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Abstract
In this paper, we define new subclasses STlh(s) and CSTlh(s) of sine starlike log-harmonic
mappings and sine close-to-starlike log-harmonic mappings, respectively, defined in the
open unit disc D. We investigate representation theorem and integral representation the-
orem for functions in the class STlh(s). Further, we determine radius of starlikeness for
functions in the classes STlh(s) and CSTlh(s).
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1. Introduction
Let L(D) be the linear space of all analytic functions defined in the open unit disc

D = {z : |z| < 1}, and let A be a subclass of L(D) consisting of functions f , normalized
by the conditions f(0) = f ′(0) − 1 = 0. Also, let B be the set of all bounded analytic
functions µ ∈ L(D) satisfying |µ(z)| < 1 for each z ∈ D. For z = x + iy, the differential
operators

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
and ∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
satisfy the Laplacian

△ = 4 ∂2

∂z∂z
= ∂2

∂x2 + ∂2

∂y2 .

Thus a C2-function f defined in the unit disc D is said to be harmonic in D if △f = 0.
Analogously, a log-harmonic mapping defined in the disc D is a solution of the non-linear
elliptic partial differential equation

fz(z)
f(z)

= µ(z)
(

fz(z)
f(z)

)
, (1.1)
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for some µ ∈ B, where µ is the second complex-dilatation of the function f . Hence, the
Jacobian

Jf (z) = |fz(z)|2 − |fz(z)|2 = |fz(z)|2(1 − |µ(z)|2)
is positive, and all non-constant log-harmonic mappings are sense-preserving in D.

Abdulhadi and Bshouty [3] observed that if f is a non vanishing log-harmonic mapping,
then f can be expressed as

f(z) = h(z)g(z),
where h and g are analytic in D. On the other hand, if f is a non-constant log-harmonic
mapping that vanishes only at z = 0, then f admits the representation given by

f(z) = zm|z|2βmh(z)g(z),

where m is a non-negative integer, ℜ(β) > −1/2, h and g are analytic functions in D with
h(0) ̸= 0 and g(0) = 1. The exponent β depends only on µ(0), and can be expressed by

β = µ(0) 1 + µ(0)
1 − |µ(0)|2

.

Note that f(0) ̸= 0 if and only if m = 0. A univalent log-harmonic mapping in D
vanishes at the origin if and only if m = 1. Thus every univalent log-harmonic mapping
in D which vanishes at the origin has the form

f(z) = z|z|2βh(z)g(z),

where ℜ(β) > −1/2 and 0 /∈ hg(D). The class of log-harmonic mappings have been studied
extensively in [1, 5, 6] and references therein.

In this paper, we focus on sense-preserving univalent log-harmonic mappings in D with
the condition µ(0) = 0 having the form

f(z) = zh(z)g(z), (1.2)

where h and g are analytic in D such that

h(z) = exp
( ∞∑

n=1
anzn

)
and g(z) = exp

( ∞∑
n=1

bnzn
)

.

Here, h and g are the analytic and the co-analytic parts of f , respectively. The class of
such mappings is denoted by Slh. It follows from (1.2) that the functions h, g and the
dilatation µ satisfy the relation

µ(z) = zg′(z)/g(z)
1 + zh′(z)/h(z)

= z(log g)′(z)
1 + z(log h)′(z)

. (1.3)

In [4], it is shown that the mapping f(z) = zh(z)g(z) is starlike log-harmonic mapping
of order α if

∂

∂θ

(
arg f(reiθ)

)
= ℜ

(
zfz(z) − zfz(z)

f(z)

)
> α

for all z = reiθ ∈ D\{0} and for some 0 ≤ α < 1. The class of all starlike log-harmonic
mappings of order α is denoted by STlh(α). For α = 0, we get the class STlh(0) = STlh

of starlike log-harmonic mappings. Also, denote by S∗(α) the class of starlike functions of
order α. For α = 0, we get the class S∗(0) = S∗ of starlike functions.

The following theorem provides a link between the classes STlh(α) and S∗(α).

Theorem A (Theorem 2.1 [4]). Let f(z) = zh(z)g(z) be a log-harmonic mapping in D
with 0 /∈ (hg)(D), where h and g are analytic functions. Then f ∈ STlh(α) if and only if
φ(z) = zh(z)/g(z) ∈ S∗(α).
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Let Plh be the set of all log-harmonic mappings R defined in D which are of the form
R(z) = H(z)G(z), where H and G are in L(D), H(0) = G(0) = 1 such that ℜ(R(z)) > 0
for all z ∈ D. In particular, the set P of all analytic functions p in D with p(0) = 1 and
ℜ(p(z)) > 0 is a subset of Plh. The next result describes the connection between the
classes Plh and P.

Theorem B ([2]). A function R(z) = H(z)G(z) ∈ Plh if and only if p(z) = H(z)/G(z) ∈
P.

Denote by Ω the class of Schwarz functions w which are analytic in D with w(0) = 0
and |w(z)| < 1. For analytic functions f1 and f2 in D, we state that f1 is subordinate to
f2, symbolized by f1 ≺ f2, if there exists a function w in Ω satisfying f1(z) = f2(w(z)).
The comprehensive details of subordination can be found in [8]. Ma and Minda [11]
investigated the class of analytic functions ϕ with positive real part in D that map the
disc D onto regions starlike with respect to 1, symmetric with respect to the real axis and
normalized by the conditions ϕ(0) = 1 and ϕ′(0) > 0. These authors introduced the class
of starlike functions

S∗(ϕ) =
{

f ∈ A : zf ′(z)
f(z)

≺ ϕ(z), z ∈ D
}

.

For the case ϕ(z) = (1 + Az)/(1 + Bz) (−1 ≤ B < A ≤ 1), the family of Janowski
starlike functions S∗[A, B] is obtained ([9]). When A = 1 − 2α (0 ≤ α < 1) and B = −1,
we have the family S∗(α) of starlike functions of order α. Particularly, α = 0 yields the
usual class S∗(0) =: S∗ of starlike functions. Recently, Cho et al. [7] defined the subclass
S∗

s of Ma–Minda class S∗(ϕ) which is endowed with the analytic function ϕ(z) = 1 + sin z.
Then, the function f ∈ S∗

s if zf ′(z)/f(z) ≺ 1 + sin z for all z ∈ D. The following lemma
provides the largest disc and the smallest disc centered, respectively, at (a, 0) and (1, 0)
such that the domain Ωs : (1 + sin z)(D) is contained in the smallest disc and contains the
largest disc.

Lemma 1.1 ([7]). Let 1− sin 1 ≤ a ≤ 1+sin 1 and ra = sin 1−|a−1|. Then the following
inclusions hold:

{w ∈ C : |w − a| < ra} ⊂ Ωs ⊂ {w ∈ C : |w − 1| < sinh 1}.

Motivated by the above discussed literature, we introduce the notion of sine starlike
log-harmonic mappings. Due to Cho et al. [7], we first give Ma-Minda type sine starlike
function class:

An analytic function φ ∈ S∗
s if zφ′(z)/φ(z) ≺ 1 + sin z for all z ∈ D. Since φ ∈ S∗

s,
zφ′(z)
φ(z)

≺ 1 + sin z if and only if zφ′(z)
φ(z)

= 1 + sin w(z),

where w is a Schwarz function with |w(z)| ≤ |z|. Let w(z) = r∗eit with r∗ ≤ |z| = r, t ∈
[−π, π]. Thus, easy calculations show that

| sin w(z)| ≤ sinh r∗ ≤ sinh r.

Therefore, we have

ℜ
(

zφ′(z)
φ(z)

)
≥ 1 − sinh r.

Consider the function φ(z) = zh(z)/g(z). Then taking logarithmic derivative, we ob-
serve that

zφ′(z)
φ(z)

= 1 + zh′(z)
h(z)

− zg′(z)
g(z)

≺ 1 + sin z.

Hence, taking into account the above relations, we define the following classes:
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Definition 1.2. An analytic mapping φ(z) = zh(z)/g(z) such that φ(0) = 0 and h(0) =
g(0) = 1, is said to be sine starlike if

ℜ
(

zφ′(z)
φ(z)

)
= ℜ

(
1 + zh′(z)

h(z)
− zg′(z)

g(z)

)
≥ 1 − sin hr

for all z ∈ D. The class of sine starlike functions is denoted by S∗
s.

Definition 1.3. A log-harmonic mapping f(z) = zh(z)g(z) such that f(0) = 0 and
h(0) = g(0) = 1, is said to be sine starlike log-harmonic mapping if

ℜ
(

zfz(z) − zfz(z)
f(z)

)
≥ 1 − sin hr

for all z ∈ D. The class of sine starlike log-harmonic mapping is denoted by STlh(s).

The main purpose of this paper is to show that a log-harmonic mapping f(z) =
zh(z)g(z) is sine starlike log-harmonic in D if and only if the function φ(z) = zh(z)/g(z)
is in the class S∗

s. In Section 2, we first investigate a representation theorem which gives a
relation between the classes STlh(s) and S∗

s. We next obtain integral representation theo-
rem for functions in the class STlh(s). In Section 3, we investigate radius of starlikeness
for the class STlh(s). Further, we define the concept of sine close-to-starlike log-harmonic
mappings, denoted by CSTlh(s), and investigate the radius of starlikeness for such map-
pings.

2. Representation Theorems
In this section, we first establish a representation theorem, which provides a relation

between the classes STlh(s) and S∗
s.

Theorem 2.1. Let f(z) = zh(z)g(z) be a log-harmonic mapping in D with 0 /∈ hg(D).
Then f belongs to the class STlh(s) if and only if φ(z) = zh(z)/g(z) belongs to the class
S∗

s.

Proof. Let f(z) = zh(z)g(z) be in the class STlh(s). Then
∂

∂θ

(
arg f(reiθ)

)
= ℜ

(
zfz(z) − zfz(z)

f(z)

)
= ℜ

(
1 + zh′(z)

h(z)
− zg′(z)

g(z)

)
= ℜ

(
1 + zh′(z)

h(z)
− zg′(z)

g(z)

)
≥ 1 − sin hr. (2.1)

Consider the function φ(z) = zh(z)/g(z), thus logarithmic differentiation gives
zφ′(z)
φ(z)

= 1 + zh′(z)
h(z)

− zg′(z)
g(z)

. (2.2)

In view of (2.1) and (2.2), we arrive at

ℜ
(

zfz(z) − zfz(z)
f(z)

)
= ℜ

(
zφ′(z)
φ(z)

)
≥ 1 − sinh r. (2.3)

Since the function f is univalent, we have 0 /∈ fz(D). Also,
q1(w) = φ ◦ f−1(w) = w|g ◦ f−1(w)|−2

is locally univalent in f(D). Thus, we have
zφ′(z)
φ(z)

= 1 + zh′(z)
h(z)

− zg′(z)
g(z)

= zfz(z)
f(z)

− µ(z)zfz(z)
f(z)

= (1 − µ(z))zfz(z)
f(z)

̸= 0
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for all z ∈ D. Therefore, φ is univalent, and in view of (2.3) we conclude that φ ∈ S∗
s.

Conversely, let φ ∈ S∗
s and µ ∈ B such that |µ(z)| < 1 for each z ∈ D. Since φ(z) =

zh(z)/g(z), we have the equation (2.2). Also, from (1.1), we get
zg′(z)
g(z)

= µ(z)
(

1 + zh′(z)
h(z)

)
. (2.4)

Combining (2.2) and (2.4), we observe that

g(z) = exp
∫ z

0

µ(s)
1 − µ(s)

φ′(s)
φ(s)

ds, (2.5)

and
zh(z) = φ(z) exp

∫ z

0

µ(s)
1 − µ(s)

φ′(s)
φ(s)

ds, (2.6)

where zφ′(z)
φ(z) = p(z) ≺ 1 + sin z such that p(0) = 1 and ℜ(p(z)) > 0. It follows that

f(z) = zh(z)g(z) = φ(z) exp
∫ z

0

µ(s)
1 − µ(s)

φ′(s)
φ(s)

ds exp
∫ z

0

µ(s)
1 − µ(s)

φ′(s)
φ(s)

ds

= φ(z) exp
(

2 ℜ
∫ z

0

µ(s)
1 − µ(s)

φ′(s)
φ(s)

ds

)
,

and
f(z) = zh(z)g(z) = φ(z)|g(z)|2.

Therefore, h and g are non-vanishing analytic functions, normalized by h(0) = g(0) = 1,
in D and f is a solution of (1.1) with respect to µ. Hence, we observe that

ℜ
(

zfz(z) − zfz(z)
f(z)

)
= ℜ

(
zφ′(z)
φ(z)

)
≥ 1 − sinh r.

Moreover,
q2(w) = f ◦ φ−1(w) = w|g ◦ φ−1(w)|2

is locally univalent in φ(D), and therefore f is univalent. It follows that f ∈ STlh(s). □
We now give an integral representation for f ∈ STlh(s) with the case µ(0) = 0. Hence,

we need the following lemma.

Lemma 2.2 ([10]). If the function µ ∈ B with µ(0) = 0, then
µ(z)

1 − µ(z)
=

∫
∂D

ξz

1 − ξz
dκ(ξ), (z ∈ D)

for some probability measure κ on ∂D.

Theorem 2.3. A log-harmonic mapping f(z) = zh(z)g(z) ∈ STlh(s) if and only if there
are two probability measures ν and κ on ∂D such that

g(z) = exp
( ∫

∂D

∫
∂D

K1(z, t, ξ)dν(t)dκ(ξ)
)

, (2.7)

where

K1(z, t, ξ) = sin
( t

ξ

){
Ci

(
− t

ξ

)
− Ci

(
tz − t

ξ

)}
+ cos

( t

ξ

){
Si

( t

ξ
− tz

)
− Si

( t

ξ

)}
− log(1 − ξz)

and
h(z) = exp

( ∫
∂D

∫
∂D

K2(z, t, ξ)dν(t)dκ(ξ)
)

, (2.8)

where

K2(z, t, ξ) = Si(tz) + sin
( t

ξ

){
Ci

(
− t

ξ

)
− Ci

(
tz − t

ξ

)}
+ cos

( t

ξ

){
Si

( t

ξ
− tz

)
− Si

( t

ξ

)}
− log(1 − ξz)

if |ξ| = |t| = 1, ξ ̸= t.
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Proof. By Theorem 2.1, we know that f(z) = zh(z)g(z) ∈ STlh(s) if and only if φ(z) =
zh(z)/g(z) ∈ S∗

s, thus
zφ′(z)
φ(z)

= p(z) ≺ 1 + sin z,

where p ∈ P such that p(0) = 1 and ℜ(p(z)) > 0. Hence, for p(z) = 1 + sin z, there exists
a probability measure ν defined on the Borel σ−algebra of ∂D such that

zφ′(z)
φ(z)

=
∫

∂D
(1 + sin tz)dν(t) ⇒ φ(z) = z exp

( ∫
∂D

∫ z

0

sin ts

ts
dsdν(t)

)
. (2.9)

Setting (1.3), (2.9) and Lemma 2.2 into (2.5), we get

g(z) = exp
( ∫ z

0

∫
∂D

∫
∂D

ξ

1 − ξs
(1 + sin ts)dν(t)dκ(ξ)ds

)
for probability measures ν and κ on ∂D. Integrating above function, we arrive at

g(z) = exp
( ∫

∂D

∫
∂D

∫ z

0

ξ

1 − ξs
(1 + sin ts)dsdν(t)dκ(ξ)

)
= exp

( ∫
∂D

∫
∂D

K1(z, t, ξ)dν(t)dκ(ξ)
)

, (2.10)

where

K1(z, t, ξ) = sin
( t

ξ

){
Ci

(
− t

ξ

)
− Ci

(
tz − t

ξ

)}
+ cos

( t

ξ

){
Si

( t

ξ
− tz

)
− Si

( t

ξ

)}
− log(1 − ξz).

Here, Ci(z) is the cosine integral and Si(z) is the sine integral given, respectively, by

Ci(z) = −
∫ ∞

z

cos s

s
ds and Si(z) =

∫ z

0

sin s

s
ds.

Moreover, in similar way, by plugging (2.9) and (2.10) into h(z) = (φ(z)/z)g(z), we get
the integral representation for h given by (2.8). This completes the proof. □

3. Radii of Starlikeness
The first result gives radius of starlikeness for sine starlike log-harmonic mappings f ,

which satisfy the condition ℜ
(f(z)

z

)
> 0.

Theorem 3.1. Suppose that f(z) = zh(z)g(z) ∈ STlh(s) in D with h(0) = g(0) = 1, and
φ(z) = zh(z)

g(z) ∈ S∗
s in D. If ℜ(f(z)

z ) > 0 for z ∈ D, then f is univalent and starlike in

|z| ≤ r = sinh 1√
1 + (sinh 1)2 + 1

≈ 0.462117.

Proof. Since f ∈ STlh(s), it follows that
∂

∂θ

(
arg f(reiθ)

)
= ℜ

(
zfz(z) − zfz(z)

f(z)

)
= ℜ

(
1 + zh′(z)

h(z)
− zg′(z)

g(z)

)
.

Taking logarithmic derivative of φ(z) = zh(z)/g(z), and using the above relation, we get

ℜ
(

zfz(z) − zfz(z)
f(z)

)
= ℜ

(
zφ′(z)
φ(z)

)
. (3.1)

Let p(z) = φ(z)/z, then we observe that
zp′(z)
p(z)

= zφ′(z)
φ(z)

− 1. (3.2)
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Using (3.1) and (3.2), we obtain

ℜ
(

zfz(z) − zfz(z)
f(z)

)
= ℜ

(
zφ′(z)
φ(z)

)
= 1 + ℜ

(
zp′(z)
p(z)

)
. (3.3)

We will show that the function f in (3.3) is univalent and starlike. Since

ℜ
(

f(z)
z

)
= ℜ

(
zh(z)g(z)

z

)
= |g(z)|2ℜ(p(z)) > 0,

it follows that ℜ(p(z)) > 0. Thus we conclude that p ∈ P, which satisfying∣∣∣∣zp′(z)
p(z)

∣∣∣∣ ≤ 2r

1 − r2 .

Hence, from (3.2) and the above relation, we obtain∣∣∣∣zφ′(z)
φ(z)

− 1
∣∣∣∣ =

∣∣∣∣zp′(z)
p(z)

∣∣∣∣ ≤ 2r

1 − r2 .

Since the above disc centered at 1, by Lemma 1.1, it follows that |w − 1| ≤ 2r/(1 − r2)
contains the disc Ωs if

2r

1 − r2 ≤ sinh 1

or (sinh 1)r2+2r−sinh 1 ≤ 0. Thus, the radius of STlh(s) is the smallest positive root of the
equation (sinh 1)r2+2r−sinh 1 = 0 in (0, 1), and this implies that |z| ≤ r = sinh 1√

1+(sinh 1)2+1
.

Moreover, the function

f(z) = zh(z)g(z) = φ(z) exp
(

2 ℜ
∫ z

0

µ(s)
1 − µ(s)

φ′(s)
φ(s)

ds

)
,

where φ(z) = z(1 + z)/(1 − z) and µ(z) = z, holds ℜ(f(z)
z ) > 0 for z ∈ D, and is univalent

in |z| ≤ r = sinh 1√
1+(sinh 1)2+1

.
Sharpness is satisfied for the function

zφ′(z)
φ(z)

− 1 = 2z

1 − z2 = sinh 1.

This completes the proof. □

Now, we define the class of sine close-to-starlike log-harmonic mappings: Let F (z) =
zh(z)g(z) be a log-harmonic mapping with respect to µ ∈ B. We say that F is sine
close-to-starlike log-harmonic mapping denoted by CSTlh(s) if there exists a log-harmonic
mapping f(z) = zh1(z)g1(z) ∈ STlh(s) with respect to µ ∈ B such that

ℜ
(

F (z)
f(z)

)
> 0,

or equivalently
F (z) = f(z)R(z),

where R(z) = H(z)G(z) ∈ Plh with H(0) = G(0) = 1.
The next theorem gives the radius of starlikeness for functions F (z) = zh(z)g(z) in the

class CSTlh(s).

Theorem 3.2. Let F (z) = zh(z)g(z) ∈ CSTlh(s). Then F maps the disc |z| < ρ ≈
0.309757 onto a starlike domain, where ρ is the smallest positive root of the equation

(1 − sinh ρ)(1 − ρ2) − 2ρ = 0. (3.4)
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Proof. Since F (z) = zh(z)g(z) ∈ CSTlh(s) with respect to µ ∈ B, there exist a function
f(z) = zh1(z)g1(z) ∈ STlh(s) with respect to µ ∈ B, and a log-harmonic mapping with
positive real part R(z) = H(z)G(z) ∈ Plh with respect to µ ∈ B such that

F (z) = f(z)R(z). (3.5)
Since R ∈ Plh, we have

ℜ
(

zRz(z) − zRz(z)
R(z)

)
= ℜ

(
zp′(z)
p(z)

)
, (3.6)

where ℜ(p(z)) = ℜ
(H(z)

G(z)
)

> 0 by Theorem B, and

ℜ
(

zp′(z)
p(z)

)
≥ − 2r

1 − r2 . (3.7)

From (2.3), (3.5), (3.6) and (3.7), we get

ℜ
(

zFz(z) − zFz(z)
F (z)

)
= ℜ

(
zfz(z) − zfz(z)

f(z)

)
+ ℜ

(
zRz(z) − zRz(z)

R(z)

)
= ℜ

(
zφ′(z)
φ(z)

)
+ ℜ

(
zp′(z)
p(z)

)
≥ 1 − sinh r − 2r

1 − r2 .

Thus,

ℜ
(

zFz(z) − zFz(z)
F (z)

)
> 0

if 1 − sinh r − 2r
1−r2 > 0. Therefore, the radius of starlikeness ρ is the smallest positive

root of the equation (1 − sinh ρ)(1 − ρ2) − 2ρ = 0 in (0, 1). The function F (z) = z(1+z)
(1−z)3

belongs to the class CSTlh(s). □
Next, we prove the following radius of starlikeness for functions F ∈ CSTlh(s).

Theorem 3.3. Let K(z) = zh(z)g(z) be a log-harmonic mapping with respect to µ ∈ B,
and let F (z) = zh1(z)g1(z) ∈ CSTlh(s) with respect to µ ∈ B such that ℜ(K(z)

F (z) ) > 0. Then
F maps the disc |z| < ρ1 ≈ 0.193715 onto a starlike domain, where ρ1 is the smallest
positive root of the equation

(1 − sinh ρ1)(1 − ρ2
1) − 4ρ1 = 0. (3.8)

Proof. Since K(z) = zh(z)g(z) is a log-harmonic mapping with respect to µ ∈ B, and
F (z) = zh1(z)g1(z) ∈ CSTlh(s) with respect to µ ∈ B, there exist a function f(z) =
zh2(z)g2(z) ∈ STlh(s) with respect to µ ∈ B and log-harmonic mappings with positive
real parts R and R∗ in Plh with respect to µ ∈ B such that

K(z) = f(z)R(z)R∗(z). (3.9)
From (3.9), we get

ℜ
(

zKz(z) − zKz(z)
K(z)

)
= ℜ

(
zfz(z) − zfz(z)

f(z)

)
+ ℜ

(
zRz(z) − zRz(z)

R(z)

)
+ ℜ

(
zR∗

z(z) − zR∗
z(z)

R∗(z)

)
.

(3.10)
Since R, R∗ ∈ Plh, we have

ℜ
(

zRz(z) − zRz(z)
R(z)

)
= ℜ

(
zp′(z)
p(z)

)
≥ − 2r

1 − r2 , (3.11)

ℜ
(

zR∗
z(z) − zR∗

z(z)
R∗(z)

)
= ℜ

(
zp′(z)
p(z)

)
≥ − 2r

1 − r2 . (3.12)
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Substituting (2.3), (3.11) and (3.12) into (3.10), we get

ℜ
(

zKz(z) − zKz(z)
K(z)

)
≥ 1 − sinh r − 4r

1 − r2 .

Hence,

ℜ
(

zKz(z) − zKz(z)
K(z)

)
> 0

if 1 − sinh r − 4r
1−r2 > 0. Therefore, the radius ρ1 is the smallest positive root of the

equation (1 − sinh ρ1)(1 − ρ2
1) − 4ρ1 = 0 in (0, 1). The function F (z) = z(1+z)

(1−z)4 belongs to
the class CSTlh(s). □

Finally, we prove the following radius of starlikeness for functions F ∈ CSTlh(s).

Theorem 3.4. Let F (z) = zh(z)g(z) ∈ CSTlh(s) be a log-harmonic mapping with respect
to µ ∈ B, and let f∗(z) = zh∗(z)g∗(z) ∈ STlh(s) with respect to µ ∈ B. Then S(z) =
F (z)λf∗(z)1−λ, λ ∈ (0, 1) is univalent and starlike in |z| < ρ2, where ρ2 is the smallest
positive root of the equation

(1 − sinh ρ2)(1 − ρ2
2) − 2λρ2 = 0. (3.13)

Proof. Let S(z) = F (z)λf∗(z)1−λ, λ ∈ (0, 1), where F (z) = f(z)R(z) such that f ∈
STlh(s), R ∈ Plh, and where f∗ ∈ STlh(s) are log-harmonic mappings with respect to
µ ∈ B, then S(z) is log-harmonic with respect to the same µ ∈ B such that

S(z) = F (z)λf∗(z)1−λ = (f(z)R(z))λ(f∗(z))1−λ. (3.14)
From (2.3), (3.6), (3.7) and (3.14), we get

ℜ
(

zSz(z) − zSz(z)
S(z)

)
= λℜ

(
zfz(z) − zfz(z)

f(z)

)
+ λℜ

(
zRz(z) − zRz(z)

R(z)

)
+ (1 − λ)ℜ

(
zf∗

z (z) − zf∗
z (z)

f∗(z)

)
≥ λ

(
1 − sinh r − 2r

1 − r2

)
+ (1 − λ)(1 − sinh r)

= 1 − sinh r − 2λr

1 − r2 .

Hence,

ℜ
(

zSz(z) − zSz(z)
S(z)

)
> 0

if 1 − sinh r − 2λr
1−r2 > 0. Therefore, the radius ρ2 is the smallest positive root of the

equation (1 − sinh ρ2)(1 − ρ2
2) − 2λρ2 = 0 in (0, 1). □
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