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Abstract 

The scattering of plane waves by a half-plane of perfectly electric conducting (PEC) surface is taken into consideration by means of 

the Bessel series to express the total scattered field. First, total scattered field is obtained in terms of the Fresnel function by using 

the series addition of incident and reflected fields, and the solution of the Helmhotz equation. Next, the Fresnel function is 

decomposed into unit step function and Signum function times the Fresnel function. The obtained scattered, diffracted and 

geometrical optics (GO) fields are plotted numerically. The behavior of scattered, GO and diffracted fields are observed and 

interpreted by considering the electromagnetic scattering theory. Diffracted field which consists of incident diffracted, and reflected 

diffracted fields is plotted along with the scattered field. Diffracted field components come from the multiplication of the Signum 

function and the Fresnel function. Also, the GO field is expressed by the unit step function. 
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Öz 

Toplam saçılan alanı ifade etmek için, düzlem dalgaların mükemmel elektrik iletken (PEC) yüzeyinin yarım düzlemi tarafından 

saçılması, Bessel serisi aracılığıyla dikkate alınır. İlk olarak, gelen ve yansıyan alanların seri toplamı ve Helmhotz denkleminin çözümü 

kullanılarak Fresnel fonksiyonu cinsinden toplam saçılmış alan elde edilir. Daha sonra, Fresnel fonksiyonu birim adım fonksiyonuna 

ve Signum fonksiyonu çarpı Fresnel fonksiyonuna ayrıştırılır. Elde edilen dağınık, kırınımlı ve geometrik optik (GO) alanları  sayısal 

olarak çizilmiştir. Saçılan, GO ve kırılan alanların davranışları elektromanyetik saçılma teorisi dikkate alınarak gözlemlenir ve 

yorumlanır. Gelen kırınıma uğramış ve yansıtılmış kırınıma sahip alanlardan oluşan kırınımlı alan, saçılmış alanla birlikte çizilmiştir. 

Kırılan alan bileşenleri Signum fonksiyonu ile Fresnel fonksiyonunun çarpımından elde edilir. Ayrıca GO alanı birim adım 

fonksiyonuyla ifade edilir. 
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1. Introduction 

 

Electromagnetic wave scattering by perfectly conducting and imperfectly conducting surfaces has long been under investigation. Wave 

scattering by a PEC half-plane is a widely used canonical matter firstly solved by Sommerfeld (1896). Plane wave diffraction by an 

impedance half plane was firstly solved by Maliuzhinets (1958, 1960). Senior (1952) dealt with the same problem by using the Weiner-

Hopf integral equations to find the electric and magnetic currents. Raman and Krishnan (1927) worked on the half-plane and wedge 

having finite conductivity by modifying the Sommerfeld’s solution. Jones and Pidduck (1950) studied on the diffracted wave by  a 

metallic wedge at large angles. Kouyoumjian and Pathak (1974) worked on the uniform diffraction theory for an edge. Bucci and 

Franceschetti (1976) studied scattering by half-plane. Tiberio et al. (1984) developed a uniform geometrical theory of diffraction (GTD) 

expression for the diffraction for a wedge. Their high-frequency solution formulation is compatible with the solution of uniform GTD 

solution for a perfectly conducting wedge as well. Sanyal and Bhattacharyya (1986) investigated the diffraction from a half-plane 

having two face impedances. In their study Van der Waerden’s method is used to obtain the asymptotic expansion of Maliuzhinets’ 

exact solution. Rojas (1988) presented an asymptotic solution for the  plane wave diffraction by an impedance wedge. Büyükaksoy and 

Uzgören (1988) investigated the diffraction of  waves with high-frequency by a curved surface, and proposed asymptotic expressions 

for the diffraction coefficients. Borghi et al. (1996) examined plane wave scattering by a perfectly conducting circular cylinder. 

Drawbacks of the impedance half plane diffraction solutions proposed by Senior and Maliuzhinets are shown by Umul (2009 a-b). 

Scattering of a line-sourced waves by a cylindrical parabolic reflector  with impedance face is presented by Umul (2008) by using the 

surface integrals of the modified theory of physical optics (MTPO) he introduced earlier Umul (2004). Kara (2016) studied plane wave 

scattering by a cylindrical parabolic PEC reflector. Kara (2019) investigated inhomogeneous plane wave scattering of by a slit 

composed of  two different half planes. Kara (2019) evaluated inhomogeneous plane wave scattering by a PEC half plane 

asymptotically. Kara (2020) examined diffraction of  a line source originated waves by a parabolic reflector where the reflector is offset 

fed by the line source. Kara (2021) studied plane wave diffraction by an aperture with two half planes having different resistivities 

between isorefractive media. Kara and Mutlu (2023) investigated scattering by a truncated cylindrical conductive cap by using physical 

optics surface current on the cap. Umul (2009a) proposed a solution for an impedance half-plane having identical faces. Later, his 

method is used for the diffraction of waves by two different half planes  between two dielectric media Umul and Yalçın (2010a ,b). 

Umul (2013) presented a new series solution to the wave scattering by a half screen by means of Dirichlet and Neumann conditions. 

In this study a series solution, examined by James et al. (1986) and some other authors, of a plane wave scattering by a PEC half plane 

will be obtained. The obtained results will be plotted and interpreted.  

 

2. Theory 

 

In this section, we will take a whole perfectly electric conducting plane into account. An incident plane wave given in Equation (1), 

where k is the wavenumber and φ0 is the angle of incidence, is considered. Geometry under consideration is indicated in Figure 1. 

 
Figure 1. Scattering geometry 
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𝐸𝑖 = 𝑒�̂�𝑒
𝑗𝑘𝜌𝑐𝑜𝑠(𝜑−𝜑0)                                                                                                                                                                                 (1) 

For a whole plane reflected field is written as 

𝐸𝑟 = −𝑒�̂�𝑒
𝑗𝑘𝜌𝑐𝑜𝑠(𝜑+𝜑0)                                                                                                                                                                                 (2) 

By using the Bessel series given in Equation (3) 

𝑒
𝑥

2
(𝑡−

1

𝑡
)
= ∑ 𝐽𝑛(𝑥)𝑡

𝑛∞
𝑛=−∞                                                                                                                                                                                       (3) 

𝑒𝑥𝑝(𝑗𝑥𝑠𝑖𝑛𝜃) can be written as  

𝑒𝑗𝑥𝑠𝑖𝑛𝜃 = ∑ 𝐽𝑛(𝑥)𝑒
𝑗𝑛𝜃∞

−∞                                                                                                                                                                                     (4) 

here 𝑥 = 𝑘𝜌, and 𝑡 = exp⁡(𝑗𝜃). Similarly by letting 𝑡 = 𝑒𝑗𝜃 , and 𝜃 →
𝜋

2
− 𝜃, we write, 

𝑒𝑗𝑥𝑐𝑜𝑠𝜃 = ∑ 𝐽𝑛(𝑥)𝑒
𝑗𝑛

𝜋

2𝑒−𝑗𝑛𝜃∞
𝑛=−∞                                                                                                                                                                         (5) 

Bessel equation can be expressed in terms of 𝑒𝑗𝑥𝑐𝑜𝑠𝜃  as, 

∑ 𝐽𝑛(𝑥)𝑒
𝑗𝑛

𝜋

2𝑒−𝑗𝑛𝜃 + 𝐽0(𝑥) + ∑ 𝐽𝑛(𝑥)𝑒
𝑗𝑛

𝜋

2𝑒−𝑗𝑛𝜃∞
𝑛=1

−1
𝑛=−∞                                                                                                                              (6) 

For the first summation term on the left, letting 𝑛 → −𝑛⁡⁡we write Equation (6) as, 

∑ 𝐽−𝑛(𝑥)𝑒
𝑗(−𝑛)

𝜋

2𝑒𝑗𝑛𝜃 + 𝐽0(𝑥) + ∑ 𝐽𝑛(𝑥)𝑒
𝑗𝑛

𝜋

2𝑒−𝑗𝑛𝜃∞
𝑛=1

1
𝑛=∞                                                                                                                                (7) 

By considering 

𝐽−𝑛(𝑥) = (−1)𝑛𝐽𝑛(𝑥)                                                                                                                                                                                      (8) 

we rewrite Equation (7) as, 

∑ (−1)𝑛1
𝑛=∞ 𝐽𝑛(𝑥)𝑒

−𝑗𝑛
𝜋

2𝑒𝑗𝑛𝜃 + 𝐽0(𝑥) + ⁡∑ 𝐽𝑛(𝑥)𝑒
𝑗𝑛

𝜋

2𝑒−𝑗𝑛𝜃∞
𝑛=1 ⁡                                                                                                                       (9) 

which can be reduced to 

2∑ 𝐽𝑛(𝑥)
∞
𝑛=1 𝑒

𝑗𝑛𝜋

2 𝑐𝑜𝑠𝑛𝜃 + 𝐽0(𝑥)                                                                                                                                                                   (10) 

Ei and Er will be summed up in series. For this purpose the expression of the form given in Equation (11) is used and Equation (12) 

and Equation (13) are obtained. 

𝑒𝑗𝑥𝑐𝑜𝑠𝜃 = 𝐽0(𝑥) + 2∑ 𝐽𝑛(𝑥)𝑒
𝑗𝑛

𝜋

2∞
𝑛=1 𝑐𝑜𝑠𝑛𝜃                                                                                                                                                  (11) 

𝐸𝑖 = 𝑒�̂� [𝐽0(𝑘𝜌) + 2∑ 𝐽𝑛(𝑘𝜌)𝑒
𝑗𝑛

𝜋

2∞
𝑛=1 𝑐𝑜𝑠𝑛(𝜑 − 𝜑0)]                                                                                                                                   (12) 

Similarly,  

𝐸𝑟 = −𝑒�̂� [𝐽0(𝑘𝜌) + 2∑ 𝐽𝑛(𝑘𝜌)𝑒
𝑗𝑛

𝜋

2∞
𝑛=1 𝑐𝑜𝑠𝑛(𝜑 + 𝜑0)]                                                                                                                             (13) 

If the incident and reflected fields are summed up, total scattered fields become as 

𝐸𝑡𝑜𝑡 = 𝐸𝑖 + 𝐸𝑟 = 𝑒�̂�⁡2 ∑ 𝐽𝑛(𝑘𝜌)𝑒
𝑗𝑛

𝜋

2∞
𝑛=1 [𝑐𝑜𝑠𝑛(𝜑 − 𝜑0) − 𝑐𝑜𝑠𝑛(𝜑 + 𝜑0)]                                                                                                (14) 

which is reduced to 

𝐸𝑡𝑜𝑡 = 𝐸𝑖 + 𝐸𝑟 = 4∑ 𝐽𝑛(𝑘𝜌)𝑒
𝑗𝑛

𝜋

2∞
𝑛=1 ⁡𝑠𝑖𝑛(𝑛𝜑)⁡sin(𝑛𝜑0)                                                                                                                         (15) 

Here 𝑥 ∈ [0,∞). The solution of Helmhotz equation ⁡∇2𝐸𝑧 + 𝑘2𝐸𝑧 = 0 in cylindrical coordinates is written as, 

𝐸𝑧 = 𝐽𝑣(𝑘𝜌)[𝐴𝑣𝑠𝑖𝑛(𝑣𝜑) + 𝐵𝑣𝑐𝑜𝑠(𝑣𝜑)]                                                                                                                                                       (16) 

φ=0 represents the top side, and φ=2π represents the bottom side of the half plane. At φ=0, 𝐸𝑧 = 0, 

𝐸𝑧 = 𝐽𝑣(𝑘𝜌)[𝐴𝑣𝑠𝑖𝑛(0) + 𝐵𝑣𝑐𝑜𝑠(0)] = 0                                                                                                                                                       (17) 

As a result 𝐵𝑣 = 0 is obtained. Thus 𝐸𝑧 is reduced to,  

𝐸𝑧 = 𝐽𝑣(𝑘𝜌)𝐴𝑣𝑠𝑖𝑛(𝑣𝜑)                                                                                                                                                                                (18) 

At φ=2π, 

 𝐸𝑧 = 0 = 𝐽𝑣(𝑘𝜌)𝐴𝑣𝑠𝑖𝑛(𝑣2𝜋) = 𝑠𝑖𝑛(𝑛𝜋)⁡⁡⁡                                                                                                                                                  (19) 

where 𝑣 =
𝑛

2
. 𝐸𝑧  is written as,  

𝐸𝑧 = 𝐸𝑡𝑜𝑡 = ∑ 𝐽𝑛
2

∞
𝑛=1 (𝑘𝜌)𝐴𝑛

2
sin (

𝑛

2
𝜑)                                                                                                                                                            (20) 

𝐴𝑛

2
 is obtained by equating Equation (15) and Equation (20) as, 

𝐴𝑛

2
= 2𝑒𝑗

𝑛

2

𝜋

2𝑠𝑖𝑛 (
𝑛

2
𝜑0)                                                                                                                                                                                   (21) 

If 𝐴𝑛

2
 is substituted in Equation (20) total scattered field is written as, 

𝐸𝑡𝑜𝑡 = 2∑ 𝐽𝑛
2

∞
𝑛=1 (𝑘𝜌)𝑒𝑗

𝑛

2

𝜋

2𝑠𝑖𝑛 (
𝑛

2
𝜑0) sin (

𝑛

2
𝜑)                                                                                                                                            (22) 

This is the total field comprising incident, reflected and diffracted fields. Etot can also be expressed as 

𝐸𝑡𝑜𝑡 =
1

2
𝐽0(𝑘𝜌) −

1

2
𝐽0(𝑘𝜌) + ∑ 𝐽𝑛

2

∞
𝑛=1 (𝑘𝜌) (𝑒𝑗

𝜋

2)

𝑛

2
𝑐𝑜𝑠 (

𝑛

2
(𝜑 − 𝜑0) − ∑ 𝐽𝑛

2

∞
𝑛=1 (𝑘𝜌) (𝑒𝑗

𝜋

2)

𝑛

2
𝑐𝑜𝑠 (

𝑛

2
(𝜑 + 𝜑0)                                            (23) 

where negative-coefficient terms belong to the reflected scattered field as the positive-coefficient terms comprise the incident scattered 

field. Incident scattered or reflected scattered fields in Equation (23) can be written in the form of  
1

2
𝐽0(𝑘𝜌) + ∑ 𝑗

𝑛

2𝐽𝑛
2

∞
𝑛=1 (𝑘𝜌) cos (

𝑛

2
𝜃)                                                                                                                                                              (24) 

where 𝜃 = 𝜑 ± 𝜑0, Equation (24) is rewritten as, 
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1

2
𝐽0(𝑘𝜌) + ∑ 𝑗𝑛∞

𝑛=1 𝐽𝑛(𝑘𝜌)𝑐𝑜𝑠𝑛𝜃 + ∑ 𝑗𝑣𝑛𝐽𝑣𝑛(𝑘𝜌)𝑐𝑜𝑠𝑣𝑛𝜃
∞
𝑛=0                                                                                                                         (25) 

where 
1

2
𝐽0(𝑘𝜌) + ∑ 𝑗𝑛∞

𝑛=1 𝐽𝑛(𝑘𝜌)𝑐𝑜𝑠𝑛𝜃 =
1

2
𝑒𝑗𝑘𝜌𝑐𝑜𝑠𝜃                                                                                                                                         (26) 

and 𝑣𝑛 = 𝑛 +
1

2
 As a result, Equation (25) is reduced to 

1

2
𝑒𝑗𝑘𝜌𝑐𝑜𝑠𝜃 +∑ 𝑗𝑣𝑛𝐽𝑣𝑛(𝑘𝜌)𝑐𝑜𝑠𝑣𝑛𝜃

∞
𝑛=0                                                                                                                                                               (27) 

which can be expressed as 
1

2
𝑒𝑗𝑘𝜌𝑐𝑜𝑠𝜃 +

1

2
∑ 𝑗𝑣𝑛𝐽𝑣𝑛(𝑘𝜌)𝑒

𝑗𝑣𝑛𝜃 +∞
𝑛=0

1

2
∑ 𝑗𝑣𝑛𝐽𝑣𝑛(𝑘𝜌)𝑒

−𝑗𝑣𝑛𝜃 .∞
𝑛=0                                                                                                                 (28) 

Finally, total scattered field given in Equation (23) is obtained as, 
1

2
𝐽0(𝑘𝜌) + ∑ 𝑗

𝑛

2𝐽𝑛
2
(𝑘𝜌)𝑐𝑜𝑠 (

𝑛

2
(𝜑 − 𝜑0)⁡)

∞
𝑛=1 ⁡⁡−

1

2
𝐽0(𝑘𝜌)⁡ − ∑ 𝑗

𝑛

2𝐽𝑛
2
(𝑘𝜌)𝑐𝑜𝑠 (

𝑛

2
(𝜑 + 𝜑0))

∞
𝑛=1 ⁡⁡                                                                      (29) 

which is reduced to,  

𝑒𝑗𝑘𝜌cos⁡(𝜑−𝜑0)𝐹 [−√2𝑘𝜌cos⁡(
𝜑−𝜑0

2
)] − 𝑒𝑗𝑘𝜌 cos(𝜑+𝜑0)𝐹 [−√2𝑘𝜌 cos (

𝜑+𝜑0

2
)]                                                                                                (30) 

𝐹[𝑎] is the Fresnel function which can be expressed as, 

𝐹[𝑎] = 𝑢(−𝑎) + 𝑠𝑔𝑛(𝑎)𝐹[|𝑎|]                                                                                                                                                                (31) 

 

3. Numerical Results 

 

In this section we will examine the behavior of diffracted, scattered and GO fields numerically. The wavelength λ is equal to 0.1 meter. 

ρ is  6λ, and the φ0 is 60˚ (π/3). ρ  is the observation distance. Figure 2 shows the total scattered field. It is seen that the value of the 

scattered field drops to 0.5 at 240˚ (π+ φ0) where the diffracted component contribution takes place. Also, in Fig. 2, total scattered field 

continues to decrease smoothly thanks to the diffracted field expression containing terms yielding uniform field. 
 

 
Figure 2. Total scattered field 

 

In Figure 3 Incident diffracted and reflected diffracted field are given along with the total scattered field. Reflected diffracted and 

incident diffracted field peaks occur at 120˚ (π- φ0) and 240˚ (π+φ0) as expected. Because π- φ0 is the reflection boundary, and π+ φ0 is 

the shadow boundary. Transition points can be changed by changing the angle of incidence. For example, if the incident angle is chosen 

as π/6, reflection boundary will occur at 5 π/6 and the shadow boundary will be at 7 π/6. Diffracted field contributions come from the 

expression of Signum function times the Fresnel function, and unit step function determines the GO field. 
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Figure 3. Variations of diffracted fields 

 

Fig. 4 depicts the incident diffracted field and the GO field. Up to 240˚ (π+ φ0) the GO field exists, and after that point it cannot be 

seen. However the incident diffracted field intensity gradually decreases from that point. 

 
Figure 4. GO and incident diffracted field intensities 

 

Fig. 5 depicts the reflected diffracted field and the GO field. The reflection boundary occurs at 120˚ (π- φ0). The reflected diffracted 

field intensity has a peak at that point, and it starts to decrease above and below that angle. 
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Figure 5. GO and reflected diffracted field intensities 

4. Conclusion 

 

In this study, scattering of plane waves by a perfectly electric conducting half-plane is investigated by employing the series solution 

method. Incident and reflected fields are added together to obtain the total scattered field. Scattered field components, incident diffracted 

and reflected diffracted fields, rewritten by means of the Fresnel function are obtained in another form by means of unit step function 

and Signum function and the Fresnel function itself. The aim of doing this was to obtain uniform diffracted fields, because Signum and 

Fresnel functions are used to express the field having abrupt changes in a uniform variation. It is observed that the first term in total 

scattered field given in Eq. (30) represents the reflected scattered field whereas the second term with negative sign depicts the incident 

scattered field. 

 

Appendix 

 

In this section, the expression given in Eq. (32) will be by means of Fresnel function. 

∑ (𝑗𝑡)𝑣𝑛𝐽𝑣𝑛(𝑥)
∞
𝑛=0                                                                                                                                                                                                   (32) 

which can be written as, 

∑
(𝑗𝑡)𝑣𝑛𝑛!

𝑛!
𝐽𝑣𝑛(𝑥)

∞
𝑛=0 ,                                                                                                                                                                                      (33) 

where, 

𝑛! = ∫ 𝑒−𝑢𝑢𝑛𝑑𝑢
∞

0
.                                                                                                                                                                                             (34) 

Eq.(33) is rewritten as,  

∑
(𝑗𝑡)𝑣𝑛𝑛!

𝑛!
𝐽𝑣𝑛(𝑥) = ∑

(𝑗𝑡)𝑣𝑛 ∫ 𝑒−𝑢𝑢𝑛𝑑𝑢
∞
0

𝑛!

∞
𝑛=0 𝐽𝑣𝑛(𝑥)

∞
𝑛=0 .                                                                                                                                         (35) 

By writing 𝑣𝑛 = 𝑛 + 1/2, Eq. (35) becomes  

⁡∑
(𝑗𝑡)𝑛(𝑗𝑡)

1
2 ∫ 𝑒−𝑢𝑢𝑛𝑑𝑢

∞
0

𝑛!

∞
𝑛=0 𝐽𝑣𝑛(𝑥),                                                                                                                                                                      (36) 

and finally we obtain, 

⁡∑
(𝑗𝑡𝑢)𝑛

𝑛!
𝐽𝑣𝑛(𝑥) = √

2𝑥

𝜋
√𝑗𝑡∞

𝑛=0 ∫
𝑒−𝑢𝑠𝑖𝑛(√𝑥2−2𝑗𝑡𝑢𝑥⁡)

√𝑥2−2𝑗𝑡𝑢𝑥

∞

0
                                                                                                                                      (37) 

Letting ⁡−2𝑗𝑡𝑢𝑥 = 𝑣2, 𝑑𝑢 = −𝑣𝑑𝑣/𝑗𝑡𝑥 is obtained. 

√
2𝑥

𝜋
√𝑗𝑡 ∫

𝑒−𝑢𝑠𝑖𝑛(√𝑥2−2𝑗𝑡𝑢𝑥⁡)

√𝑥2−2𝑗𝑡𝑢𝑥

∞

0
= √

2𝑥

𝜋
√𝑗𝑡 ∫

𝑒
−(

𝑥2−𝑣2

2𝑗𝑡𝑥
)
𝑠𝑖𝑛𝑣⁡𝑑𝑣

𝑗𝑡𝑥

∞

𝑥
                                                                                                                           (38) 

which is reduced to, 
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1

𝑗
√

1

𝑗2𝜋𝑡𝑥
𝑒
𝑗𝑥

2𝑡⁡𝑒𝑗𝐶
2
[∫ 𝑒

−𝑗(
𝑣

√2𝑡𝑥
−𝐶)

2

𝑑𝑣 −
∞

𝑥
∫ 𝑒

−𝑗(
𝑣

√2𝑡𝑥
+𝐶)

2

𝑑𝑣
∞

𝑥
]                                                                                                                           (39) 

where ⁡𝐶 = √𝑡𝑥/2 . Eq.(39) is arranged as, 

⁡
1

𝑗
√

1

𝑗2𝜋𝑡𝑥
𝑒𝑗

𝑥

2
(
1

𝑡
+𝑡) [∫ 𝑒

−𝑗(
𝑣

√2𝑡𝑥
−√

𝑡𝑥

2
)

2

𝑑𝑣 −
∞

𝑥
∫ 𝑒

−𝑗(
𝑣

√2𝑡𝑥
+√

𝑡𝑥

2
)

2

𝑑𝑣
∞

𝑥
]                                                                                                                       (40) 

By letting,  

𝑣

√2𝑡𝑥
± √

𝑡𝑥

2
= −𝛽,                                                                                                                                                                                                            (41) 

Eq. (40) can be rewritten as, 

−𝑒
𝑗
𝜋
4𝑒

𝑗
𝑥
2(𝑡+

1
𝑡)

√𝜋
(∫ 𝑒−𝑗𝛽

2
𝑑𝛽 − ∫ 𝑒−𝑗𝛽

2
𝑑𝛽

∞

−√
𝑥

2
(√𝑡−

1

√𝑡
)

∞

√
𝑥

2
(√𝑡+

1

√𝑡
)

),                                                                                                                              (42) 

where the F[a] is the Fresnel function given as, 

𝐹[𝑎] =
𝑒
𝑗
𝜋
4

√𝜋
∫ 𝑒−𝑗𝑡

2
𝑑𝑡.

∞

𝑎
                                                                                                                                                                                      (43) 

As a result we obtain, 

∑ (𝑗𝑡)𝑣𝑛𝐽𝑣𝑛(𝑥)
∞
𝑛=0 = −𝑒𝑗

𝑥

2
(𝑡+

1

𝑡
)
{𝐹 [√

𝑥

2
(√𝑡 +

1

√𝑡
)] − 𝐹 [−√

𝑥

2
(√𝑡 −

1

√𝑡
)]⁡}.                                                                                                        (44) 

Letting 𝑥 = 𝑘𝜌, and 𝑡 = exp(𝑗𝜃) we obtain, 

∑ (𝑗𝑡)𝑣𝑛𝐽𝑣𝑛(𝑥)
∞
𝑛=0 = −𝑒𝑗𝑘𝜌𝑐𝑜𝑠𝜃 (𝐹 [𝑗√2𝑘𝜌⁡𝑠𝑖𝑛 (

𝜃

2
)] − 𝐹 [−√2𝑘𝜌⁡𝑐𝑜𝑠 (

𝜃

2
)])⁡                                                                                                   (45) 
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