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ABSTRACT  

 

The melting point is an important property that helps generate specific compounds with desired thermos-physical properties. Much 

work has been done applying quantitative structure-property relationships to improve the melting-point correlations, but they are 

unreliable. This gap might come from the melting point's sensitivity for small molecular variations and descriptors, which currently 

do not fully consider all factors determining melting behavior. In this work, we provide a QSPR model for predicting the melting 

point of a heterogeneous polycyclic aromatic hydrocarbons dataset. The model was generated using a robust hybrid linear approach 

(Genetic Algorithm-Multiple Linear Regression) and a nonlinear approach named Artificial Neural Network (ANN). Three 

descriptors were chosen to explain the influence of molecular weight and symmetry on melting point. The resulting QSPR model can 

model melting-point behavior with an RMSE of 34.88K, a coefficient correlation value of R²=0.887, and a prediction coefficient of 

Q²LOO= 0.863. This study reveals that the results produced by MLR were appropriate and served to predict melting points. However, 

compared to the results obtained by the ANN model, we conclude that the latter is more effective and better than the MLR model. 

Based on the results, our suggested model may be effective in predicting melting points, and the selected descriptors play essential 

roles in determining melting points. 

 

Keywords: QSPR, Melting point, Molecular descriptors, Genetic algorithm, ANN.

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

1. INTRODUCTION  

Polycyclic aromatic hydrocarbons (PAHs) are a vast 

family of neutral and stable organic compounds 

consisting solely of carbon (C) and hydrogen (H) atoms. 

This family of compounds contains 2-6 fused aromatic 

rings.
1
 PAHs are widespread, persistent, and toxic 

molecules found in our environment. The major source 

of PAHs is the pyrolysis or carbonization of organic 

compounds, including coal, oil, and wood.
2
 PAHs are 

versatile industrial chemical compounds; some of the  

 

 

 

intermediate products that PAHs contribute include 

pharmaceuticals, photographic products, lubricating  

 

materials, agricultural commodities, and thermosetting 

plastics.
3
 Due to their widespread distribution, 

comprehending the physicochemical properties of PAHs 

is important for assessing their environmental impact, 

health risks, and practical applications. The melting 

point is among these properties.
4
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A compound's melting point (MP) is one of the most 

studied aspects of chemistry since it is so helpful in 

determining the compound's identity.
4
 The identification 

and analysis of organic pollutants have significantly 

advanced
5,6

, but more work is still needed, notably in 

discovering specific Melting Points for these chemicals. 

Melting point is also one of the most influential factors 

in environmental transport and destiny processes. 

Determining a substance's MP allows the analysis of 

various contaminants. MP, for example, is directly 

related to solubility; hence, it is crucial for 

environmental research. Computational modeling can be 

used to determine the factors responsible for the 

distribution of chemical contaminants in the 

environment. Computational modeling can be used to 

determine the factors responsible for the distribution of 

chemical contaminants in the environment, obviating 

the need for costly and time-consuming empirical 

studies
7
. Therefore, unconventional methods to 

understand the environmental behavior of PAHs are 

needed. 

 

An alternative approach to determine the physical-

chemical properties of chemicals, such as the melting 

point of PAHs, is quantitative structure-property 

relationships (QSPR), which utilizes molecular 

descriptors derived from the compound's structure to 

adjust experimental data. QSPR is based on the concept 

that changes in the numerical values of structural 

features, known as molecular descriptors, can be 

associated with alterations in the compound's behavior, 

which are reflected in its physicochemical properties as 

measured in experiments.
8,9

 The benefit of this method 

is that it relies on chemical structure knowledge rather 

than experimental qualities. Once a correlation is 

developed and verified, it can predict a compound's 

properties. It has been shown that the QSPR method can 

accurately predict a wide range of physical and 

chemical characteristics of molecules.
10

 The literature 

presents several QSPR models for melting point 

prediction.
11-16

 However, their respective predictive 

abilities vary greatly. While relatively accurate models 

have been generated for tiny subgroups of compounds, 

those built from training sets with considerable 

structural variation tend to perform poorly overall. 

 

The objective of this work is to build an accurate 

quantitative structure-property relationship (QSPR) 

model for predicting the melting points of a diverse set 

of polycyclic aromatic hydrocarbons (PAHs). By 

employing both a linear method (Multiple Linear 

Regression) and a nonlinear method (Artificial Neural 

Network), the study aims to check the predictive power 

of these models and the impact of key molecular 

descriptors, such as molecular weight and symmetry, on 

melting point behavior and enhance the accuracy and 

reliability of melting point predictions while identifying 

the factors that most significantly influence the melting 

behavior of PAHs by giving a mechanistic interpretation 

of the developed model.  

 

2. MATERIALS AND METHODS 

 

2.1. Dataset and Descriptor Calculation 

 

In the present study, the experimental Mp data listed in 

Table 1 were collected from the work of Roberto 

Todeschini et al.
17 

Table 1 provides a complete list of 

chemicals and their experimental and predicted melting 

points using MLR and ANN techniques. The reported 

Mp values ranged from 251 to 756 K. To validate the 

QSPR model, the CADEX algorithm
18

 divides the 

dataset into training and prediction subsets. The 

algorithm ensures that both subsets represent the entire 

dataset to guarantee external validation significance. 

The training set comprises 55 compounds, whereas the 

prediction set comprises 22. 

 

Molecular descriptors were calculated using DRAGON 

software version 5.5. 
19

 All families of descriptors (0D-

3D) were included in the study. In order to ensure the 

reliability and accuracy of the modelling process, 

specific measures were taken during the descriptor 

selection stage. Firstly, descriptors that contained 

missing values were excluded from consideration. Then, 

descriptors that exhibited high pairwise correlation 

(>95%) or were nearly constant (>80%) were eliminated 

to prevent redundant information and binary collinearity 

issues. This pretreatment was done because correlated 

descriptors can lead to mathematical problems during 

the modeling phase, and descriptors with limited 

relevance to most molecules may not help make 

predictions.
20

 Afterward, the remaining descriptors were 

entered into the QSARINS software, version 2.2.4 
21,22

 

for further analysis and modeling. Taking these 

precautions will make the resulting model more reliable 

and accurate for predicting the melting point. 

 

2.2. Model development  

 

Multiple Linear Regression (MLR)
23

 was employed as 

the modeling strategy in this investigation, with the 

following equation:  

 

 ̂      ∑    
 
                       

                                          (1) 

 

The Ordinary Least Square (OLS) approach 

implemented in QSARINS software
21

 minimises the 

sum of squares between the experimental endpoint and 

the calculated value. After preparing and dividing the 

dataset, the descriptor selection process was initiated. In 

this regard, the training set was utilised to calculate all 

potential combinations of up to three descriptors. This 

operation guaranteed that all feasible low-dimensional 

models were generated before increasing the variables 

for best results. Based on this foundation, a genetic 
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algorithm was used to find the optimum configuration 

of the model across a more significant collection of 

features. Model quality was maximized by the method 

using Q²LOO, a fitness function defined by equation (2). 

 

    
    

∑       ̂    
  

   

∑      ̅  
  

   

                  (2) 

 

Where, ŷi/i is the value of Mp predicted by the generated 

model according to the LOO method, yi as the 

experimental melting point and  ̅ as the mean of the 

experimental melting point, n is the total compounds in 

the training set. 

 

Only models with descriptors that had a p-value ≤ 0.05 

were retained. The settings of the GA used to provide 

the best modeling results while consuming as little 

computational resources as possible were a population 

size of 500, a generation per size of 500, and a mutation 

rate of 80%. 

 

2.3. Model Validation 

 

Validation is a crucial stage in QSPR modeling. 

Therefore, it is essential to evaluate and validate the 

resulting model extensively. The QSARINS provides 

several resources for verifying that a model satisfies the 

OECD's requirements for the creation, validation, 

acceptance, and use of QSAR models, which boosts 

confidence in the accuracy of the data predicted by the 

model. The QSPR-MLR model should satisfy the 

following conditions to be valid according to these 

guidelines: A clearly defined property, a straightforward 

method, a defined applicability domain, adequate 

measurements of goodness-of-fit, robustness, and 

predictivity; and a mechanistic description, if possible.
24

 

We employ cross-validation methods in this work as a 

form of internal validation. As a first step, we conducted 

Leave-One-Out (LOO) (Eq. (2)) approach, as disrupting 

a single molecule in a minimal database provides us 

with criteria for its resilience. The model's performance 

when more chemicals are left out was further studied 

using a Leave-Many-Out (LMO) approach.  

 

External validation was performed to demonstrate the 

predictability of the model. The prediction set, which 

was not included in creating the original model, is 

utilised for this purpose. In order to evaluate the 

predictive ability of the developed model, numerous 

statistical parameters were calculated, including (Q²F1, 

Q²F2, Q²F3, R²0, R²'0, and CCCext) (Eq. (3-12)). For more 

information, these statistical parameters were provided 

in our previous papers and explained in detail
25-27

. 
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Where: TRy
 = average of training observed responses 

TRy
 = average of external observed responses 

EXTn
 = number of external objects 

TRn
 = number of training objects 

ŷ
 is the average of all iŷ

 

 

To rule out the possibility of random correlation and to 

ensure stability and reliability via permutation testing, 

Yscrambling was used, and new models were rebuilt for 

randomly reordered data. Since the suggested models 

rely on a correlation between structure and response, 

randomized responses should provide models with 

much lower Q² values.
25

 The mean values of R²Yscrambling 

and Q²Yscrambling were reported following a data 

scrambling procedure with a maximum of 200 

iterations. 

 

2.4. ANN modeling 

 

Artificial Neural Network (ANN)
28

 is an excellent way 

to find nonlinear correlations because it can make 
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models without requiring a precise analytical method. 

Many studies have investigated the use of ANN in 

QSPR research.
28, 29-32 

 

In this study we used descriptors obtained from MLR as 

input into a three-layer feed-forward ANN with a back-

propagation learning method to predict the melting 

point of 77 PAHs.
33

 The training process involved 

adjusting the number of hidden neurons through a trial 

and error technique. The ANN used one output neuron 

to represent the experimental melting point. 

 

3. RESULTS AND DISCUSSION  

 

3.1. MLR model 

 

Exploring the most effective combinations of molecular 

descriptors that strongly correlate with the response 

variable (Mp) resulted in the construction of many 

models. Therefore, a study of the model's parameters 

was conducted while considering the concept of 

parsimony
34

 (explaining the highest information with 

the least number of descriptors). Based on it, a QSPR-

MLR model with four variables was created. The best 

model's equation and statistical parameters are as 

follows: 

 

Mp(K) =  - 567 + 122 AMW + 2,99 TIC1 - 342 SIC4 + 

281 P1m                              (13) 

 

Ntr = 55, R²= 88,72%, Q²LOO = 86,38%, R²ext = 82,49%, 

Q²LMO30% = 85,90%, Q²F1 = 89,84%, Q²F2= 77,92%, Q²F3 

= 88,43%, CCCext = 86,64%, RMSEtr =34,88, RMSEVal 

= 35,32, S = 36,58. 

 

The descriptors included in the model were designed as 

follows: the AMW represents the average molecular 

weight, the TIC1 and SIC4 the type of Information 

indices-; these descriptors represent the Total 

Information Content index (neighborhood symmetry of 

1-order), and the Structural Information Content index 

(neighborhood symmetry of 4-order) respectively, and 

P1m for WHIM descriptors- 1st component shape 

directional WHIM index / weighted by mass.
35-37 

 The 

numerical values for the four descriptors used in the 

final GA-MLR equation (Eq. (13)) are listed in Table 1. 

 

Table 1. Experimental and predicted melting point by MLR and ANN. 

  Name 
Mp (k) 

exp 

Predicted 

by MLR  

Predicted 

by ANN 
Name 

Mp (k) 

exp 

Predicted 

by MLR  

Predicted 

by ANN 

1-methylnaphthalene 251 261.500 281.602 6-methylchrysene 530 451.123 497.805 

1-ethylnaphthalene 259 248.379 275.695 Dibenzo[def,mno]chrysene 534 525.748 531.358 

2,3,5-

trimethylnaphthalene 
298 310.052 297.063 Dibenz[a,h]anthracene 543 529.866 541.921 

1-phenylnaphthalene 318 355.686 318.100 Pentacene 544 590.803 553.300 

9-methylfluorene 320 386.263 343.257 Perylene 551 511.603 513.312 

4-methylphenanthrene 323 361.380 323.160 Benzo[ghi]perylene 556 519.535 567.616 

1,5-

dimethylnaphthalene 
353 335.152 324.430 Benzo[b]chrysene 567 507.705 552.000 

1-methylfluorene 360 365.315 363.547 Phenalene 358 307.466 364.225 

9-methylphenanthrene 364 364.367 315.191 2,6-dimethylanthracene 523 479.026 518.558 

Acenaphthylene 366 366.500 368.434 Dibenzo[a,i]anthracene 537 517.676 550.481 

2,7-

dimethylnaphthalene 
370 374.163 355.830 Hexaphene 581 575.254 579.994 

Azulene 373 309.701 357.000 Coronene 633 632.265 636.199 

2-phenylnaphthalene 377 392.271 418.956 Indene 271 260.737 275.157 

2,6-

dimethylnaphthalene 
383 389.644 391.497 Ovalene 746 687.364 745.564 

Fluoranthene 384 426.377 399.785 Quaterrylene 756 773.746 754.259 

4H-cyclopenta[def ] 

phenanthrene 
389 442.627 395.330 Dibenzo[a,e]pyrene 507 470.443 492.133 

Fluorene 390 413.629 389.196 1,7-dimethylnaphthalene* 259 287.000 281.709 

2-methylpyrene 417 459.662 445.047 1,3,7-trimethylnaphthalene* 287 311.387 301.515 

4-methylpyrene 421 395.527 402.579 2-ethylnaphthalene* 266 327.560 325.722 

Benzo[ghi]fluoranthene 422 479.084 449.675 1,2-dimethylnaphthalene* 269 295.989 289.426 

Pyrene 429 468.186 424.528 2-methylphenanthrene* 329 387.713 407.037 

1-methylchrysene 434 451.460 476.668 3-methylphenanthrene* 338 375.144 357.132 

Benz[a]anthracene 435 450.735 443.544 1-methylpyrene* 343 418.840 384.976 

Indeno[1,2,3-cd]pyrene 436 489.075 472.464 Naphthalene* 354 388.671 378.065 

Benzo[ j]fluoranthene 439 454.561 423.649 1-methylanthracene* 359 392.409 398.433 

Benzo[b]fluoranthene 441 468.656 437.920 Acenaphthene* 369 338.456 362.181 

Benzo[a]pyrene 450 460.460 443.864 2,3,6-trimethylnaphthalene* 374 347.672 347.286 
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Benzo[e]pyrene 452 449.209 469.414 Phenanthrene* 374 409.561 399.207 

3-methylcholanthrene 453 505.530 459.006 2-methylfluorene* 377 380.572 354.213 

9,10-

dimethylanthracene 
456 475.786 471.462 3,6-dimethylphenanthrene* 414 432.118 418.587 

Benzo[a]fluorene 463 440.433 456.185 2,7-dimethylanthracene* 514 471.494 513.516 

Triphenylene 472 474.468 467.344 Pentaphene* 536 527.848 532.542 

Dibenz[a,c]anthracene 478 495.968 496.672 4-methylfluorene* 344 353.237 343.081 

2-methylanthracene 482 416.050 464.652 3,4-benzofluorene* 398 414.310 436.605 

Benzo[b]fluorene 482 457.084 475.477 2-methylnaphthalene* 308 310.028 295.382 

Anthracene 489 470.404 504.474 1-methylphenanthrene* 396 374.231 366.675 

Aenzo[k]fluoranthene 490 498.875 497.879 2,3-dimethylanthracene* 525 473.408 520.169 

Chrysene 529 473.547 471.783 3-methylfluorene* 361 368.775 359.065 

Naphthacene 530 536.877 542.158 Compounds with asterisks (*) are prediction set. 

 

Analyzing the data in Table 1, it is evident that there are 

certain PAH compounds for which the melting points 

predicted by both MLR and ANN models are quite 

accurate and close to the actual values. In contrast, 

others show a wide deviation from the real values, and 

these variations can be attributed to several factors. One 

key consideration is the quality of the experimental 

melting point data used for training the models. 

However, if the experimental data is less accurate, it 

will affect the predictive accuracy of the models. On the 

other hand, PAHs with available experimental data 

correspond to more accurate predictions of the QSPR 

model. Another factor that has to be considered is the 

molecular size of PAHs and the fact that they are 

chemically diverse and can have different structures. 

Significant variations in the melting point tendency can 

be observed depending on the number and connection 

position of fused aromatic rings and the type of diverse 

substituent groups. Thus, PAHs with fewer rings are 

easier to model and have fewer errors in the predicted 

values. However, the range of molecular weights for 

larger or more structurally diverse PAHs is considered 

in the increased variability to predict the experimental 

values. 

 

Figure 1 (right) shows the scatter plot of the Predicted 

versus experimental values of Mp for the training and 

validation set obtained by MLR modeling. An 

agreement between the experimental and predicted Mp 

for each set is observed. Furthermore, the data show a 

low scattering around the first bisector, suggesting that 

the predictions are correct and reasonable, that the 

model yields good performance in both training and 

validation and that the differences between predicted 

and actual melting points are fairly small. This is 

evident considering the conformity of the predictions by 

the MLR model with the actual observed melting points 

within the dataset. 
 

 

  
Figure 1. Right) Predicted versus experimental values of Mp; Left) Y-Scramble plot of R² and Q² vs. Kxy for random 

models. 
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The final experiment of the internal validation was the 

Y-scrambling technique
28

, as we previously stated; it 

was done to prove that the model is not the consequence 

of a fortuitous correlation. Here, the response variable 

(Mp) was inserted randomly, so there is no association 

with the descriptors. As a result of this, the model's 

performance decreases drastically. The R² and Q² of 

each iteration and their averages (R²Yscr and Q²Yscr) 

supply the criterion that the model is excellent, as these 

parameters are ever lower with relation to the values of 

the model (R²Yscr = 0.073 and Q²Yscr = -0.127). The 

R²Yscr and Q²Yscr values versus R² and Q² of the model 

are represented in Figure 1 (left). Note that the values of 

R² and Q² in the model are distant from the values 

obtained for those parameters in the Y-scrambling 

experiment, which suggests that the model is not 

developed due to a random correlation. 

 

3.2 Correlation matrix 

 

Table 2 presents the intercorrelation coefficient matrix 

of the molecular descriptors from the MLR model, 

which showed low Pearson's correlation values between 

them (all less than 0. 80). This means the descriptors 

were pretty independent. Also, we calculated the 

Variable Inflation Factor (VIF) values
29

 for three of the 

descriptors. The VIF values for the four descriptors 

were all between 1.072-1.195, which is less than five, so 

the descriptors aren't too correlated, and there's no 

multicollinearity. Thus, the MLR model made with 

these four descriptors is a good regression equation with 

statistical significance and stability. 

 

3.3. Results of the ANN model 

 

The adaptability of the Artificial Neural Network 

(ANN) method in mathematics makes it a valuable tool 

for constructing predictive models. One advantage of 

using ANN is its capability to integrate nonlinear 

interdependencies between dependent and independent 

variables without requiring a specific mathematical 

function. In this investigation, the back-propagation 

algorithm (BP-ANN)
38

 was utilized to create a nonlinear 

model, with four descriptors derived from the MLR 

model used as inputs.  

 

Figure 2 displays the statistical parameter values, which 

vary with the number of neurons in the hidden layer. 

The RMSE values for the training, validation, and test 

sets are close to each other and reach their lowest point 

when five neurons are used in the hidden layer. 

 

 
Figure 2. Statistical parameters vs the number of neurons in the hidden layer. 

 

 

The performance of the ANN models is greatly 

influenced by the number of neurons in the hidden 

layer. This study determined that the number of hidden 

neurons should be at most 8 when working with a 

training set of 55 samples.
39

 After optimizing the 

network architecture concerning the number of hidden 

neurons, better results were achieved by using five 

hidden neurons. Thus, the selected architecture was (4-

5-1), yielding the following statistical results for the 

training set: R² = 96.387%, RMSEval = 29.808, RMSEtest 

= 20.559, RMSEtr = 19.742, and s = 19.878. 

 

In order to verify the goodness of fit, the predicted 

values for melting temperature were plotted against the 

experimental values. The resulting plot, depicted in 

Figure 3, exhibited a slight dispersion of points around 

the first bisector, suggesting that the values were in 

good agreement with each other. The statistical results 

were: R²tr = 0.964, R²val = 0.87, and R²test = 0.951. 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9

S
ta

ti
s
ti
c
a
l 
p
a
ra

m
e
te

rs
 v

a
lu

e
s
 

Number of neurons 

R² RMSE Val RMSE Test RMSE Tr S



 

Int. J. Chem. Technol. 2024, 8(2), 128-136                                                                                                                     Bouarra and co-workers                                        

         

DOI: http://dx.doi.org/10.32571/ijct.1385432                            E-ISSN: 2602-277X 

 

121 

 

 
 

Figure 3. The plot of predicted values for the training, validation and test sets against the experimental values. 

 

 

 

 

Table 1 and Figure 3 present the dataset's prediction results for the ANN model. These results demonstrate some 

divergence from those obtained via the MLR model, further confirming a nonlinear relationship between structural 

information and the melting temperature values for compounds. Furthermore, the ANN model proposed in this study 

demonstrated solid predictive ability under test set conditions, with statistical parameters including:  

 

   = 0.8713     
  = 0.9765      

   = 0.9755 

      
    ⁄  = -0,1208            

      ⁄ = -0.1196 

Q²ext = 0.8471  0,85  ≤  k = 1.0274 ≤  1,15  0.85  ≤   k’ = 0.9682 ≤1.15 

 

3.4.MLR and ANN Comparison 

 

We performed a comparison between the results obtained by the two methods. Figure 4 establishes that the performance 

of both approaches is generally good but with an advantage for the nonlinear model. Based on the results obtained for 

both models, the Artificial Neural Network technique gives better results than MLR. 

 

Figure4. Comparison of the performance of MLR and ANN models. 
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4. Mechanistic Interpretation 

 

On the mechanistic interpretations of QSRR, we start 

with the number and type of molecular descriptors used 

in the model. To interpret the mechanism, we tried to 

use the four descriptors included in the developed 

model. This affirms that the study is in agreement with 

the OECD's
40 

fifth principle. 

 

The Average Molecular Weight (AMW)
37

 significantly 

influences the melting point (Mp) in a favourable 

manner, as larger molecules generally have greater 

melting points. The fact that the melting point tends to 

increase as the molecular weight of the PAH increases 

is indicated by the positive coefficient of +122 for the 

AMW descriptor. The increased number of atoms in 

larger molecules generally results in more substantial 

Van der Waals forces, which in turn leads to stronger 

intermolecular interactions. As a result, the melting 

point is elevated as a result of the increased energy (in 

the form of heat) necessary to surmount these forces 

during the phase transition from solid to liquid.
41 

 

TIC1 (Total Information Content, Neighbourhood 

Symmetry of 1st-order) and SIC4 (Structural 

Information Content,
37 

Neighbourhood Symmetry of 

4th-order): The symmetry of the molecular 

neighbourhood is reflected in these descriptors at 

different orders (1st-order and 4th-order, respectively). 

The melting point is slightly elevated as a result of an 

increase in the 1st-order neighbourhood symmetry, as 

indicated by the positive coefficient for TIC1 (+2.99). 

The degree of symmetry in the immediate molecular 

environment is quantified by TIC1. The melting point is 

elevated as a result of the uniformity in intermolecular 

interactions, which contributes to the lattice's stability 

and the more regular clustering of molecules in the 

crystal lattice often resulting from increased 

symmetry.
41

 Increased structural symmetries in the 4th-

order neighbourhood is indicative of a decrease in the 

melting point, as indicated by the substantial negative 

coefficient for SIC4 (-342). This could imply that high-

order symmetry results in a more flexible or less 

compact molecular packing, which facilitates the 

molecules' ability to surmount the forces that hold them 

together in the solid state. This results in a lower  

 

 

 

 

melting point, as less thermal energy is required for 

dissolving.
42 

 

P1m (WHIM Descriptor: First Component Shape 

Directional WHIM Index Weighted by Mass)
35-36

. P1m 

describes the shape and mass distribution of the 

molecules. It aids in capturing the molecular three-

dimensional properties, which influence the melting 

point. P1m's positive coefficient (+281) implies that as 

the form directional index grows, so does the melting 

point. The P1m descriptor represents the shape and 

mass distribution of the molecule.
43

 Higher P1m values 

often indicate more elongated or anisotropic molecules 

with a specific mass distribution, which might increase 

molecular rigidity or influence how molecules pack 

together in a crystal. This greater rigidity and shape-

induced stability would necessitate more energy to 

break the molecular arrangement, resulting in a higher 

melting temperature.
44 

 

5.CONCLUSION 

 

The MLR and ANN Methods (linear and nonlinear) 

were exploited in this work to develop models of the 

melting temperature of a series of PAH. Both methods 

appear helpful, although their comparison is 

advantageous to ANN. The superiority of the ANN 

results indicates that the PAH melting temperature has 

some nonlinear characteristics. The MLR method is 

suitable for selecting inputs for the ANN modeling and 

more potent in choosing the critical parameters. The 

results of this work show that the introduction of neural 

network improves the quality of melting point 

prediction. 
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