points. Moreover, in 

(Everest 2013) Kaczor and Prus’s results were 

extended by having been found larger classes 

satisfying the fixed point property for affine 

asymptotically nonexpansive mappings. Thus, affinity 

condition become an easiness tool for their works. In 

fact, as an another well-known nonreflexive Banach 

space, Lebesgue space 𝐿1[0,1] was studied in 

(Hernandes Lineares and Japón 2012) and in their 

study they obtained an analogous result to (Lin 2008) 

as they showed that 𝐿1[0,1] can be renormed to have 

the fixed point property for affine nonexpansive 

mappings.  

        In this study we will investigate some Banach 

spaces analogous to ℓ1. We aim to discuss the 

analogous results for Köthe-Toeplitz duals of certain 

generalized difference sequence spaces studied by Et 

and Esi (2000). We show that there exists a very large 

class of cbc subsets in those spaces with fixed point 

property for nonexpansive mappings. Thus, first we 

will recall the definition of Cesàro sequence spaces 

introduced by Shiue (1970) and next we will give 

Kızmaz’s construction in (Kızmaz 1981) for difference 

sequence spaces since the dual space we work on is 

obtained from the generalizations of Kızmaz’s idea 

which are derived differently by many researchers 

such as (Çolak 1989), (Et 1996), (Et and Çolak 1995), 

(Et and Esi 2000), (NgPeng-Nung and  and LeePeng-

Yee 1978), (Orhan 1983), and (Tripathy et. al. 2005). 

But we need to note that Et and Esi’s work (Et and Esi 

2000) and the further study by Et and Çolak (1995) 

used the new type of difference sequence definition 

from Çolak’s work (Çolak 1989). 

 

2. Materials and Methods 

 

First we recall that (Shiue 1970) introduced the 

Cesàro sequence spaces written as 

ces𝑝 = {(𝑥𝑛)𝑛 ⊂ ℝ| (∑ (
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 )
𝑝

∞
𝑛=1 )

1
𝑝⁄

< ∞} 

such that ℓ𝑝 ⊂ ces𝑝 and  

ces∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 < ∞} 

such that ℓ∞ ⊂ 𝑐𝑒𝑠∞where 1 ≤ 𝑝 < ∞. Their 

topological properties have been investigated and it 

has been seen that for 1 < 𝑝 < ∞, ces𝑝 is a seperable 

reflexive Banach space. Furthermore, many 

researchers such as (Cui 1999), (Cui, Hudzik, and Li 

2000) and (Cui, Meng, and Pluciennik 2000) were able 

to prove that for 1 < 𝑝 < ∞, Cesàro sequence space 

ces𝑝 has the fixed point property.  

Easiest way to show that was due to both 

reflexivity by the fact the space has normal structure 

when 1 < 𝑝 < ∞ (using the fact via (Kirk 1965)) and 

the space having the weak fixed point property because 

of its Garcia-Falset coefficient is less than 2 (see for 

example (Falset 1997)). A good reference about fixed 

point theory results for Cesàro sequence spaces can be 

a survey in (Chen et. al. 2001).   

After the introduction of Cesàro sequence spaces, 

Kızmaz (1981), denoting by ℓ∞(△), c(△) and c0(△), 

introduced difference sequence spaces for ℓ∞, c and c0 

where they are the Banach spaces of bounded, 

convergent and null sequences, respectively. Here △ 

represented the difference operator applied to the 

sequence 𝑥 = (𝑥𝑛)𝑛 with the rule given by △ 𝑥 =

(𝑥𝑘 − 𝑥𝑘+1)𝑘. Kızmaz studied then Köthe-Toeplitz 

Duals and topological properties for them. 

As earlier it was stated, Çolak was one of the 

researchers generalizing Kızmaz’s (1981) ideas. In his 

work, Çolak (1989) obtained the generalized version 

of the difference sequence space in the following way 

by picking an arbitrary sequence of nonzero complex 

values 𝑣 = (𝑣𝑛)𝑛.   The new difference operator is 

denoted by △𝑣  and the difference sequence of a 

sequence 𝑥 = (𝑥𝑛)𝑛 is written as △𝑣 𝑥 = (𝑣𝑘𝑥𝑘 −

𝑣𝑘+1𝑥𝑘+1)𝑘. Then, in their study, Et and Esi (2000) 

defined a generalized difference sequence space as 

below.  

△𝑣 (ℓ∞) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑣 𝑥 ∈ ℓ∞}, 

△𝑣 (c) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑣 𝑥 ∈ c}, 

△𝑣 (c0) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑣 𝑥 ∈ c0}. 

Then, they also defined mth order generalized 

type difference sequence for any 𝑚 ∈ ℕ given by  

△𝑣
0 𝑥 = (𝑣𝑘𝑥𝑘)𝑘,   

△𝑣
𝑚 𝑥 = (△𝑣

𝑚 𝑥𝑘)𝑘 = (△𝑣
𝑚−1 𝑥𝑘 −△𝑣

𝑚−1 𝑥𝑘+1)𝑘 with  

△𝑣
𝑚 𝑥𝑘 = ∑ (−1)𝑖(𝑚

𝑖
)𝑚

𝑖=0 𝑣𝑘+𝑖𝑥𝑘+𝑖  for each 𝑘 ∈ ℕ. 

In fact, Et and Esi (2000) further generalized the 

above difference sequence spaces and Bektaş, Et and 
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Çolak (2004) not only found the Köthe-Toeplitz duals 

for them but also obtained the duals for the generalized 

types of Et and Esi’s. In this study, we will consider 

the 2nd order and 3rd order types which have the 

following norms respectively:  

‖𝑥‖𝑣
(2)

= |𝑣1𝑥1| + |𝑣2𝑥2| + ‖△𝑣
𝑚 𝑥‖∞, 

‖𝑥‖𝑣
(3)

= |𝑣1𝑥1| + |𝑣2𝑥2| + |𝑣3𝑥3| + ‖△𝑣
𝑚 𝑥‖∞. 

Then the corresponding Köthe-Toeplitz duals 

were obtained as in (Bektaş, Et and Çolak 2004) and 

(Et and Esi 2000) such that they are written as below: 

𝑈1
2 ≔ {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛2𝑣𝑛

−1𝑎𝑛)𝑛 ∈ ℓ1} 

= {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ:  ‖𝑎‖(2) = ∑
𝑘2|𝑎𝑘|

|𝑣𝑘|

∞

𝑘=1

< ∞} 

and 

𝑈1
3 ≔ {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛3𝑣𝑛

−1𝑎𝑛)𝑛 ∈ ℓ1} 

= {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ:  ‖𝑎‖(3) = ∑
𝑘3|𝑎𝑘|

|𝑣𝑘|

∞

𝑘=1

< ∞}. 

Note that 𝑈1
𝑚 ⊂ ℓ1 if 𝑘𝑚|𝑣𝑘

−1| > 1 for each 𝑘 ∈

ℕ and ℓ1 ⊂ 𝑈1
𝑚 if 𝑘𝑚|𝑣𝑘

−1| < 1 for each 𝑘 ∈ ℕ and 

𝑚 = 2, 3. 

In this study, we will also condiser two more 

Banach spaces which are closely related to the above 

ones. We will denote them by 𝑊1
2 and 𝑊1

3 and their 

definitions are as follow: 

𝑊1
2 ≔ {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ| (

𝑎𝑛

𝑛2𝑣𝑛
)

𝑛
∈ ℓ1} 

= {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶   ‖𝑎‖(2) = ∑
|𝑎𝑘|

𝑘2|𝑣𝑘|

∞

𝑘=1

< ∞} 

and 

𝑊1
3 ≔ {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ| (

𝑎𝑛

𝑛3𝑣𝑛
)

𝑛
∈ ℓ1} 

= {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶   ‖𝑎‖(3) = ∑
|𝑎𝑘|

𝑘3|𝑣𝑘|

∞

𝑘=1

< ∞}. 

Note that 𝑊1
𝑚 ⊂ ℓ1 if 𝑘𝑚|𝑣𝑘| < 1 for each 𝑘 ∈

ℕ and ℓ1 ⊂ 𝑊1
𝑚 if 𝑘𝑚|𝑣𝑘| > 1 for each 𝑘 ∈ ℕ and 

𝑚 = 2, 3. 

These Banach spaces in connection with the 

above Köthe-Toeplitz duals are types of degenerate 

Lorentz-Marcinkiewicz spaces. The reader is 

recommended to see for example (Lindenstrauss and 

Tzafriri 1977) about them. 

We will need the below well-known 

preliminaries before giving our main results. (Goebel 

and Kirk 1990) may be suggested as a good reference 

for these fundamentals. 

 

Definition 2.1. Consider that (𝑋, ∥⋅∥) is a Banach 

space and let 𝐶 be a non-empty cbc subset. Let : 𝐶 → 𝐶 

be a mapping. We say that 

1.  𝑇 is an affine mapping if for every 𝑡 ∈ [0,1] and 

𝑎, 𝑏 ∈ 𝐶, 𝑇((1 − 𝑡)𝑎 + 𝑡𝑏) = (1 − 𝑡)𝑇(𝑎) + 𝑡 𝑇(𝑏).  

2. 𝑇 is a nonexpansive mapping if for every 𝑎, 𝑏 ∈ 𝐶,  

∥ 𝑇(𝑎) − 𝑇(𝑏) ∥≤∥ 𝑎 − 𝑏 ∥. 

Then, we will easily obtain an anologous key 

lemma from the below lemma in the work (Goebel and 

Kuczumow 1979). 

 

Lemma 2.2. Let {𝑢𝑛} be a sequence in ℓ1 converging 

to 𝑢 in weak-star topology, then for every 𝑤 ∈ ℓ1,  

𝑟(𝑤) = 𝑟(𝑢) + ‖𝑤 − 𝑢‖1 

where 

 𝑟(𝑤) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑢𝑛 − 𝑤‖1. 

Note that our scalar field in this study will be real 

numbers although (Çolak 1989) considers complex 

values of 𝑣 = (𝑣𝑛)𝑛 while introducing his structer of 

the difference sequence which is taken as the 

fundamental concept in this study.  

 

3. Results 

 

In this section, we will present our results. As 

earlier it has been mentioned in the first section, we 

investigate Goebel and Kuczumow’s analogy for the 

spaces 𝑈1
2, 𝑈1

3, 𝑊1
2 and 𝑊1

3. We aim to show that there 

are large classes of  cbc subsets in these spaces such 

that every nonexpansive invariant mapping defined on 

the subsets in the classes taken has a fixed point. Recall 

that the invariant mappings have the same domain and 

range.  

Firstly, due to isometric isomorphism, using 

Lemma 2.2, we will provide the straight analogous 

result as a lemma below which will be a key step as in 

the works such as (Goebel and Kuczumow 1979) and 

(Everest 2013) and in fact the methods in the study 

(Everest 2013) will be our lead in this work. 

 

Lemma 3.1. Let {𝑢𝑛} be a sequence in a Banach space 

𝑍 which is a member of the spaces 𝑈1
2, 𝑈1

3, 𝑊1
2 or 𝑊1

3 

such that ‖. ‖ denotes the norm for each space and 

assume {𝑢𝑛} converges to 𝑢 in weak-star topology, 

then for every 𝑤 ∈ 𝑍,  

𝑟(𝑤) = 𝑟(𝑢) + ‖𝑤 − 𝑢‖ 

where  𝑟(𝑤) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑢𝑛 − 𝑤‖. 
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Then we prove the following theorems as our 

main results. 

 

Theorem 3.2. Fix 𝑏 ∈ (0,1). Let (𝑓𝑛)𝑛∈ℕ be a 

sequence defined by 𝑓1: = 𝑏 𝑣1 𝑒1,   𝑓2: =
𝑏 𝑣2 𝑒2

22 , and 

𝑓𝑛: =
𝑣𝑛

𝑛2 𝑒𝑛 for all integers 𝑛 ≥ 3 where the sequence 

(𝑒𝑛)𝑛∈ℕ is the canonical basis of both 𝑐0 and ℓ1. Then, 

consider the cbc subset 𝐸(2) = 𝐸𝑏
(2) of  𝑈1

2 by  

𝐸(2): = {∑

∞

𝑛=1

𝑡𝑛𝑓𝑛: ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0 𝑎𝑛𝑑 ∑

∞

𝑛=1

𝑡𝑛 = 1} . 

Then, 𝐸(2) has the fixed point property for 

‖ .  ‖(2)-nonexpansive mappings. 

 

Proof.  Fix 𝑏 ∈ (0,1). Let 𝑇: 𝐸(2) → 𝐸(2) be a 

nonexpansive mapping. Then, there exists a sequence 

so called aproximate fixed point sequence (𝑢(𝑛))
𝑛∈ℕ

∈

𝐸(2) such that ‖𝑇𝑢(𝑛) − 𝑢(𝑛)‖
(2)

𝑛
→ 0. Due to isometric 

isomorphism 𝑈1
2 shares common geometric properties 

with ℓ1 and so both 𝑈1
2 and its predual have same fixed 

point theory facts to ℓ1 and 𝑐0, respectly. Thus, 

considering that on bounded subsets the weak star 

topology on ℓ1 is equivalent to the coardinate-wise 

convergence topology, and 𝑐0 is separable, in 𝑈1
2, the 

unit closed ball is weak*-sequentially compact due to 

Banach-Alaoglu theorem. Then we can say that we 

may denote the weak* closure of the set 𝐸(2) by  

𝐶(2): = 𝐸(2)
𝑤∗

 

= {∑

∞

n=1

𝑡𝑛  𝑓𝑛: 𝑒𝑎𝑐ℎ 𝑡𝑛 ≥ 0 𝑎𝑛𝑑 ∑

∞

𝑛=1

𝑡𝑛 ≤ 1} 

and without loss of generality, we may pass to a 

subsequence if necessary, and get a weak* limit 𝑢 ∈

𝐶(2) of 𝑢(𝑛). Then, by Lemma 3.1, we have a function 

𝑟: 𝑈1
2 → [0, ∞) defined by  

𝑟(𝑤) = limsup
𝑛

‖𝑢(𝑛) − 𝑤‖
(2)

 , ∀𝑤 ∈ 𝑈1
2 

such that for every 𝑤 ∈ 𝑈1
2,  

𝑟(𝑤) = 𝑟(𝑢) + ‖𝑢 − 𝑤‖(2). 

Case 1:𝑢 ∈ 𝐸(2).  

Then, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖(2) and  

𝑟(𝑇𝑢) = limsup
𝑛

‖𝑇𝑢 − 𝑢(𝑛)‖
(2)

 

≤ limsup
𝑛

‖𝑇𝑢 − 𝑇(𝑢(𝑛))‖
(2)

+ limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(2)

 

                   ≤ limsup
𝑛

‖𝑢 − 𝑢(𝑛)‖
(2)

+ 0 

                              = 𝑟(𝑢).                                   (3.2.1) 

Thus, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖(2) ≤ 𝑟(𝑢) and 

so ‖𝑇𝑢 − 𝑢‖(2) = 0. Therefore,  𝑇𝑢 = 𝑢. 

 

Case 2: 𝑢 ∈ 𝐶(2)\𝐸(2). 

Then, we may find scalars satisfying ∑∞
𝑛=1 𝛿𝑛 <

1 𝑎𝑛𝑑 ∀𝑛 ∈ ℕ, 𝛿𝑛 ≥ 0 such that 𝑢 = ∑∞
𝑛=1 𝛿𝑛𝑓𝑛.  

Then, let 𝛾: = 1 − ∑∞
𝑛=1 𝛿𝑛 and for 𝛼 ∈ [

−𝛿1

𝛾
,

𝛿2

𝛾
+ 1] 

define 

ℎ𝛼: = (𝛿1 + 𝛼𝛾)𝑓1 + (𝛿2 + (1 − 𝛼)𝛾)𝑓2 + ∑

∞

𝑛=3

𝛿𝑛𝑓𝑛. 

Then,   

‖ℎ𝛼 − 𝑢‖(2) = ‖𝛼𝑏𝛾𝑣1𝑒1 + (1 − 𝛼)𝛾
𝑏 𝑣2𝑒2

22
‖

(2)

 

= b|𝛼|𝛾 + 𝑏|1 − 𝛼|𝛾.  

‖ℎ𝛼 − 𝑢‖(2) is minimized for 𝛼 ∈ [0,1] and its 

minimum value would be 𝑏𝛾. 

Now fix 𝑤 ∈ 𝐸(2). Then, we may find scalars 𝑡𝑛 

satisfying ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0 and  ∑∞
𝑛=1 𝑡𝑛   = 1 such that 

𝑤 = ∑∞
𝑛=1 𝑡𝑛𝑓𝑛. 

Then,   

‖w − 𝑢‖(2) = ‖∑

∞

𝑘=1

𝑡𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

(2)

 

= b|𝑡1 − 𝛿1| + b|𝑡2 − 𝛿2| + ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

    = b|𝑡1 − 𝛿1| + b|𝑡2 − 𝛿2| + 𝑏 ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

+(1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|                        

     ≥ b |∑

∞

𝑘=1

𝑡𝑘 − 𝛿𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

             = b |∑

∞

𝑘=1

𝑡𝑘 − ∑

∞

𝑘=1

𝛿𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

        = b|1 − (1 − 𝛾)| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|.  

Hence, 

‖w − 𝑢‖(2) ≥ 𝑏𝛾 + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| ≥ 𝑏𝛾 

and the equality is obtained if and only if  (1 −

𝑏) ∑∞
𝑘=3 |𝑡𝑘 − 𝛿𝑘| = 0; that is, we have ‖w − 𝑢‖(2) =
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𝑏𝛾 if and only if 𝑡𝑘 = 𝛿𝑘 for every 𝑘 ≥ 3; or say, 

‖w − 𝑢‖(2) = 𝑏𝛾 if and only if w = ℎ𝛼 for some 𝛼 ∈

[0,1]. 

Then, there exists a continuous function 

𝜌: [0,1] → 𝐸(2) defined by 𝜌(𝛼) = ℎ𝛼  and Λ ≔

𝜌([0,1]) is a compact convex subset and so ‖w −

𝑢‖(2) achieves its minimum value at w = ℎ𝛼 and for 

any h𝛼 ∈ Λ, we get  

𝑟(ℎ𝛼) = 𝑟(𝑢) + ‖ℎ𝛼 − 𝑢‖(2)          

        ≤ 𝑟(𝑢) + ‖𝑇ℎ𝛼 − 𝑢‖(2)  

                              = 𝑟(𝑇ℎ𝛼) = limsup
𝑛

‖𝑇ℎ𝛼 − 𝑢(𝑛)‖
(2)

 

then same as the inequality (3.2.1), we get 

𝑟(ℎ𝛼) ≤ limsup
𝑛

‖𝑇ℎ𝛼 − 𝑇(𝑢(𝑛))‖
(2)

 

                     +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(2)

 

      ≤ limsup
𝑛

‖ℎ𝛼 − 𝑢(𝑛)‖
(2)

 

                      +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(2)

 

                ≤ limsup
𝑛

‖ℎ𝛼 − 𝑢(𝑛)‖
(2)

+ 0 

= 𝑟(ℎ𝛼).                    

Hence, 𝑟(ℎ𝛼) ≤ 𝑟(𝑇ℎ𝛼) ≤ 𝑟(ℎ𝛼) and so 

𝑟(𝑇ℎ𝛼) = 𝑟(ℎ𝛼).  

Therefore,  

𝑟(𝑢) + ‖𝑇ℎ𝛼 − 𝑢‖(2) = 𝑟(𝑢) + ‖ℎ𝛼 − 𝑢‖(2).  

Thus, ‖𝑇ℎ𝛼 − 𝑢‖(2) = ‖ℎ𝛼 − 𝑢‖(2) and so 

𝑇ℎ𝛼 ∈ Λ but this shows 𝑇(Λ) ⊆ Λ and using 

Schauder’s Fixed Point Theorem (Schauder 1930) 

easily we get the result 𝑇 has a fixed point since 𝑇 is 

continuous; thus, ℎ𝛼 is the unique minimizer of 

‖w − 𝑢‖(2)  ∶ 𝑤 ∈ 𝐸(2) and 𝑇ℎ𝛼 = ℎ𝛼 . 

Therefore, 𝐸(2) has the fixed point property for 

nonexpansive mappings. 

 

Theorem 3.3. Fix 𝑏 ∈ (0,1). Let (𝑓𝑛)𝑛∈ℕ be a 

sequence defined by 𝑓1: = 𝑏 𝑣1 𝑒1,   𝑓2: =
𝑏 𝑣2 𝑒2

23 , and 

𝑓𝑛: =
𝑣𝑛

𝑛3 𝑒𝑛 for all integers 𝑛 ≥ 3 where the sequence 

(𝑒𝑛)𝑛∈ℕ is the canonical basis of both 𝑐0 and ℓ1. Then, 

consider the cbc subset 𝐸(3) = 𝐸𝑏
(3) of  𝑈1

3 by  

𝐸(3): = {∑

∞

𝑛=1

𝑡𝑛𝑓𝑛: ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0 𝑎𝑛𝑑 ∑

∞

𝑛=1

𝑡𝑛 = 1} . 

Then, 𝐸(3) has the fixed point property for 

‖ .  ‖(3)-nonexpansive mappings. 

 

Proof.  Fix 𝑏 ∈ (0,1). Let 𝑇: 𝐸(3) → 𝐸(3) be a 

nonexpansive mapping. Then, there exists a sequence 

so called aproximate fixed point sequence (𝑢(𝑛))
𝑛∈ℕ

∈

𝐸(3) such that ‖𝑇𝑢(𝑛) − 𝑢(𝑛)‖
(3)

𝑛
→ 0. Due to isometric 

isomorphism 𝑈1
3 shares common geometric properties 

with ℓ1 and so both 𝑈1
3 and its predual have same fixed 

point theory facts to ℓ1 and 𝑐0, respectly. Thus, 

considering that on bounded subsets the weak star 

topology on ℓ1 is equivalent to the coardinate-wise 

convergence topology, and 𝑐0 is separable, in 𝑈1
3, the 

unit closed ball is weak*-sequentially compact due to 

Banach-Alaoglu theorem. Then we can say that we 

may denote the weak* closure of the set 𝐸(3) by  

𝐶(3): = 𝐸(3)
𝑤∗

 

= {∑

∞

n=1

𝑡𝑛  𝑓𝑛: 𝑒𝑎𝑐ℎ 𝑡𝑛 ≥ 0 𝑎𝑛𝑑 ∑

∞

𝑛=1

𝑡𝑛 ≤ 1} 

and without loss of generality, we may pass to a 

subsequence if necessary, and get a weak* limit 𝑢 ∈

𝐶(3) of 𝑢(𝑛). Then, by Lemma 3.1, we have a function 

𝑟: 𝑈1
3 → [0, ∞) defined by  

 𝑟(𝑤) = limsup
𝑛

‖𝑢(𝑛) − 𝑤‖
(3)

 , ∀𝑤 ∈ 𝑈1
3    

such that for every 𝑤 ∈ 𝑈1
3,  

𝑟(𝑤) = 𝑟(𝑢) + ‖𝑢 − 𝑤‖(3). 

Case 1:𝑢 ∈ 𝐸(3).  

Then, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖(3) and  

𝑟(𝑇𝑢) = limsup
𝑛

‖𝑇𝑢 − 𝑢(𝑛)‖
(3)

 

≤ limsup
𝑛

‖𝑇𝑢 − 𝑇(𝑢(𝑛))‖
(3)

        

                             +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(3)

 

                   ≤ limsup
𝑛

‖𝑢 − 𝑢(𝑛)‖
(3)

+ 0 

                              = 𝑟(𝑢).                                   (3.3.1) 

 

Thus, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖(3) ≤ 𝑟(𝑢) and 

so ‖𝑇𝑢 − 𝑢‖(3) = 0. Therefore,  𝑇𝑢 = 𝑢. 

 

Case 2: 𝑢 ∈ 𝐶(3)\𝐸(3). 

Then, we may find scalars satisfying ∑∞
𝑛=1 𝛿𝑛 <

1 𝑎𝑛𝑑 ∀𝑛 ∈ ℕ, 𝛿𝑛 ≥ 0 such that 𝑢 = ∑∞
𝑛=1 𝛿𝑛𝑓𝑛.  

Then, let 𝛾: = 1 − ∑∞
𝑛=1 𝛿𝑛 and for 𝛼 ∈ [

−𝛿1

𝛾
,

𝛿2

𝛾
+ 1] 

define 

ℎ𝛼: = (𝛿1 + 𝛼𝛾)𝑓1 + (𝛿2 + (1 − 𝛼)𝛾)𝑓2 + ∑

∞

𝑛=3

𝛿𝑛𝑓𝑛. 
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Then,   

‖ℎ𝛼 − 𝑢‖(3) = ‖𝛼𝑏𝛾𝑣1𝑒1 + (1 − 𝛼)𝛾
𝑏 𝑣2𝑒2

23
‖

(3)

 

= b|𝛼|𝛾 + 𝑏|1 − 𝛼|𝛾. 

‖ℎ𝛼 − 𝑢‖(3) is minimized for 𝛼 ∈ [0,1] and its 

minimum value would be 𝑏𝛾. 

Now fix 𝑤 ∈ 𝐸(3). Then, we may find scalars 𝑡𝑛 

satisfying ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0 and  ∑∞
𝑛=1 𝑡𝑛   = 1 such that 

𝑤 = ∑∞
𝑛=1 𝑡𝑛𝑓𝑛. 

Then,   

‖w − 𝑢‖(3) = ‖∑

∞

𝑘=1

𝑡𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

(3)

                         

= b|𝑡1 − 𝛿1| + b|𝑡2 − 𝛿2| + ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

    = b|𝑡1 − 𝛿1| + b|𝑡2 − 𝛿2| + 𝑏 ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

+(1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|                         

   ≥ b |∑

∞

𝑘=1

𝑡𝑘 − 𝛿𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

          = b |∑

∞

𝑘=1

𝑡𝑘 − ∑

∞

𝑘=1

𝛿𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

    = b|1 − (1 − 𝛾)| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|.  

Hence, 

‖w − 𝑢‖(3) ≥ 𝑏𝛾 + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| ≥ 𝑏𝛾 

and the equality is obtained if and only if  (1 −

𝑏) ∑∞
𝑘=3 |𝑡𝑘 − 𝛿𝑘| = 0; that is, we have ‖w − 𝑢‖(2) =

𝑏𝛾 if and only if 𝑡𝑘 = 𝛿𝑘 for every 𝑘 ≥ 3; or say, 

‖w − 𝑢‖(3) = 𝑏𝛾 if and only if w = ℎ𝛼 for some 𝛼 ∈

[0,1]. 

Then, there exists a continuous function 

𝜌: [0,1] → 𝐸(3) defined by 𝜌(𝛼) = ℎ𝛼  and Λ ≔

𝜌([0,1]) is a compact convex subset and so ‖w −

𝑢‖(3) achieves its minimum value at w = ℎ𝛼 and for 

any h𝛼 ∈ Λ, we get  

𝑟(ℎ𝛼) = 𝑟(𝑢) + ‖ℎ𝛼 − 𝑢‖(3)     

≤ 𝑟(𝑢) + ‖𝑇ℎ𝛼 − 𝑢‖(3) 

= 𝑟(𝑇ℎ𝛼)               

                                  = limsup
𝑛

‖𝑇ℎ𝛼 − 𝑢(𝑛)‖
(3)

  

then same as the inequality (3.3.1), we get 

𝑟(ℎ𝛼) ≤ limsup
𝑛

‖𝑇ℎ𝛼 − 𝑇(𝑢(𝑛))‖
(3)

 

                  +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(3)

 

     ≤ limsup
𝑛

‖ℎ𝛼 − 𝑢(𝑛)‖
(3)

 

                   +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(3)

 

              ≤ limsup
𝑛

‖ℎ𝛼 − 𝑢(𝑛)‖
(3)

+ 0 

= 𝑟(ℎ𝛼).                      

Hence, 𝑟(ℎ𝛼) ≤ 𝑟(𝑇ℎ𝛼) ≤ 𝑟(ℎ𝛼) and so 

𝑟(𝑇ℎ𝛼) = 𝑟(ℎ𝛼).  

Therefore,  

𝑟(𝑢) + ‖𝑇ℎ𝛼 − 𝑢‖(3) = 𝑟(𝑢) + ‖ℎ𝛼 − 𝑢‖(3). 

Thus, ‖𝑇ℎ𝛼 − 𝑢‖(3) = ‖ℎ𝛼 − 𝑢‖(3) and so 

𝑇ℎ𝛼 ∈ Λ but this shows 𝑇(Λ) ⊆ Λ and using 

Schauder’s Fixed Point Theorem (Schauder 1930) 

easily we get the result 𝑇 has a fixed point since 𝑇 is 

continuous; thus, ℎ𝛼 is the unique minimizer of 

‖w − 𝑢‖(3)  ∶ 𝑤 ∈ 𝐸(3) and 𝑇ℎ𝛼 = ℎ𝛼 . 

Therefore, 𝐸(3) has the fixed point property for 

nonexpansive mappings. 

 

Theorem 3.4. Fix 𝑏 ∈ (0,1). Let (𝑓𝑛)𝑛∈ℕ be a 

sequence defined by 𝑓1: = 𝑏 𝑣1 𝑒1,   𝑓2: = 22𝑏 𝑣2 𝑒2, 

and 𝑓𝑛: = 𝑛2𝑣𝑛𝑒𝑛 for all integers 𝑛 ≥ 3 where the 

sequence (𝑒𝑛)𝑛∈ℕ is the canonical basis of both 𝑐0 and 

ℓ1. Then, consider the cbc subset 𝐸(2) = 𝐸𝑏(2) of  𝑊1
2 

by  

𝐸(2): = {∑

∞

𝑛=1

𝑡𝑛𝑓𝑛: ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0 𝑎𝑛𝑑 ∑

∞

𝑛=1

𝑡𝑛 = 1} . 

Then, 𝐸(2) has the fixed point property for 

‖ .  ‖(2)-nonexpansive mappings. 

 

Proof.  Fix 𝑏 ∈ (0,1). Let 𝑇: 𝐸(2) → 𝐸(2) be a 

nonexpansive mapping. Then, there exists a sequence 

so called aproximate fixed point sequence (𝑢(𝑛))
𝑛∈ℕ

∈

𝐸(2) such that ‖𝑇𝑢(𝑛) − 𝑢(𝑛)‖
(2) 𝑛

→ 0. Due to isometric 

isomorphism 𝑊1
2 shares common geometric properties 

with ℓ1 and so both 𝑊1
2 and its predual have same fixed 

point theory facts to ℓ1 and 𝑐0, respectly. Thus, 

considering that on bounded subsets the weak star 

topology on ℓ1 is equivalent to the coardinate-wise 

convergence topology, and 𝑐0 is separable, in 𝑊1
2, the 

unit closed ball is weak*-sequentially compact due to 

Banach-Alaoglu theorem. Then we can say that we 

may denote the weak* closure of the set 𝐸(2) by  
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𝐶(2): = 𝐸(2)

𝑤∗

 

= {∑

∞

n=1

𝑡𝑛  𝑓𝑛: 𝑒𝑎𝑐ℎ 𝑡𝑛 ≥ 0 𝑎𝑛𝑑 ∑

∞

𝑛=1

𝑡𝑛 ≤ 1} 

and without loss of generality, we may pass to a 

subsequence if necessary, and get a weak* limit 𝑢 ∈

𝐶(2) of 𝑢(𝑛). Then, by Lemma 3.1, we have a function 

𝑟: 𝑊1
2 → [0, ∞) defined by  

𝑟(𝑤) = limsup
𝑛

‖𝑢(𝑛) − 𝑤‖
(2)

 , ∀𝑤 ∈ 𝑊1
2 

such that for every 𝑤 ∈ 𝑊1
2,  

𝑟(𝑤) = 𝑟(𝑢) + ‖𝑢 − 𝑤‖(2). 

Case 1:𝑢 ∈ 𝐸(2).  

Then, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖(2) and  

𝑟(𝑇𝑢) = limsup
𝑛

‖𝑇𝑢 − 𝑢(𝑛)‖
(2)

 

≤ limsup
𝑛

‖𝑇𝑢 − 𝑇(𝑢(𝑛))‖
(2)

 

                            +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(2)

 

                  ≤ limsup
𝑛

‖𝑢 − 𝑢(𝑛)‖
(2)

+ 0 

                              = 𝑟(𝑢).                                   (3.4.1) 

Thus, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖(2) ≤ 𝑟(𝑢) and 

so ‖𝑇𝑢 − 𝑢‖(2) = 0. Therefore,  𝑇𝑢 = 𝑢. 

Case 2: 𝑢 ∈ 𝐶(2)\𝐸(2). 

Then, we may find scalars satisfying ∑∞
𝑛=1 𝛿𝑛 <

1 𝑎𝑛𝑑 ∀𝑛 ∈ ℕ, 𝛿𝑛 ≥ 0 such that 𝑢 = ∑∞
𝑛=1 𝛿𝑛𝑓𝑛.  

Then, let 𝛾: = 1 − ∑∞
𝑛=1 𝛿𝑛 and for 𝛼 ∈ [

−𝛿1

𝛾
,

𝛿2

𝛾
+ 1] 

define 

ℎ𝛼: = (𝛿1 + 𝛼𝛾)𝑓1 + (𝛿2 + (1 − 𝛼)𝛾)𝑓2 + ∑

∞

𝑛=3

𝛿𝑛𝑓𝑛. 

Then,   

‖ℎ𝛼 − 𝑢‖(2) = ‖𝛼𝑏𝛾𝑣1𝑒1 + (1 − 𝛼)𝛾22𝑏 𝑣2𝑒2‖(2) 

= b|𝛼|𝛾 + 𝑏|1 − 𝛼|𝛾.     

‖ℎ𝛼 − 𝑢‖(2) is minimized for 𝛼 ∈ [0,1] and its 

minimum value would be 𝑏𝛾. 

Now fix 𝑤 ∈ 𝐸(2). Then, we may find scalars 𝑡𝑛 

satisfying ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0 and  ∑∞
𝑛=1 𝑡𝑛   = 1 such that 

𝑤 = ∑∞
𝑛=1 𝑡𝑛𝑓𝑛.   

Then,   

‖w − 𝑢‖(2) = ‖∑

∞

𝑘=1

𝑡𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

(2)

 

= b|𝑡1 − 𝛿1| + b|𝑡2 − 𝛿2| + ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

   = b|𝑡1 − 𝛿1| + b|𝑡2 − 𝛿2| + 𝑏 ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

+(1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|                         

   ≥ b |∑

∞

𝑘=1

𝑡𝑘 − 𝛿𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

          = b |∑

∞

𝑘=1

𝑡𝑘 − ∑

∞

𝑘=1

𝛿𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| 

    = b|1 − (1 − 𝛾)| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|.  

Hence, 

‖w − 𝑢‖(2) ≥ 𝑏𝛾 + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| ≥ 𝑏𝛾 

and the equality is obtained if and only if  (1 −

𝑏) ∑∞
𝑘=3 |𝑡𝑘 − 𝛿𝑘| = 0; that is, we have ‖w − 𝑢‖(2) =

𝑏𝛾 if and only if 𝑡𝑘 = 𝛿𝑘 for every 𝑘 ≥ 3; or say, 

‖w − 𝑢‖(2) = 𝑏𝛾 if and only if w = ℎ𝛼 for some 𝛼 ∈

[0,1]. 

Then, there exists a continuous function 

𝜌: [0,1] → E(2) defined by 𝜌(𝛼) = ℎ𝛼  and Λ ≔

𝜌([0,1]) is a compact convex subset and so ‖𝑤 −

𝑢‖(2) achieves its minimum value at w = ℎ𝛼 and for 

any h𝛼 ∈ Λ, we get  

𝑟(ℎ𝛼) = 𝑟(𝑢) + ‖ℎ𝛼 − 𝑢‖(2)      

          ≤ 𝑟(𝑢) + ‖𝑇ℎ𝛼 − 𝑢‖(2) 

= 𝑟(𝑇ℎ𝛼)               

                                 = limsup
𝑛

‖𝑇ℎ𝛼 − 𝑢(𝑛)‖
(2)

  

then same as the inequality (3.4.1), we get 

𝑟(ℎ𝛼) ≤ limsup
𝑛

‖𝑇ℎ𝛼 − 𝑇(𝑢(𝑛))‖
(2)

 

                  +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(2)

 

    ≤ limsup
𝑛

‖ℎ𝛼 − 𝑢(𝑛)‖
(2)

 

                 +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(2)

 

              ≤ limsup
𝑛

‖ℎ𝛼 − 𝑢(𝑛)‖
(2)

+ 0 

= 𝑟(ℎ𝛼).                      

Hence, 𝑟(ℎ𝛼) ≤ 𝑟(𝑇ℎ𝛼) ≤ 𝑟(ℎ𝛼) and so 

𝑟(𝑇ℎ𝛼) = 𝑟(ℎ𝛼).  

Therefore,  

𝑟(𝑢) + ‖𝑇ℎ𝛼 − 𝑢‖(2) = 𝑟(𝑢) + ‖ℎ𝛼 − 𝑢‖(2).  

Thus, ‖𝑇ℎ𝛼 − 𝑢‖(2) = ‖ℎ𝛼 − 𝑢‖(2) and so 

𝑇ℎ𝛼 ∈ Λ but this shows 𝑇(Λ) ⊆ Λ and using 

Schauder’s Fixed Point Theorem (Schauder 1930) 
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easily we get the result 𝑇 has a fixed point since 𝑇 is 

continuous; thus, ℎ𝛼 is the unique minimizer of 

‖w − 𝑢‖(2)  ∶ 𝑤 ∈ 𝐸(2) and 𝑇ℎ𝛼 = ℎ𝛼 . 

Therefore, 𝐸(2) has the fixed point property for 

nonexpansive mappings. 

 

Theorem 3.5. Fix 𝑏 ∈ (0,1). Let (𝑓𝑛)𝑛∈ℕ be a 

sequence defined by 𝑓1: = 𝑏 𝑣1 𝑒1,   𝑓2: = 23𝑏 𝑣2 𝑒2, 

and 𝑓𝑛: = 𝑛3𝑣𝑛𝑒𝑛 for all integers 𝑛 ≥ 3 where the 

sequence (𝑒𝑛)𝑛∈ℕ is the canonical basis of both 𝑐0 and 

ℓ1. Then, consider the cbc subset 𝐸(3) = 𝐸𝑏(3) of  𝑊1
3 

by  

𝐸(3): = {∑

∞

𝑛=1

𝑡𝑛𝑓𝑛: ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0 𝑎𝑛𝑑 ∑

∞

𝑛=1

𝑡𝑛 = 1} . 

Then, 𝐸(3) has the fixed point property for 

‖ .  ‖(3)-nonexpansive mappings. 

 

Proof.  Fix 𝑏 ∈ (0,1). Let 𝑇: 𝐸(3) → 𝐸(3) be a 

nonexpansive mapping. Then, there exists a sequence 

so called aproximate fixed point sequence (𝑢(𝑛))
𝑛∈ℕ

∈

𝐸(3) such that ‖𝑇𝑢(𝑛) − 𝑢(𝑛)‖
(3) 𝑛

→ 0. Due to isometric 

isomorphism 𝑊1
2 shares common geometric properties 

with ℓ1 and so both 𝑊1
3 and its predual have same fixed 

point theory facts to ℓ1 and 𝑐0, respectly. Thus, 

considering that on bounded subsets the weak star 

topology on ℓ1 is equivalent to the coardinate-wise 

convergence topology, and 𝑐0 is separable, in 𝑊1
3, the 

unit closed ball is weak*-sequentially compact due to 

Banach-Alaoglu theorem. Then we can say that we 

may denote the weak* closure of the set 𝐸(3) by  

𝐶(3): = 𝐸(3)

𝑤∗

 

= {∑

∞

n=1

𝑡𝑛  𝑓𝑛: 𝑒𝑎𝑐ℎ 𝑡𝑛 ≥ 0 𝑎𝑛𝑑 ∑

∞

𝑛=1

𝑡𝑛 ≤ 1} 

and without loss of generality, we may pass to a 

subsequence if necessary, and get a weak* limit 𝑢 ∈

𝐶(3) of 𝑢(𝑛). Then, by Lemma 3.1, we have a function 

𝑟: 𝑊1
3 → [0, ∞) defined by  

𝑟(𝑤) = limsup
𝑛

‖𝑢(𝑛) − 𝑤‖
(3)

 , ∀𝑤 ∈ 𝑊1
3 

such that for every 𝑤 ∈ 𝑊1
3,  

𝑟(𝑤) = 𝑟(𝑢) + ‖𝑢 − 𝑤‖(3). 

Case 1:𝑢 ∈ 𝐸(3).  

Then, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖(3) and  

𝑟(𝑇𝑢) = limsup
𝑛

‖𝑇𝑢 − 𝑢(𝑛)‖
(3)

 

≤ limsup
𝑛

‖𝑇𝑢 − 𝑇(𝑢(𝑛))‖
(3)

 

                            +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(3)

 

                  ≤ limsup
𝑛

‖𝑢 − 𝑢(𝑛)‖
(3)

+ 0 

                              = 𝑟(𝑢).                                   (3.5.1) 

 

Thus, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖(3) ≤ 𝑟(𝑢) and 

so ‖𝑇𝑢 − 𝑢‖(3) = 0. Therefore,  𝑇𝑢 = 𝑢. 

 

Case 2: 𝑢 ∈ 𝐶(3)\𝐸(3). 

Then, we may find scalars satisfying ∑∞
𝑛=1 𝛿𝑛 <

1 and ∀𝑛 ∈ ℕ, 𝛿𝑛 ≥ 0 such that 𝑢 = ∑∞
𝑛=1 𝛿𝑛𝑓𝑛.  

Then, let 𝛾: = 1 − ∑∞
𝑛=1 𝛿𝑛 and for 𝛼 ∈ [

−𝛿1

𝛾
,

𝛿2

𝛾
+ 1] 

define 

ℎ𝛼: = (𝛿1 + 𝛼𝛾)𝑓1 + (𝛿2 + (1 − 𝛼)𝛾)𝑓2 + ∑

∞

𝑛=3

𝛿𝑛𝑓𝑛. 

Then,   

‖ℎ𝛼 − 𝑢‖(3) = ‖𝛼𝑏𝛾𝑣1𝑒1 + (1 − 𝛼)𝛾23𝑏 𝑣2 𝑒2‖(3) 

= b|𝛼|𝛾 + 𝑏|1 − 𝛼|𝛾.       

‖ℎ𝛼 − 𝑢‖(3) is minimized for 𝛼 ∈ [0,1] and its 

minimum value would be 𝑏𝛾. 

Now fix 𝑤 ∈ 𝐸(3). Then, we may find scalars 𝑡𝑛 

satisfying ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0 and  ∑∞
𝑛=1 𝑡𝑛   = 1 such that 

𝑤 = ∑∞
𝑛=1 𝑡𝑛𝑓𝑛. 

Then,   

‖w − 𝑢‖(3) = ‖∑

∞

𝑘=1

𝑡𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

(3)

                       

= b|𝑡1 − 𝛿1| + b|𝑡2 − 𝛿2| + ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|                  

= b|𝑡1 − 𝛿1| + b|𝑡2 − 𝛿2| + 𝑏 ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|              

+(1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|                                            

≥ b |∑

∞

𝑘=1

𝑡𝑘 − 𝛿𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|                  

= b |∑

∞

𝑘=1

𝑡𝑘 − ∑

∞

𝑘=1

𝛿𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|          

= b|1 − (1 − 𝛾)| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘|.                 
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Hence, 

‖w − 𝑢‖(3) ≥ 𝑏𝛾 + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛿𝑘| ≥ 𝑏𝛾 

and the equality is obtained if and only if  (1 −

𝑏) ∑∞
𝑘=3 |𝑡𝑘 − 𝛿𝑘| = 0; that is, we have ‖w − 𝑢‖(3) =

𝑏𝛾 if and only if 𝑡𝑘 = 𝛿𝑘 for every 𝑘 ≥ 3; or say, 

‖w − 𝑢‖(3) = 𝑏𝛾 if and only if w = ℎ𝛼 for some 𝛼 ∈

[0,1]. 

Then, there exists a continuous function 

𝜌: [0,1] → 𝐸(3) defined by 𝜌(𝛼) = ℎ𝛼  and Λ ≔

𝜌([0,1]) is a compact convex subset and so ‖𝑤 −

𝑢‖(3) achieves its minimum value at w = ℎ𝛼 and for 

any h𝛼 ∈ Λ, we get  

𝑟(ℎ𝛼) = 𝑟(𝑢) + ‖ℎ𝛼 − 𝑢‖(3) 

                ≤ 𝑟(𝑢) + ‖𝑇ℎ𝛼 − 𝑢‖(3) 

= 𝑟(𝑇ℎ𝛼)          

                     = limsup
𝑛

‖𝑇ℎ𝛼 − 𝑢(𝑛)‖
(3)

 

then same as the inequality (3.5.1), we get 

𝑟(ℎ𝛼) ≤ limsup
𝑛

‖𝑇ℎ𝛼 − 𝑇(𝑢(𝑛))‖
(3)

 

                +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(3)

 

    ≤ limsup
𝑛

‖ℎ𝛼 − 𝑢(𝑛)‖
(3)

 

               +limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
(3)

 

            ≤ limsup
𝑛

‖ℎ𝛼 − 𝑢(𝑛)‖
(3)

+ 0 

= 𝑟(ℎ𝛼).                         

Hence, 𝑟(ℎ𝛼) ≤ 𝑟(𝑇ℎ𝛼) ≤ 𝑟(ℎ𝛼) and so 

𝑟(𝑇ℎ𝛼) = 𝑟(ℎ𝛼). Therefore, 𝑟(𝑢) + ‖𝑇ℎ𝛼 − 𝑢‖(3) =

𝑟(𝑢) + ‖ℎ𝛼 − 𝑢‖(3). Thus, ‖𝑇ℎ𝛼 − 𝑢‖(3) = ‖ℎ𝛼 −

𝑢‖(3) and so 𝑇ℎ𝛼 ∈ Λ but this shows 𝑇(Λ) ⊆ Λ and 

using Schauder’s Fixed Point Theorem (Schauder 

1930) easily we get the result 𝑇 has a fixed point since 

𝑇 is continuous; thus, ℎ𝛼 is the unique minimizer of 

‖w − 𝑢‖(3)  ∶ 𝑤 ∈ 𝐸(3) and 𝑇ℎ𝛼 = ℎ𝛼 . 

Therefore, 𝐸(3) has the fixed point property for 

nonexpansive mappings. 

 

4. Discussion 

 

        In this study, we have considered the Köthe-

Toeplitz duals for the 2nd order and 3rd order types 

difference sequence space generalizations by Et and 

Esi (2000). We have studied Goebel and Kuczumow 

(1979) analogy for those spaces and showed that there 

exist large classes of cbc subsets in those Köthe-

Toeplitz duals with fixed point property for 

nonexpansive mappings. We have also another study 

in preparation to get larger classes for mth order types. 

Furthermore, the first author has another study in 

preparation to investigate Kaczor and Prus (2004) 

analogy for the 2nd order and 3rd order types difference 

sequence space generalizations by Et and Esi (2000), 

which is to look for large classes of cbc subsets 

satisfying the fixed point property for asymptotically 

nonexpansive mappings. These spaces we have studied 

are analogous Banach spaces to ℓ1. There are many 

Banach spaces analogous to ℓ1 and Goebel-

Kuczumow analogy or Kaczor-Prus analogy might be 

investigated by researchers. 
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