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Abstract

The scattering of plane waves by a half-plane of perfectly electric conducting (PEC) surface is taken into consideration by means of
the Bessel series to express the total scattered field. First, total scattered field is obtained in terms of the Fresnel function by using
the series addition of incident and reflected fields, and the solution of the Helmhotz equation. Next, the Fresnel function is
decomposed into unit step function and Signum function times the Fresnel function. The obtained scattered, diffracted and
geometrical optics (GO) fields are plotted numerically. The behavior of scattered, GO and diffracted fields are observed and
interpreted by considering the electromagnetic scattering theory. Diffracted field which consists of incident diffracted, and reflected
diffracted fields is plotted along with the scattered field. Diffracted field components come from the multiplication of the Signum
function and the Fresnel function. Also, the GO field is expressed by the unit step function.
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Oz

Toplam sagilan alani ifade etmek i¢in, diizlem dalgalarin mitkemmel elektrik iletken (PEC) yiizeyinin yarim diizlemi tarafindan
sagilmasi, Bessel serisi aracilityla dikkate alinir. {1k olarak, gelen ve yanstyan alanlarin seri toplami ve Helmhotz denkleminin ¢dziimii
kullanilarak Fresnel fonksiyonu cinsinden toplam sagilmis alan elde edilir. Daha sonra, Fresnel fonksiyonu birim adim fonksiyonuna
ve Signum fonksiyonu carp1 Fresnel fonksiyonuna ayristirilir. Elde edilen daginik, kirmimli ve geometrik optik (GO) alanlar sayisal
olarak c¢izilmistir. Sagilan, GO ve kirilan alanlarin davraniglart elektromanyetik sacilma teorisi dikkate alinarak gozlemlenir ve
yorumlanir. Gelen kirmima ugramig ve yansitilmig kirinima sahip alanlardan olusan kirmnimli alan, sagilmis alanla birlikte ¢izilmistir.
Kirillan alan bilesenleri Signum fonksiyonu ile Fresnel fonksiyonunun carpimindan elde edilir. Ayrica GO alani birim adim
fonksiyonuyla ifade edilir.
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1. Introduction

Electromagnetic wave scattering by perfectly conducting and imperfectly conducting surfaces has long been under investigation. Wave
scattering by a PEC half-plane is a widely used canonical matter firstly solved by Sommerfeld (1896). Plane wave diffraction by an
impedance half plane was firstly solved by Maliuzhinets (1958, 1960). Senior (1952) dealt with the same problem by using the Weiner-
Hopf integral equations to find the electric and magnetic currents. Raman and Krishnan (1927) worked on the half-plane and wedge
having finite conductivity by modifying the Sommerfeld’s solution. Jones and Pidduck (1950) studied on the diffracted wave by a
metallic wedge at large angles. Kouyoumjian and Pathak (1974) worked on the uniform diffraction theory for an edge. Bucci and
Franceschetti (1976) studied scattering by half-plane. Tiberio et al. (1984) developed a uniform geometrical theory of diffraction (GTD)
expression for the diffraction for a wedge. Their high-frequency solution formulation is compatible with the solution of uniform GTD
solution for a perfectly conducting wedge as well. Sanyal and Bhattacharyya (1986) investigated the diffraction from a half-plane
having two face impedances. In their study Van der Waerden’s method is used to obtain the asymptotic expansion of Maliuzhinets’
exact solution. Rojas (1988) presented an asymptotic solution for the plane wave diffraction by an impedance wedge. Biiyiikaksoy and
Uzgoren (1988) investigated the diffraction of waves with high-frequency by a curved surface, and proposed asymptotic expressions
for the diffraction coefficients. Borghi et al. (1996) examined plane wave scattering by a perfectly conducting circular cylinder.
Drawbacks of the impedance half plane diffraction solutions proposed by Senior and Maliuzhinets are shown by Umul (2009 a-b).
Scattering of a line-sourced waves by a cylindrical parabolic reflector with impedance face is presented by Umul (2008) by using the
surface integrals of the modified theory of physical optics (MTPO) he introduced earlier Umul (2004). Kara (2016) studied plane wave
scattering by a cylindrical parabolic PEC reflector. Kara (2019) investigated inhomogeneous plane wave scattering of by a slit
composed of two different half planes. Kara (2019) evaluated inhomogeneous plane wave scattering by a PEC half plane
asymptotically. Kara (2020) examined diffraction of a line source originated waves by a parabolic reflector where the reflector is offset
fed by the line source. Kara (2021) studied plane wave diffraction by an aperture with two half planes having different resistivities
between isorefractive media. Kara and Mutlu (2023) investigated scattering by a truncated cylindrical conductive cap by using physical
optics surface current on the cap. Umul (2009a) proposed a solution for an impedance half-plane having identical faces. Later, his
method is used for the diffraction of waves by two different half planes between two dielectric media Umul and Yalgm (2010a,b).
Umul (2013) presented a new series solution to the wave scattering by a half screen by means of Dirichlet and Neumann conditions.
In this study a series solution, examined by James et al. (1986) and some other authors, of a plane wave scattering by a PEC half plane
will be obtained. The obtained results will be plotted and interpreted.

2. Theory

In this section, we will take a whole perfectly electric conducting plane into account. An incident plane wave given in Equation (1),
where k is the wavenumber and o is the angle of incidence, is considered. Geometry under consideration is indicated in Figure 1.

)
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Fig_ure 1. Sc_attering geometry
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E; = &, eJkpcos(¢=¢o) (1)
For a whole plane reflected field is written as
E, = _é;ejkf)wS(pro) 2)
By using the Bessel series given in Equation (3)

X 1
el D) =32 Ju (ot 3)
exp(jxsin@) can be written as
e/sind = 3=, I, (x)eim? (4)
here x = kp, and t = exp (j@). Similarly by letting t = /¢, and 6 — g — 6, we write,
efxeost = 32 ], (x)e/"2e I (5)
Bessel equation can be expressed in terms of e/*<°s? as,
Tnk o Jn()e’M2e™I + Jo(x) + Ty Jn (x)e 2670 (6)
For the first summation term on the left, letting n - —n we write Equation (6) as,
TheooJon(2)e? T2 4 o (x) + Ty [ (x)e 2o IO )
By considering
J-n(x) = (=1)"/n(x) ®)
we rewrite Equation (7) as,
Theoo(— D" Ju (e "2em? + [y (x) + Ty Jn(x)e’"ze 0 9)
which can be reduced to

jnm

2% J.(x) ez cosnd + Jo(x) (10)

Ei and E; will be summed up in series. For this purpose the expression of the form given in Equation (11) is used and Equation (12)
and Equation (13) are obtained.

e%e00 = Jo(x) + 2 2y Ju(x)e’"s cosnd (11)
E; = & [Jo(kp) + 2552, Ju(kp)e ™ cosn(p — 9,)) (12)
Similarly,
Er = ~&, [Jo(kp) +2 5721 Julkp)e’™ cosn( + go)] (13)
If the incident and reflected fields are summed up, total scattered fields become as
Eoe = E; + E. = &, 235, |, (kp)e’"2 [cosn(p — @o) — cosn(e + ¢)] (14)
which is reduced to
Eror = Ei + Er = 4351 Jn(kp)e’™2 sin(ng) sin(ng,) (15)
Here x € [0, ). The solution of Helmhotz equation V2E, + k2E, = 0 in cylindrical coordinates is written as,
E, = J,(kp)[A,sin(ve) + B,cos(ve)] (16)
¢=0 represents the top side, and ¢=2x represents the bottom side of the half plane. At =0, E, = 0,
E, = J,(kp)[Aysin(0) + B,cos(0)] = 0 (17)
As aresult B, = 0 is obtained. Thus E, is reduced to,
E, = J,(kp)A,sin(ve) (18)
At ¢=2m,
E, =0 =],(kp)A,sin(v2r) = sin(nmn) 19)
where v = g E, is written as,
E, = Etor = X3z (kp)Ansin (S o) (20)
An is obtained by equating Equation (15) and Equation (20) as,
2
An = 2e'22sin (g(po) (21)
2
If A is substituted in Equation (20) total scattered field is written as,
2
Evor = 2551 J2 (kp)e22sin (3o ) sin (5 o) (22)
This is the total field comprising incident, reflected and diffracted fields. E« can also be expressed as
1 1 o iT\2 o i\ 2
Evot = 3Jo(kp) = 3 Jo(kp) + Zites Jz (kp) (¢72) cos (5 (9 = o) = Biica Jz (kp) (e72) cos (5 (v + o) (23)

where negative-coefficient terms belong to the reflected scattered field as the positive-coefficient terms comprise the incident scattered
field. Incident scattered or reflected scattered fields in Equation (23) can be written in the form of

Holkp) + Ti-1j2] (kp) cos (50) (24)
where 6 = ¢ + ¢, Equation (24) is rewritten as,
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%]o (kp) + Xi=1 " Jn(kp)cosn + X0 j ), (kp)cosv, 6 (25)
where

~Jo(kp) + Tie-y j" Jn (kp)cosnd = - elkeeost (26)
andv, =n+ % As a result, Equation (25) is reduced to

200+ 520 1), (kp)cosuyf (27)
which can be expressed as

~elkpeost 4 2y U v, (kp)el™n® 425 jon],, (kp)e ™ on®. (28)
Finally, total scattered field given in Equation (23) is obtained as,

Jo(kp) + B jETaCkp)cos (20 = 90) ) = 2o(kn) = iz jEaCkp)cos (2 (@ + 00)) (29)
which is reduced to,

eJkpcos (p=¢o) [—,/kacos (%)] — elkpcosloroop [—,/2kp cos (%)] (30)
F[a] is the Fresnel function which can be expressed as,

Fla] = u(=a) + sgn(a)F(lal] (1)

3. Numerical Results

In this section we will examine the behavior of diffracted, scattered and GO fields numerically. The wavelength A is equal to 0.1 meter.
p is 6\, and the @o is 60° (n/3). p is the observation distance. Figure 2 shows the total scattered field. It is seen that the value of the
scattered field drops to 0.5 at 240° (n+ @o) where the diffracted component contribution takes place. Also, in Fig. 2, total scattered field

continues to decrease smoothly thanks to the diffracted field expression containing terms yielding uniform field.
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Figure 2. Total scattered field

In Figure 3 Incident diffracted and reflected diffracted field are given along with the total scattered field. Reflected diffracted and
incident diffracted field peaks occur at 120° (n- o) and 240° (1+o) as expected. Because 7t- ¢ is the reflection boundary, and ©+ ¢ is
the shadow boundary. Transition points can be changed by changing the angle of incidence. For example, if the incident angle is chosen
as 1/6, reflection boundary will occur at 5 @/6 and the shadow boundary will be at 7 7/6. Diffracted field contributions come from the
expression of Signum function times the Fresnel function, and unit step function determines the GO field.
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Field Intensities
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Figure 3. Variations of diffracted fields

Fig. 4 depicts the incident diffracted field and the GO field. Up to 240° (n+ ¢o) the GO field exists, and after that point it cannot be
seen. However the incident diffracted field intensity gradually decreases from that point.
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Figure 4. GO and incident diffracted field intensities

Fig. 5 depicts the reflected diffracted field and the GO field. The reflection boundary occurs at 120° (n- o). The reflected diffracted
field intensity has a peak at that point, and it starts to decrease above and below that angle.
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GO and Reflected Diffracted Fields
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Figure 5. GO and reflected diffracted field intensities
4. Conclusion

In this study, scattering of plane waves by a perfectly electric conducting half-plane is investigated by employing the series solution
method. Incident and reflected fields are added together to obtain the total scattered field. Scattered field components, incident diffracted
and reflected diffracted fields, rewritten by means of the Fresnel function are obtained in another form by means of unit step function
and Signum function and the Fresnel function itself. The aim of doing this was to obtain uniform diffracted fields, because Sighum and
Fresnel functions are used to express the field having abrupt changes in a uniform variation. It is observed that the first term in total
scattered field given in Eq. (30) represents the reflected scattered field whereas the second term with negative sign depicts the incident
scattered field.

Appendix

In this section, the expression given in Eq. (32) will be by means of Fresnel function.
Zn=0(t)"™ ]y, (x) (32)
which can be written as,
oo L, o), (33)
where,
n! = foooe'“u"du. (34)
Eq.(33) is rewritten as,

o it)yPnn! o (jovn 0 —u ng
S UL (x) = g, S T, (35)
By writing v,, = n + 1/2, Eq. (35) becomes

1w
(OGO fy° e Multdu

o 2 Jon G0, (36)
and finally we obtain,

o Gr® _2x oo e_usin(x/xz—zjtux)
Ym0 o, ) = | =jt ], S oy @37)
Letting —2jtux = v?, du = —vdv/jtx is obtained.

X212
2x ooe_usin(\/ﬁjtux) x5 ooe_< 2jtx >sinv dv
?\/]_tfo Vx2=2jtux - ;\/]_tfx jtx (38)

which is reduced to,
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ettt |1 ET T o - g AT (39)
where C = ,/tx/2 . Eq.(39) is arranged as,
2 2
(v = N

2 / L ejE(%H) fooe_]<‘/m \/:) dv—["e ’(er\/;) dv (40)
j Al j2mtx x X

By letting,

v tx
=t \E =-b (41)

Eq. (40) can be rewritten as,

il g e iB%d 42
= (fJ B - fjf ﬁ) (42)

where the F[a] is the Fresnel function given as,

Fla] = } et g (43)
As a result we obtain,

2200y @) = —e KD {F [ (e + )| -7 [- 5 (e - B} (44)
Letting x = kp, and t = exp(j&) we obtain,

00y (5) = 77 (255 s (9]~ [ 265 cos (2] @)
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