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ABSTRACT 
 

In this paper a state feedback delay dependent 𝐿2 gain controller is designed in order to control of aircraft landing gear vibration. 

Based on the selection of suitable Lyapunov-Krasovskii (L-K) functional, first a Bounded Real Lemma (BRL) is obtained 

which enables defining stability criteria in terms of Linear Matrix Inequalities (LMIs). Extending BRL, sufficient delay-

dependent criteria is developed for a stabilizing 𝐿2 gain controller synthesis involving a matrix inequality. Bilinear Matrix 

Inequality (BMI) problem is solved by utilizing cone complementary algorithm. To show the effectiveness of proposed 

controller on aircraft landing gear vibration, simulation studies are given. Time responses of system show that the controller 

guarantees stability of system with delay and has sufficient disturbance attenuation performance. 

 

Keywords: Aircraft landing gear, Vibration, İnput delay. 
 

 

1. INTRODUCTION 
 

Aircraft landing gear is the leading component since runway induced vibrations directly affects the 

safety, ground operations and passenger-crew comfort. It is well known that most of the nonfatal 

accidents occur during landing [1]. The landing gear is intermediate element between the aircraft 

fuselage and the runway [2]. Landing gear is not only designed to absorb the energy of landing impact 

but also carry the aircraft mass during all ground operations [3]. Landing loads are recognized as a 

significant factor in causing damage [4].  Additionally, landing gear provides stability and maneuvering 

capability during ground operations [5]. As it is well known that traditional landing gear is equipped 

with tires and passive damping elements. Passive damping elements cannot always work efficiently due 

to various operational conditions. That causes to fatigue damage and increase the risk of accidents during 

landing and taking off. Therefore, attenuation of vibration on landing gear system is a requirement to 

improve safety and comfort. 

 

In order to overcome the disadvantages of passive dampers, active and semi-active damping applications 

are being studied in the literature. Li et al. have designed a fault-tolerant controller for semi-active 

autonomous damper [6]. They guaranteed stability with fault tolerant 𝐻∞ controller in case of an actuator 

fail that can occur cause of high landing impact as well as regular operational conditions. Zapateiro et 

al. have used an adaptive backstepping 𝐻∞ control for suspension system of landing gear. Lyapunov 

stability of system is guaranteed and comparison of active, semi-active and passive controller time 

responses under random and bump type disturbance is given in the paper.  Effectiveness of active and 

semi-active systems against to passive system in the sense of disturbance attenuation is demonstrated 

[7].  Hua-Lin et al. have designed fuzzy PID controller for landing gear based on MR damper [8]. 

Nonlinear factors of landing gear were taken into consideration and in simulation study using two-degree 

of freedom model effectiveness of active control is shown. Ghiringhelli et al. have designed a hybrid 

semi-active controller that combines a nonlinear PID term to mitigate the ground induced vibrations [9]. 

Sateesh et al. have developed a torsional MR damper to enhance the stability of the nose landing gear 
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system due to the ground induced lateral excitation [10]. Ross et al. have designed and active landing 

gear system to mitigate the landing loads and ground induced vibrations under various runway 

irregularities in their brief study [11]. Yazici and Sever have designed an observer based optimal state 

feedback controller having pole location constraint for landing gear system with biodynamic pilot model 

[12]. Li et al. have presented a new magneto-rheological buffer structure for impact load [13]. A semi-

active model predictive control method is used to adjust damping force. Toloei et al. have presented PID 

controller based on Bees Intelligent Algorithm [14]. Yazici and Sever have designed LMI based robust 

LQR controller having pole location constraints for non-linear landing gear system equipped with oleo 

pneumatic shock absorber [15]. Sivakumar et al. have proposed PID controller and done vibration 

analysis of a full aircraft [16]. In the study performance reductions caused by actuator delay is mentioned 

and actuator delay problem in landing gear is suggested as future work. 

 

Due to the long transmission lines used for remote control and finite processing rate of computers, there 

exists time delay. Time delay is often a source of instability and poor performance [17]. From the 

stabilization point of view delay dependent controller becomes a requirement for systems having state 

and/or input delay. Zhao et al. designed robust delay dependent controller with actuator saturation for a 

semi-active suspension system with human body model [18]. Du et al. applied delay dependent 𝐻∞ 

controller and demonstrated that delay dependent controller has more sufficient results than delay 

independent, by simulation results under random and bump type disturbance for active suspension 

system [19].  However, a considerable amount of attention has been paid to time delay problem, studies 

about time delay problem in aircraft landing gear is very limited. 

 

In this study, LMI based delay dependent 𝐿2 gain controller is designed and applied to two-degree-of-

freedom landing gear in for vibration attenuation. Sufficient delay dependent stability criteria is derived 

by choosing L-K functional candidate. This sufficient condition for designing such controller is given 

by delay dependent BMIs .Then, a cone complementary linearization method is adopted to the problem 

in terms of LMIs [20, 21]. With the use of proposed method, suboptimal state-feedback controller, 

maximum allowable delay upper bound and minimum allowable disturbance attenuation level are 

obtained simultaneously. Simulation results show the efficiency of proposed method. 

 

Rest of the paper is organized as follows: Section 2 describes the problem formulation. The design of 

delay-dependent 𝐿2 gain controller and main results are presented in Section 3. Section 4 includes 

nominal state feedback 𝐿2 gain controller design. Simulation results with discussion are given in Section 

5. Finally, Section 6 concludes the paper. 

 

Notation: A fairly standard notation is used throughout the paper. ℜ stands for the set of real numbers. 

ℜ𝑛×𝑛 is the set of 𝑛 × 𝑛 dimensional real matrices. diag denotes the diagonal matrices. Trace stands for 

the standard trace operator, and ℜ+ symbolizes the set of positive real numbers. The identity and null 

matrices are denoted by 𝐼 and 0, respectively. 𝑋 > 0 (≥,< 0) denotes that 𝑋 is a positive definite 

(positive semidefinite, negative definite) matrix. Finally, the notation ‘‘∗’’ denotes off-diagonal blocks 

in a symmetric matrix. 

 

2. PROBLEM FORMULATION 

 

Consider a class of time-delay system with time-varying input delays given as 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵ℎ𝑥(𝑡 − ℎ(𝑡)) + 𝐵𝑤𝑤(𝑡) 

𝑧(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) ,𝑥(𝑡) = 0,𝑡 ∈ [−ℎ̅, 0]                                       (1) 

 

where  x(t) ∈ ℜn is the state vector,  u(t) ∈ ℜmu  is the control input, w(t) ∈ ℜmw   is disturbance 

input affecting on the system and z(t) = ℜp is the controlled output A, Bh, Bw, C and D are state-space 
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matrices which are known, real, constant. Also, the delay h(t) is assumed to be a continuous, time 

varying function which satisfies. 

0 ≤ h(t) < h̅, |ḣ(t)| < μ, ∀t ≥ 0                                                  (2) 

 

In this expression, ℎ̅ and μ are known positive constants which represent upper bound of delay and its 

derivation. The assumption that the disturbance signal affecting on system has bounded energy is made 

in this work, i.e., 

 

Wδ ≔ {w:ℜ+ → ℜmw ∶  ∫ wT(t)w(t)dt < ∞
∞

0
}                              (3) 

 

In that case, we aim to find a suitable state-feedback control law in the form of 𝑢(𝑡) = 𝐾𝑥(𝑡), such that 

globally asymptotically stability of the closed-loop system is guaranteed and minimum 𝐿2 gain from 

𝑤(𝑡) to 𝑧(𝑡) where disturbance distribute from set  Wδ. By the use of this control law, the closed-loop 

system can be obtained as follows 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵ℎ𝐾𝑥(𝑡 − ℎ(𝑡)) + 𝐵𝑤𝑤(𝑡)      

𝑧(𝑡) = (𝐶 + 𝐷𝐾)𝑥(𝑡), 𝑥(𝑡) = 0, 𝑡 ∈ [−ℎ̅, 0]                                          (4) 

 

3. MAIN RESULTS 

 

So as to investigate the 𝐿2 stability, let us consider a nominal time delay system given by 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐻𝑘𝑥(𝑡 − ℎ(𝑡)) + 𝐵𝑤𝑤(𝑡) 

𝑧(𝑡) = 𝐶̅𝑥(𝑡),   𝑥(𝑡) = 0, 𝑡 ∈ [−ℎ̅, 0]                                                   (5) 

 

The following theorem presents a Bounded Real Lemma(BRL). 

 

Lemma 1 [22]. Given positive scalar constant, ℎ̅ > 0, 𝜇 > 0 𝑎𝑛𝑑 𝛾 > 0 the nominal time-delay system 

(5) is globally asymptotically stable with a disturbance attenuation level of 𝛾 and for any time varying 

delay ℎ(𝑡) satisfying Eq.(2), if there exist positive definite symmetric matrices 𝑃, Q,W, Z and  matrices 

𝑁1, 𝑁2, 𝑆1, 𝑆2 with appropriate dimensions such that 

 

∑̅ ≔

[
 
 
 
 
 
 
 
 
∑̅11 ∑̅12 −S1 PBw h̅ATZ h̅N1 h̅S1 C̅T

∗ ∑̅22 −S2 0 h̅Hk
TZ h̅N2 h̅S2 0

∗ ∗ −W 0 0 0 0 0
∗ ∗ ∗ −γ2I −h̅Bw

T Z 0 0 0

∗ ∗ ∗ ∗ −h̅Z 0 0 0
∗ ∗ ∗ ∗ ∗ −Z 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I]

 
 
 
 
 
 
 
 

< 0                 (6) 

 

where  

 

∑̅11 ≔ PA + AT𝑃 + 𝑁1 + 𝑁1
𝑇 + 𝑄 + 𝑊, 

  ∑̅12 ≔ 𝑃𝐻𝑘 − 𝑁1 + 𝑁2
𝑇 + 𝑆1 

 ∑̅22 ≔ −(1 − 𝜇)𝑄 − 𝑁2 − 𝑁2
𝑇 + 𝑆2 + 𝑆2

𝑇 
 

In the following sequel, Lemma 1 is extended to design of a state-feedback 𝐿2 gain controller in the 

form of 𝑢(𝑡) = 𝐾𝑥(𝑡) synthesis for system (5) by replacing 𝐻𝑘 with 𝐵ℎ𝐾 and 𝐶̅ with C+DK. 
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Theorem 1 [22]. Given positive scalar constants ℎ̅ > 0, 𝜇 > 0  and 𝛾 > 0, the closed-loop system (4) 

is globally asymptotically stable for every ℎ(𝑡) satisfying Eq.(2) with disturbance attenuation level 𝛾 if 

there exist positive definite symmetric matrices X,�̅�, �̅�, �̅�, �̅� matrices �̅�1, �̅�2, 𝑆1̅, 𝑆2̅, �̅� with appropriate 

dimensions such that 
 

𝛯 ≔

[
 
 
 
 
 
 
 
 
 
 
𝛯11 𝛯12 −𝑆1̅ 𝐵𝑤 0 ℎ̅𝑁1 ℎ̅𝑆1̅ 𝛯18 0 𝑋𝐶𝑇 + �̅�𝑇𝐷𝑇

∗ 𝛯22 −𝑆2̅ 0 0 ℎ̅𝑁2 ℎ̅𝑆2̅ 𝛯28 0 0

∗ ∗ −�̅� 0 0 0 0 0 0 0
∗ ∗ ∗ −𝛾2𝐼 0 0 0 ℎ̅𝐵𝑤

𝑇 0 0

∗ ∗ ∗ ∗ −ℎ𝑍̅̅̅̅ 0 0 0 �̅� 0
∗ ∗ ∗ ∗ ∗ −�̅� 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −�̅� 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑇 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑋𝑇−1𝑋 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 ]

 
 
 
 
 
 
 
 
 
 

< 0 

(7) 

where 
 

𝛯11 = 𝐴𝑋 + 𝑋𝐴𝑇 + �̅�1 + 𝑁1
𝑇 + �̅� + W̅ , 𝛯12 = 𝐵ℎ�̅� − �̅�1 + �̅�2

𝑇 + 𝑆1̅  , 𝛯18 = ℎ̅𝑋𝐴𝑇,  

𝛯22 = −(1 − 𝜇)�̅� + 𝑆2̅ + 𝑆2̅
𝑇 − �̅�2 − �̅�2

𝑇, 𝛯28 = ℎ̅�̅�𝑇 
 

Then, 𝛾 is an 𝐿2 upper bound of the resulting closed-loop system from 𝑤(𝑡) to 𝑧(𝑡) for all 𝑡 ≥ 0 and 

the control law 𝑢(𝑡) = �̅�𝑋−1𝑥(𝑡) is a 𝐿2 gain controller associate with 𝛾. 
 

In the light of Theorem 1, in order to achieve a minimum 𝐿2 norm from 𝑤(𝑡) to 𝑧(𝑡) for all 𝑡 ≥ 0, one 

can solve the following nonconvex optimization problem for symmetric positive-definite matrix 

variables 𝑋, �̅�, �̅�, �̅�, 𝑇 and matrices 𝑁1
̅̅ ̅, 𝑁2

̅̅̅̅ , 𝑆1̅, 𝑆2
̅̅̅, �̅� and positive scalar 𝛾: 

 

min
𝑠.𝑡.(7)

𝛾 

 

If the above problem has a feasible solution, we can say that the controller constructed by the control 

law 𝑢(𝑡) = �̅�𝑋−1𝑥(𝑡) is defined to be the suboptimal controller for the given problem. Note that the 

matrix inequality condition (7) is not in the form of an LMI due to the existence of nonlinear term 

−𝑋𝑇−1𝑋. Hence, we cannot find a global minimum for the above optimization problem using convex 

optimization problem. However, if one affords more computational techniques such as cone 

complementary algorithm, one may still obtain a suboptimal controller for the problem definition in Sec. 

2 using an iterative algorithm presented next. First, we define a new variable 𝑅 = 𝑅𝑇 > 0 such that 

 

 

𝑅 ≤ 𝑋𝑇−1𝑋 and replace the condition (7) with 

 

�̅�  ≔

[
 
 
 
 
 
 
 
 
 
 
𝛯11
̅̅ ̅̅ 𝛯12

̅̅ ̅̅ −𝑆1̅ 𝐵𝑤 0 ℎ̅𝑁1 ℎ̅𝑆1̅ 𝛯18
̅̅ ̅̅ 0 𝑋𝐶𝑇 + �̅�𝑇𝐷𝑇

∗ 𝛯22
̅̅ ̅̅ −𝑆2̅ 0 0 ℎ̅𝑁2 ℎ̅𝑆2̅ 𝛯28

̅̅ ̅̅ 0 0

∗ ∗ −�̅� 0 0 0 0 0 0 0
∗ ∗ ∗ −𝛾2𝐼 0 0 0 ℎ̅𝐵𝑤

𝑇 0 0

∗ ∗ ∗ ∗ −ℎ𝑍̅̅̅̅ 0 0 0 �̅� 0
∗ ∗ ∗ ∗ ∗ −�̅� 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −�̅� 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑇 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 ]

 
 
 
 
 
 
 
 
 
 

< 0 

(8) 
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where 

 

𝛯11
̅̅ ̅̅ = 𝐴𝑋 + 𝑋𝐴𝑇 + �̅�1 + 𝑁1

𝑇 + �̅� + W̅ , 𝛯12
̅̅ ̅̅ = 𝐵ℎ�̅� − �̅�1 + �̅�2

𝑇 + 𝑆1̅  , 𝛯18
̅̅ ̅̅ = ℎ̅𝑋𝐴𝑇,  

 

𝛯22
̅̅ ̅̅ = −(1 − 𝜇)�̅� + 𝑆2̅ + 𝑆2̅

𝑇 − �̅�2 − �̅�2
𝑇, 𝛯28

̅̅ ̅̅ = ℎ̅�̅�𝑇Bh
T   

 

and 

 

[�̅� �̅�
�̅� �̅�

] ≥ 0 , [�̅� 𝐼
𝐼 𝑇

] ≥ 0, [�̅� 𝐼
𝐼 𝑋

] ≥ 0 , [�̅� 𝐼
𝐼 𝑇

] ≥ 0                      (9) 

 

which can be justified following the inequality 𝑅−1 − 𝑋−1𝑇𝑋−1 ≥ 0, using Schur complement formula 

and defining �̅�:= �̅�−1, �̅�: = 𝑋−1, �̅�: = 𝑇−1 allow to obtain the inequalities in Eq. (9). Hence, in order 

to achieve a minimum 𝐿2 norm for the closed-loop system (4), one may use the following linearized 

optimization problem 

min
𝑠.𝑡.(8),(9)

𝑇𝑟𝑎𝑐𝑒(�̅�𝑅 + �̅�𝑋 + �̅�𝑇) 

 
Finally, to achieve the suboptimal controller that provides minimum 𝐿2 gain, say 𝛾0, and maximum 

allowable delay bound, say ℎ̅0, one can solve the following linearized algorithm [20]. 

 

Algorithm: 

 

1. Choose a sufficiently large initial 𝛾 and small ℎ̅  such that there exists a feasible solution set 

{�̅�0, 𝑋0, �̅�0, 𝑅0, �̅�0, 𝑇0} to the LMI conditions in Eqs. (8), (9) and set k = 0. 

 

2. Solve the following LMI optimization problem for the variables: 

 

{X̅, X, R̅, R, T̅, T} 
 

min
𝑠.𝑡:(8),(9)

𝑇𝑟𝑎𝑐𝑒 (�̅�𝑘𝑅 + �̅�𝑘𝑋 + �̅�𝑘𝑇 + �̅�𝑅𝑘 + �̅�𝑋𝑘 + �̅�𝑇𝑘) 

 

and set: �̅�𝑘+1 ≔ �̅� , 𝑋𝑘+1 ≔ 𝑋, �̅�𝑘+1 ≔ �̅�, 𝑅𝑘+1 ≔ 𝑅, �̅�𝑘+1 ≔ �̅�, 𝑇𝑘+1 ≔ 𝑇  

 

3. If 𝑅 ≤ 𝑋𝑇−1𝑋  is feasible for the above solution, set 𝛾0 = 𝛾, ℎ̅0 = ℎ̅ and return to Step 1 by modifying 

𝛾 = 𝛾 − Δ𝛾,ℎ̅ = ℎ̅ + Δℎ̅   where, Δ𝛾, Δℎ̅ are predefined step sizes. Otherwise, set 𝑘 = 𝑘 + 1 and go to 

Step 2 and repeat the optimization for a prespecified number of iterations, say 𝑘𝑚𝑎𝑥, until finding a 

feasible solution satisfying 𝑅 ≤ 𝑋𝑇−1𝑋. If such a solution does not exist, then exit. 

If one finds a feasible solution set with this algorithm, then the minimum achievable 𝛾 is said to be the 

suboptimal 𝐿2 norm for this system. Moreover, the suboptimal state-feedback 𝐿2 gain controller can be 

constructed as 𝑢(𝑡) = �̅�𝑋−1𝑥(𝑡) . 

 

4. NOMINAL STATE-FEEDBACK 𝑳𝟐 GAIN CONTROLLER DESIGN 

 

In order to compare the performance of designed delay-dependent 𝐿2 gain controller with nominal 𝐿2 

gain state-feedback controller, in the following sequel, the design equations for a static state-feedback 

𝐿2 gain controller has been obtained [23]. 

 

Let us consider a nominal linear time invariant system given by 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤(𝑡) + 𝐵2𝑢(𝑡) 
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𝑧1(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤(𝑡) + 𝐷12𝑢(𝑡)                                   (10) 

where 𝑥(𝑡) ∈ ℜ𝑛 is the state vector. 𝑢(𝑡) ∈ ℜ𝑚𝑢  is the control input, 𝑤(𝑡) ∈ ℜ𝑚𝑤  is the disturbance 

input, 𝑧1(𝑡) ∈ ℜ𝑝  is the controlled output vector. Suppose that the control input is linear function of the 

state, i.e., 
 

𝑢(𝑡) = 𝐾𝑥(𝑡)                                                                        (11) 

 

where 𝐾 ∈ ℜ𝑚𝑢×𝑛  is the state feedback gain. The closed-loop system is given by 

 

�̇�(𝑡) = (𝐴 + 𝐵2𝐾)𝑥(𝑡) + 𝐵1𝑤(𝑡) 
 

𝑧1(𝑡) = (𝐶1 + 𝐷12𝐾)𝑥(𝑡) + 𝐷11𝑤(𝑡)                                           (12) 

 

The optimal nominal 𝐿2 gain state-feedback controller can be obtaind by searching minimum allowable 

 , which satisfies the following LMI for 𝑋 = 𝑋𝑇 > 0 and any matrix 𝐿. 

 

[

AX + XAT + 𝐵2𝐿 + 𝐿𝑇𝐵2
𝑇 𝐵1 𝑋𝐶1

𝑇 + 𝐿𝑇𝐷12
𝑇

𝐵1
𝑇 −𝛾𝐼 𝐷11

𝑇

𝐶1𝑋 + 𝐷12𝐿 𝐷11 −𝛾𝐼

] < 0                                  (13) 

 

If there exists a feasible solution to the optimization problem (13), the optimal 𝐿2 gain state-feedback 

controller can be constructed as 𝑢(𝑡) = 𝐿𝑋−1𝑥(𝑡). 
 

5. SIMULTION STUDY 
 

In order to illustrate the effectiveness of the proposed controller a two-degree-of-freedom landing gear 

model is used. For simplicity the landing gear is modeled as quarter car model as shown in Figure 1. 
 

 
Figure 1. Landing gear model. 

 

Here, 𝐦𝟏 is represents aircraft body mass and 𝐦𝟐 represents wheel mass. The mass, damping and 

stiffness coefficients are given below [7]. 
 

𝐦𝟏 = 𝟏𝟏𝟕𝟑𝟗 𝐤𝐠, 𝐦𝟐 = 𝟑𝟎𝟎 𝐤𝐠 
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𝐤𝐭 = 𝟑𝟎𝟎𝟎𝟎𝟎𝐍
𝐦⁄ , 𝐤𝐬 = 𝟐𝟓𝟐𝟎𝟎𝟎 𝐍 𝐦⁄  

𝐜𝐬 = 𝟏𝟎𝟎𝟎𝟎 𝐍𝐬
𝐦⁄  

The equation of motion of the system with actuator delay can be expressed as  
 

𝐌�̈�(𝐭) + 𝐂�̇�(𝐭) + 𝐊𝐲(𝐭) = 𝐅𝐮(𝐭 − 𝐡) + 𝐄𝐰(𝐭)                              (14) 

 

Here, 𝐲(𝐭) = [𝐱𝟏 𝐱𝟐]𝐓 is the displacement state vector, 𝐮(𝐭) is the control force, 𝐅 ∈ 𝐑𝐧×𝐦𝐮 gives the 

location of the controller, 𝐰(𝐭) ∈ 𝐋𝟐 and 𝐰(𝐭) = 𝐳𝐫 is the disturbance input and 𝐄 ∈ 𝐑𝐦𝐰 is a weight 

matrix that weights the disturbances.𝐌𝐬, 𝐂𝐬, 𝐊𝐬 ∈ 𝐑𝐧×𝐧  are mass, damping and stiffness matrices. 
 

Using Eq. (30) and definition 𝐱𝐓(𝐭) = [𝐱𝟏(𝐭) 𝐱𝟐(𝐭) �̇�𝟏(𝐭) �̇�𝟐(𝐭)]
𝐓 state space of system can be 

written as follows 
 

�̇�(𝐭) = 𝐀𝐱(𝐭) + 𝐁𝐡𝐮(𝐭 − 𝐡(𝐭)) + 𝐁𝐰𝐰(𝐭)                                 (15) 

 

where 
 

A = [

0 0 1 0
0 0 0 1

ks/m1 −ks/m1 −cs/m1 cs/m1

−(ks + kt)/m2 ks/m2 cs/m2 −cs/m2

] , 

 

𝐁𝐰 = [

𝟎
𝟎
𝟎

𝐤𝐭/𝐦𝟐

] , 𝐁𝐮 = [

𝟎
𝟎

−𝟏/𝐦𝟏

𝟏/𝐦𝟐

] 

 

All simulations and computations are accomplished using MATLAB with Simulink. For the solution of 

resulting LMIs, YALMIP parser and SEDUMI solver are used [24, 25]. 
 

The runway disturbance is generated by a shaping filter method which is described in [16].The profile 

can be approximated by Power Spectral Density (PSD) distribution considered as vibration and it is 

typically specified as random process with a ground displacement PSD of 
 

                        
222

2

V

V2
)(S




                (16) 

 

where, σ2 denotes the runway roughness variance (m2), V is the aircraft longitudinal speed (m/s), α 

depends on the type of runway surface (rad/m). Hence, if the aircraft runs with the constant velocity, the 

PSD and the random runway profile signal may be obtained as the output of a first order linear filter 

expressed as,  
 

                                                  )t()t(Vz)t(z rr                (17) 

 

where ω(t) is a white noise process with the spectral density S(ω). The road roughness standard 

deviations for various runway types are given in Table 1 [16].  
 

Table 1. Road roughness and standard deviation [16]. 
 

 

Road Class σ(10-3m) ϕ(Ω0)(10-6m3), Ω0=1 α (rad/m) 

A (very good) 2 1 0.127 

B (good) 4 4 0.127 
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C (average) 8 16 0.127 

D (poor) 16 64 0.127 

E (very poor) 32 256 0.127 

In both case runway excitation with D grade poor random road profile has been considered for the value 

of longitudinal velocity V is 60 m/s. The modelled bump and very poor random runway disturbances 

are shown in Figure 2. 
 

 
 

Figure 2. Random road disturbance input 

 

To show the effects of actuator delay on system, first a nominal non-delayed 𝐋𝟐 gain controller is 

designed. The control law is selected to be a full state feedback controller and the control gain is obtained 

as 

𝐊 = 𝟏𝟎𝟓 × [𝟏. 𝟕𝟖𝟕𝟗 −𝟐. 𝟗𝟖𝟎𝟏 −𝟎. 𝟎𝟐𝟒𝟓 𝟎. 𝟎𝟐𝟔𝟐] 
 

Simulation studies are given in Figure 3. As it can be seen from figure satisfactory vibration suppression 

is achieved in case of assuming the input signal has no time delay.  

 

 
 

Figure 3. Controlled and uncontrolled time responses of nominal system  

 

Then we added the time delay to input signal. When the actuator delay �̅� = 𝟎. 𝟎𝟎𝟖𝟏 is introduced for 

the control input, the body displacement is plotted in Figure  4. As it can be seen from Figure 4 the 

stability and performance problems occurred in the closed loop system for nominal nondelayed 

controller even though there is a very small delay on control input.  

 

0 5 10 15 20 25 30 35 40 45 50
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

R
o

a
d

 r
o

u
g

h
n

e
s
s

 [
c
m

]

Time (s)

0 10 20 30 40 50

-0.05

0

0.05

Time (s)

B
o
d

y
 D

is
p
la

c
e
m

e
n
ts

 [
m

]

 

 

0 10 20 30 40 50
-1

0

1

Time (s)

B
o
d

y
 A

c
c
e

le
ra

ti
o
n

s
 [
m

/s
2
]

 

 

0 10 20 30 40 50
-0.05

0

0.05

Time (s)

T
ir
e
 D

e
fl
e

c
ti
o

n
 [

m
]

 

 

Uncontrolled Controlled

0 10 20 30 40 50
-1

0

1
x 10

4

C
o

n
tr

o
l 
F

ro
c
e

 [
N

]

Time (s)

Ro
ad

 r
ou

gh
ne

ss
 [m

] 



Özülkü and Yazıcı / Anadolu Univ. J. of Sci. and Technology  A – Appl. Sci. and Eng. 18 (4) – 2017 
 

857 

 
 

Figure 4. Controlled and uncontrolled time responses of the system  

 

Hence, in order to overcome this problem, a delay dependent control algorithm should be designed. The 

control law is selected to be a full state feedback controller. The system is considered as a fixed time-

delay system. Hence, 𝛍 is assumed to be equal to 𝟎.  Applying Theorem 1 to the system, we obtain the 

minimum allowable disturbance attenuation level 𝛄 as 540, the maximum allowable actuator delay 

bound �̅� as 0.45 s by the use of the proposed Algorithm. Maximum iteration number 𝐤𝐦𝐚𝐱 is selected 

900, this result is obtained in 809 iteration and the controller gain is calculated as  

 

𝑲 = 𝟏𝟎𝟓[𝟎. 𝟏𝟓𝟎𝟐 −𝟐. 𝟎𝟏𝟗𝟓 𝟎. 𝟎𝟎𝟕𝟏 𝟎. 𝟔𝟒𝟒𝟎]. 
 

 
 

Figure 5. Controlled and uncontrolled time responses of system having actuator delay 

 

The simulation result is given in Figure 5. It shows displacement and acceleration of time response of 

aircraft mass having actuator delay. As it can be obtained from Figure 5 designed controller is all 
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effective in reducing vibration amplitudes and has guaranteed asymptotic stability at maximum 

allowable actuator delay. The consideration of actuator delay within the controller design process 

provides more realistic realization for vibration control. The simulation results show that proposed 

controller can stabilize the closed loop system regardless actuator delay and achieve high vibration 

mitigation. 

 

6. CONCLUSIONS  

 

In this paper delay dependent 𝐋𝟐 gain controller is designed for the aircraft landing gear. A class of time-

delay control system with time-varying actuator delay is taken into consideration. First, choosing a 

suitable Lyapunov-Krasovskii functional a delay-dependent BRL is derived in terms of an LMI, which 

is then extended a stabilizing 𝐋𝟐 gain controller is designed for the closed-loop, actuator delayed system. 

Then, a cone-complementary algorithm is introduced to solve matrix inequality form of the synthesis 

criterion. To show effectiveness of the approach, performance of the proposed controller is examined in 

disturbance attenuation of vibration, in two-degree-of-freedom landing gear system having actuator 

delay. Simulation results obtained by using random road profile, the proposed control technique is all 

effective in reducing vibration amplitudes of aircraft body and guarantees stability at the maximum 

allowable actuator delay bound. That demonstrates necessity of delay dependent controller. Expanding 

the proposed method with robust delay dependent 𝐋𝟐 gain controller design under consideration of 

actuator saturation might be direction for future work. 

 

Appendix 

 

Proof of Lemma 1 [22]: Let us choose a Lyapunov-Krasovskii functional candidate as       

𝑉(𝑥(𝑡), 𝑡) = ∑ 𝑉𝑖(𝑡)
4
𝑖=1  where 

 

 

𝑉1(𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡) 

V2(t) = ∫ ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠𝑑𝛽

𝑡

𝑡+𝛽

0

−ℎ̅

 

𝑉3(𝑡) = ∫ 𝑥𝑇(𝑠)𝑄𝑥(𝑠)𝑑𝑠

𝑡

𝑡−ℎ(𝑡)

 

𝑉4(𝑡) = ∫ 𝑥𝑇(𝑠)𝑊𝑥(𝑠)𝑑𝑠
𝑡

𝑡−ℎ̅
                                                       (18) 

 

Taking the time derivative of 𝑉(𝑥(𝑡), 𝑡) with respect to t along the trajectory of the system (5) and 

subject to Eq.(2) yields 

 

�̇�(𝑥(𝑡), 𝑡) = ∑ �̇�𝑖(𝑡)
4

𝑖=1
 

 

Defining the extended state vector as 𝜒(𝑡) ≜ [𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − ℎ(𝑡)) 𝑥𝑇(𝑡 − ℎ̅) 𝑤𝑇(𝑡)]𝑇 and 

 

Γ1 ≜ [𝐼 0 0 0] 
 

Allows to write 𝑥(𝑡) = Γ1𝜒(𝑡). In a similar manner, we define 

Γ2 ≜ [𝐴 𝐻𝑘 0 𝐵𝑤] 
 

To obtain �̇�(𝑡) = Γ2𝜒(𝑡). Then we obtain  
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�̇�1(𝑡) = 2𝑥𝑇(𝑡)𝑃�̇�(𝑡) = 𝜒𝑇(𝑡)Ω1𝜒(𝑡)                                        (19) 
 

where Ω1 ≜ Γ1
𝑇𝑃Γ2 + Γ2

𝑇𝑃Γ1. In addition to this 

 

�̇�2(𝑡) = ℎ̅ (𝐴𝑥(𝑡) + 𝐻𝑘𝑥(𝑡 − ℎ(𝑡)) + 𝐵𝑤𝑤(𝑡))
𝑇
𝑍 (𝐴𝑥(𝑡) + 𝐻𝑘𝑥(𝑡 − ℎ(𝑡)) + 𝐵𝑤𝑤(𝑡)) 

 

−∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠
𝑡

𝑡−ℎ̅
                                                                                                 (20) 

 

note that 
 

−∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠 =
𝑡

𝑡−ℎ̅
− ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠

𝑡

𝑡−ℎ(𝑡)
− ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠

𝑡−ℎ(𝑡)

𝑡−ℎ̅
         (21) 

 

and for any matrices 𝑁1, 𝑁2, 𝑆1 and 𝑆2 in appropriate dimensions, using Newton-Leibnitz relation allows 

us to write the following null equations: 
 

2(𝑥𝑇(𝑡)𝑁1 + 𝑥𝑇(𝑡 − ℎ(𝑡))𝑁2) × (𝑥(𝑡) − 𝑥(𝑡 − ℎ(𝑡)) − ∫ �̇�(𝑠)𝑑𝑠) = 0

𝑡

𝑡−ℎ(𝑡)

 

2(𝑥𝑇(𝑡)𝑆1 + 𝑥𝑇(𝑡 − ℎ(𝑡))𝑆2) × (𝑥(𝑡) − 𝑥(𝑡 − ℎ̅) − ∫ �̇�(𝑠)𝑑𝑠) = 0
𝑡−ℎ(𝑡)

𝑡−ℎ̅
             (22) 

 

Then adding the null-equations given in Eq. (22) to the right-hand side of Eq. (20), utilizing Eqs. (21) 

and (2) allows us to write  
 

�̇�2 ≤ h̅xT(t)ATZAx(t) + h̅xT(t)ATZHkx(t − h(t)) + h̅xT(t)ATZBww(t) + h̅xT(t − h(t))Hk
TZAz(t) +

h̅xT(t − h(t))𝐻𝑘
TZH𝑘x(t − h(t)) + h̅xT(t − h(t))H𝑘

TZBww(t) + h̅wT(t)Bw
T ZAx(t) +

h̅wT(t)Bw
T ZH𝑘x(t − h(t)) + h̅wT(t)Bw

T w(t) − ∫ ẋTt

t−h̅
(s)Zẋ(s)ds − ∫ ẋTt−h(t)

t−h̅
(s)Zẋ(s)ds +

2(xT(t)N1 + xT(t − h(t))N2) × (x(t) − x(t − h(t)) − ∫ ẋT(s)ds)
0

t−h(t)
+ 2(xT(t)S1 +

xT(t − h(t))S2) × (x(t − h(t)) − x(t − h̅) − ∫ ẋ(s)ds)
t−h(t)

t−h̅
          

    (23) 
 

It follows from completing to squares that one can always construct the following nonnegative terms: 
 

0 ≤ − ∫ (𝑥𝑇(𝑠)𝑁1 + 𝑥𝑇(𝑠 − ℎ(𝑠))𝑁2

𝑡

𝑡−ℎ(𝑡)

+ �̇�𝑇(𝑠)𝑍−1 (𝑁1
𝑇𝑥(𝑠) + 𝑁2

𝑇𝑥(𝑠) + 𝑁2
𝑇𝑥(𝑠 − ℎ(𝑠)) + 𝑍�̇�(𝑠))𝑑𝑠

+ ℎ̅𝑥𝑇(𝑡)𝑁1𝑍
−1𝑁1

𝑇𝑥(𝑡) + 2ℎ̅𝑥𝑇(𝑡)𝑁1𝑍
−1𝑁2

𝑇𝑥(𝑡 − ℎ(𝑡))

+ ℎ̅𝑥𝑇(𝑡 − ℎ(𝑡))𝑁2𝑍
−1𝑁2

𝑇𝑥(𝑡 − ℎ(𝑡)) 

(24) 
 

and similarly, 
 

0 ≤ −∫ (𝑥𝑇(𝑠)𝑆1 + 𝑥𝑇(𝑠 − ℎ(𝑠))𝑆2 + �̇�𝑇(𝑠)𝑍−1 (𝑆1
𝑇𝑥(𝑠) + 𝑆2

𝑇𝑥(𝑠) + 𝑆2
𝑇𝑥(𝑠 − ℎ(𝑠)) +

𝑡−ℎ(𝑡)

𝑡−ℎ̅

𝑍�̇�(𝑠)) 𝑑𝑠 + ℎ̅𝑥𝑇(𝑡)𝑆1𝑍
−1𝑆1

𝑇𝑥(𝑡) + 2ℎ̅𝑥𝑇(𝑡)𝑆1𝑍
−1𝑆2

𝑇𝑥(𝑡 − ℎ(𝑡)) + ℎ̅𝑥𝑇(𝑡 − ℎ(𝑡))𝑆2𝑍
−1𝑆2

𝑇𝑥(𝑡 −

ℎ(𝑡))                   (25) 
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then 

�̇�2(𝑡) ≤ 𝜒𝑇(𝑡)𝛺2𝜒(𝑡).                                          (26) 

 

We can compute �̇�3(𝑡) as given 

 

�̇�3(𝑡) = 𝑥𝑇(𝑡)𝑄𝑥(𝑡) − (1 − ℎ̇(𝑡)) 𝑥𝑇(𝑡 − ℎ(𝑡))𝑄𝑥(𝑡 − ℎ(𝑡))

≤ 𝑥𝑇(𝑡)𝑄𝑥(𝑡) − (1 − 𝜇)𝑥𝑇(𝑡 − ℎ(𝑡))𝑄𝑥(𝑡 − ℎ(𝑡)) 

 

(27) 

 

Then describing 

 

Γ3 ≜ [0 𝐼 0 0] 
 

and using definition Ω3 ≜ Γ1
𝑇𝑄Γ1 − (1 − 𝜇)Γ3

𝑇𝑄Γ3 leads to write 

 

�̇�3 ≤ 𝜒𝑇(𝑡)Ω3𝜒(𝑡).                                                              (28) 

 

Besides, �̇�4(𝑡) can be written as  

 

�̇�4(𝑡) = 𝑥𝑇(𝑡)𝑊𝑥(𝑡) − 𝑥𝑇(𝑡 − ℎ̅)𝑊𝑥(𝑡 − ℎ̅)                        (29) 

 

Describing Γ4 ≜ [0 0 𝐼 0] we can obtain  

 

�̇�4 ≤ 𝜒𝑇(𝑡)Ω4𝜒(𝑡)                                                              (30) 

 

where Ω4 = Γ1
𝑇𝑊Γ1 − Γ4

𝑇𝑊Γ4 . 

 

As a result, substituting  �̇�1 = 1…4 into �̇�(𝑥(𝑡), 𝑡) allows to calculate  

 

�̇�(𝑥(𝑡), 𝑡) + 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑤𝑇(𝑡)𝑤(𝑡) ≤ 𝜒𝑇(𝑡)𝛺𝜒(𝑡) 

 

where  

 

𝛺 ≜ ∑ 𝛺𝑖
4
𝑖=1 + Γ1

𝑇𝐶̅𝑇𝐶̅𝛤1 − 𝛾2Γ5
𝑇Γ5                                  (31) 

and 

Γ5 = [0 0 0 𝐼] 
 

It is obviously seen that when 𝑤(𝑡) ≡ 0, ∀𝑡 ≥ 0, �̇�(𝑥(𝑡), 𝑡) < 0 is ensured guaranteeing that system (5) 

under zero disturbance is globally asymptotically stable. Moreover, integrating both sides of 

�̇�(𝑥(𝑡), 𝑡) + 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑤𝑇(𝑡)𝑤(𝑡) ≤ 0 from 0 to infinity allows to get lim
𝑡→∞

𝑉(𝑥(𝑡), 𝑡) −

𝑉(𝑥(0), 0) + ∫ 𝑧𝑇(𝑡)𝑧(𝑡)
∞

0
− 𝛾2 ∫ 𝑤𝑇(𝑡)𝑤(𝑡) < 0

∞

0
.Since 𝑉(𝑥(0), 0) = 0 and lim

𝑡→∞
𝑉(𝑥(𝑡), 𝑡) > 0, 

we obtain ∫ 𝑧𝑇(𝑡)𝑧(𝑡)𝑑𝑡
∞

0
− 𝛾2 ∫ 𝑤𝑇(𝑡)𝑤(𝑡)𝑑𝑡 < 0

∞

0
, which implies ‖𝑧‖2 < 𝛾‖𝑤‖2, ∀𝑤(𝑡) ∈

𝐿2[0,∞).Finally applying Schur complement formula to Eq. (31) allows to get Eq.(6) [23]. This 

completes proof. 

□ 

Proof of Theorem 1 [22]: Applying Schur’s complement formula on Eq.(6) and replacing 𝐻𝑘 with 𝐵ℎ𝐾 

and 𝐶̅ with 𝐶 + 𝐷𝐾, respectively 
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�̃� =

[
 
 
 
 
 
 
 
 
�̃�11 �̃�12 −𝑆1 𝑃𝐵𝑊 ℎ̅𝐴𝑇𝑍 ℎ̅𝑁1 ℎ̅𝑆1 𝐶𝑇 + 𝐾𝑇𝐷𝑇

∗ �̃�22 −𝑆2 0 ℎ̅𝐾𝑇𝐵𝐻
𝑇𝑍 ℎ̅𝑁2 ℎ̅𝑆2 0

∗ ∗ −𝑊 0 0 0 0 0
∗ ∗ ∗ −𝛾2𝐼 ℎ̅𝐵𝑤

𝑇𝑍 0 0 0

∗ ∗ ∗ ∗ −ℎ̅𝑍 0 0 0
∗ ∗ ∗ ∗ ∗ −𝑍 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝑍 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 ]

 
 
 
 
 
 
 
 

< 0 

(32) 

 

where  

 

�̃�11 = 𝑃𝐴 + 𝐴𝑇𝑃 + 𝑁1 + 𝑁1
𝑇 + 𝑄 + 𝑊 , �̃�12 = 𝑃𝐵ℎ𝐾 − 𝑁1 + 𝑁2

𝑇 + 𝑆1 , 

 

 �̃�22 = −(1 − 𝜇)𝑄 + 𝑆2 + 𝑆2
𝑇 − 𝑁2 − 𝑁2

𝑇  

 

Pre- and post multiplying Eq. (32) by 𝑑iag{𝑋, 𝑋, 𝑋, 𝐼, 𝑋, 𝑋, 𝑋, 𝐼} and applying the variable changes   

�̅�1 ≔ XN1X, �̅�2 ≔ XN2X, 𝑆1̅ ≔ X𝑆1X, 𝑆2̅ ≔ X𝑆2X, �̅�:= XWX, �̅� ≔ 𝑋𝑍𝑋,�̅� ≔ 𝑋𝑄𝑋 inequalities (32) 

is congruent to 

 

�̂� ≔

[
 
 
 
 
 
 
 
 
�̂�11 �̂�12 −𝑆1̅ 𝐵𝑊 ℎ̅𝑋𝐴𝑇𝑋−1�̅� ℎ̅�̅�1 ℎ̅𝑆1̅ 𝑋𝐶𝑇 + 𝑋𝐾𝑇𝐷𝑇

∗ �̂�22 −𝑆2
̅̅̅ 0 ℎ̅𝑋𝐾𝑇𝐵𝐻

𝑇𝑋−1�̅� ℎ̅𝑁2
̅̅̅̅ ℎ̅𝑆2

̅̅̅ 0

∗ ∗ −�̅� 0 0 0 0 0
∗ ∗ ∗ −𝛾2𝐼 ℎ̅𝐵𝑤

𝑇𝑋−1�̅� 0 0 0

∗ ∗ ∗ ∗ −ℎ̅�̅� 0 0 0
∗ ∗ ∗ ∗ ∗ −�̅� 0 0
∗ ∗ ∗ ∗ ∗ ∗ −�̅� 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 ]

 
 
 
 
 
 
 
 

< 0 

(33) 

 

where 

 

�̂�11 = 𝐴𝑋 + 𝑋𝐴𝑇 + �̅�1 + �̅�1
𝑇 + �̅� + W̅ , �̂�12 = 𝐵ℎKX − �̅�1 + �̅�2

𝑇 + 𝑆1̅  ,  
 

�̂�22 = −(1 − 𝜇)�̅� + 𝑆2̅ + 𝑆2̅
𝑇 − �̅�2 − �̅�2

𝑇, 

 

Note that �̂� can be decomposed as �̂� = �̂�0 + �̂�1 + �̂�𝑇 , where 

 

𝜙0̂ ≔

[
 
 
 
 
 
 
 
 
ϕ̂11 ϕ̂12 −𝑆1̅ 𝐵𝑊 0 ℎ̅N̅1 ℎ̅𝑆1̅ 𝑋𝐶𝑇 + 𝑋𝐾𝑇𝐷𝑇

∗ ϕ̂22 −𝑆2
̅̅̅ 0 0 ℎ̅𝑁2

̅̅̅̅ ℎ̅𝑆2
̅̅̅ 0

∗ ∗ −�̅� 0 0 0 0 0
∗ ∗ ∗ −𝛾2𝐼 0 0 0 0

∗ ∗ ∗ ∗ −ℎ̅�̅� 0 0 0
∗ ∗ ∗ ∗ ∗ −�̅� 0 0
∗ ∗ ∗ ∗ ∗ ∗ −�̅� 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 ]

 
 
 
 
 
 
 
 

< 0 
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𝜙1̂ ≔

[
 
 
 
 
 
 
 
0 0 0 0 ℎ̅𝑋𝐴𝑇𝑋−1�̅� 0 0 0
0 0 0 0 ℎ̅𝑋𝐾𝑇𝐵𝐻

𝑇𝑋−1�̅� 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 ℎ̅𝐵𝑤

𝑇𝑋−1�̅� 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

< 0 

  

Besides, �̂�1, can be written as �̂�1 = 𝛱1
𝑇𝑋−1𝛱2 where 

 

 𝛱1 = [ℎ̅𝐴𝑋 ℎ̅𝐵ℎ𝐾𝑋 0 ℎ̅𝐵𝑤 0 0 0 0] ,  
 

𝛱2 = [0 0 0 0 �̅� 0 0 0]  
 

Also note that for any symmetric positive definite matrix 𝑇  

 

𝛱1
𝑇𝑋−1𝛱2 + (𝛱1

𝑇𝑋−1𝛱2)
𝑇 ≤ 𝛱1

𝑇𝑇−1𝛱1 + 𝛱2
𝑇(𝑋𝑇−1𝑋)−1𝛱2  

 

Hence, 𝜙0̂ + 𝛱1
𝑇𝑇−1𝛱1 + 𝛱2

𝑇(𝑋𝑇−1𝑋)−1𝛱2 < 0  implies that  �̂� < 0 .Then applying Schur 

complement formula on 𝜙0̂ + 𝛱1
𝑇𝑇−1𝛱1 + 𝛱2

𝑇(𝑋𝑇−1𝑋)−1𝛱2 < 0   and defining  �̅� ≔ 𝐾𝑋 we obtain the 

matrix inequality condition (7). 

□ 
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