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Abstract

Many phenomena arising in nature, science, and industry can be modeled by a coupled system
of reaction-convection-diffusion (RCD) equations. Unfortunately, obtaining analytical solutions to
RCD systems is typically not possible and, therefore, usually requires the use of numerical methods.
On the other hand, since solutions to RCD-type equations can exhibit rapid changes and may have
boundary/inner layers, classical computational tools yield approximations polluted with physically
meaningless oscillations when convection dominates the transport process. Towards that end, in order
to eliminate such numerical instabilities without sacrificing accuracy, this work employs a stabilized
finite element formulation, the so-called streamline-upwind/Petrov–Galerkin (SUPG) method. The
SUPG-stabilized formulation is then also supplemented with the YZβ shock-capturing mechanism to
achieve higher-quality approximations around sharp gradients. A comprehensive set of numerical test
experiments, including cross-diffusion systems, the Schnakenberg reaction model, and mussel-algae
interactions, is considered to reveal the robustness of the proposed formulation, which we call the
SUPG-YZβ formulation. Comparisons with reported studies reveal that the proposed formulation
performs quite well without introducing excessive numerical dissipation.

Keywords: Reaction-convection-diffusion; finite elements; stabilization; shock-capturing; SUPG-YZβ
formulation
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1 Introduction

Reaction-convection-diffusion (RCD) equations are used to model a wide range of natural phe-
nomena in addition to many industrial and engineering applications. Some of these applications
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include financial engineering (e.g., Black–Scholes and Heston option pricing models), chem-
istry (e.g., chemically reactive transport phenomena), semiconductor theory (e.g., drift-diffusion
equations), fluid dynamics (e.g., Burgers’-type and Navier–Stokes equations), heat transfer (e.g.,
natural heat convection phenomena), and mathematical physics and astrophysics (e.g., Fokker–
Planck-type equations). The coupled systems consisting of RCD-type equations are also essential
for modeling many phenomena that involve interactions between more than one species and
frequently arise in biological and chemical sciences, such as tumor growth models, chemotaxis
processes, bacteria pattern formation, predator-prey dynamics, etc. We refer the interested reader
to the extensive work of Painter [1] and Bellomo et al. [2] for chemotaxis and cross-diffusion
models and their applications in biology, physiology and pathology, ecology, and even in the social
sciences (e.g., crime hotspot models). The review papers [3] and [4] can also be referred to for
more on pattern formation phenomena arising in plasma physics and the influence of temperature
on such systems, respectively.

Analytical solutions to RCD-type systems are generally impossible to obtain since they are typ-
ically of a nonlinear nature and/or defined on sophisticated domains. Therefore, numerical
approximations to the solutions of such systems are searched for. Unfortunately, despite the
availability of several classical and mature numerical methods with solid theoretical foundations
and sharp error estimates, such as the finite difference method (FDM), finite volume method
(FVM), and finite element method (FEM), these methods are insufficient to provide accurate
approximations to the solutions of RCD-type equations and coupled systems composed of such
equations in convection dominance, leading to spurious oscillations. In order to overcome such
numerical instability issues, the above-mentioned classical methods have been enhanced with
several techniques over the years. The following paragraph presents a very concise overview of
reported studies dedicated to solving coupled systems of RCD-type equations numerically. For a
more comprehensive overview, the material in these references can also be referred to.

The authors of [5] investigated the effect of advection on coupled systems of reaction-diffusion
(RD) equations, more specifically, the Schnackenberg and glycolysis reaction kinetics models
having toroidal velocity fields, by employing the classical finite element method. Sarra consid-
ered unsteady RCD-type partial differential equations (PDEs) by employing a local radial basis
function (RBF) method in [6]. The author particularly focused on chemotaxis models and Turing
systems defined on complex-shaped domains. In [7], the authors proposed positivity-preserving
nonstandard finite difference schemes for cross-diffusion models arising in biosciences, including
malignant invasion, convective predator-prey pursuit and evasion model, and reaction-diffusion-
chemotaxis model. Yücel et al. [8] studied optimal control problems governed by a system of
convection-dominated RCD-type PDEs by employing a discontinuous GFEM (dGFEM) formula-
tion. They used a symmetric interior penalty Galerkin (SIPG) discretization for the diffusion term
and an upwinding discretization for the convection term, along with an adaptive mesh refinement
algorithm. The author of [9] used a meshless finite difference method equipped with B-splines for
solving time-dependent RD- and RCD-type coupled systems, including tumor invasion models
and cross-diffusion problems. Wang et al. [10] studied the dynamics and pattern formation of a
coupled time-dependent RCD system defined on a one-dimensional (1D) domain for modeling
the interaction of mussels and algae. Most recently, two-dimensional (2D) elliptic-type singularly
perturbed weakly-coupled systems of RCD equations, in which the diffusion and convection terms
are controlled by two different parameters, were studied by Clavero et al. [11]. They proposed a
first-order uniformly convergent finite difference scheme defined on layer-adapted Bakhvalov–
Shishkin meshes. One can also refer to [12–14] and references therein for several applications
of scalar and coupled RCD-type PDEs arising in chemical processes. Finally, in the context of
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fractional differential equations, the studies [15–17] and the material therein can be referred to.

In the finite element framework, among the others, one of the most established, robust, and popular
stabilized methods is the streamline-upwind/Petrov–Galerkin (SUPG) formulation. The method
was first introduced for advection-diffusion equations and incompressible flow simulations by
Hughes and Brooks [18, 19]. Following that, the compressible-flow SUPG method was introduced
by Tezduyar and Hughes [20–22] in the context of conservation variables. The compressible-flow
SUPG method introduced in 1982 is today denoted by “(SUPG)82.” The (SUPG)82 formulation,
in its initial form, was used without making use of any discontinuity-capturing (also commonly
referred to as shock-capturing) mechanism. The test simulations demonstrated that regions
with steep gradients require extra treatment. Then, the (SUPG)82 formulation was subsequently
reformulated in terms of the entropy variables and equipped with a shock-capturing mechanism
in [23], and more satisfactory results were obtained. In [24], the (SUPG)82 formulation was
supplemented with a shock-capturing operator quite similar to the one introduced in [23] by
Hughes et al., and the added term included a shock-capturing parameter, which is today called
“δ91.” The set of stabilization parameters, which is almost universally denoted by “τ,” used
with the (SUPG)82 formulation introduced in [20–22] are called “τ82” today. The SUPG-stabilized
formulation for the reaction-advection-diffusion equation introduced in [25] included a shock-
capturing term and a stabilization parameter that took into account the interaction between the
shock-capturing and SUPG stabilization terms. Thus, the effect of the shock-capturing mechanism
does not increase that of the SUPG stabilization when the advection and shock directions coincide.
In [24], the definition of stabilization parameter τ82 was slightly modified by Le Beau et al. On the
other hand, although the definition of (SUPG)82 parameters underwent some minor modifications
in subsequent years, they were still used with the same shock-capturing parameter, δ91, until
2004. Eventually, in 2004, several new ways of determining the stabilization and shock-capturing
parameters in the (SUPG)82 framework were introduced in [26, 27] by Tezduyar. These new
stabilization parameters are today referred to as “τ04.” As to the shock-capturing parameters,
the new strategies introduced can be divided into two categories: the discontinuity-capturing
directional dissipation (DCDD) [26, 28, 29] and the residual-based YZβ shock-capturing [26, 27].
Throughout this paper, we restrict our attention to the YZβ mechanism. Some of the reasons for
adopting it include that it is easier to calculate the YZβ shock-capturing parameter than δ91, the
parameter β offers options for mild and sharp shocks, and as it was also reported in [30–32], the
YZβ parameter yields more accurate results than δ91. One can find various applications of the
SUPG-YZβ combination, including arterial drug delivery, shallow-water equations, chemically
reactive models, and natural convection heat transfer, in [12, 33–37]. For other stabilized formula-
tion and shock-capturing mechanisms, we refer the interested reader to [38–40] and the material
in these studies. Besides that, in [41–43], the interested reader can find various applications of
Petrov–Galerkin-like methods.

In this paper, we deal with stabilized finite element computations of coupled systems of RCD-type
equations. In doing this, we first consider the test problems as they were reported in the literature
in order to make comparisons. Following that, whenever possible, each problem is considered
for convection dominance, i.e., for much more computationally challenging cases, for which the
classical methods fail to yield oscillation-free approximations and/or are insufficient to capture
steep gradients. Thus, new challenging benchmark problems are introduced to the literature. The
main computational method we use is the SUPG finite element formulation. We also augment
the SUPG-stabilized formulation with the YZβ shock-capturing technique. To the author’s best
knowledge, this is the first report employing the SUPG-YZβ combination for handling such kinds
of problems. The semi-discrete formulations are discretized in time with the backward Euler
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scheme. Then, nonlinear equation systems arising from the space-time-discretized formulations
are solved with the Newton–Raphson (N–R) algorithm, and the resulting linear systems are
handled with a direct method, i.e., the lower-upper (LU) factorization technique.

The rest of the manuscript is organized as follows. In Section 2, a system of coupled 2D RCD-type
PDEs is introduced as a model problem, and a semi-discrete GFEM formulation is described.
In Section 3, a SUPG-stabilized finite element formulation combined with YZβ shock-capturing is
introduced for the model problem. Section 4 first focuses on further computational details, such as
the temporal discretization of the semi-discrete formulation, the quadrature degree associated
with the numerical integration, and the computing environment FEniCS, in which the solvers
are developed and computations are carried out. Later on in this section, four main numerical
experiments with various scenarios are presented. Finally, in Section 5, some concluding remarks
are made, along with a brief discussion on possible extensions of this current work.

2 Model problem and classical GFEM formulation

Let us consider the following coupled system of time-dependent RCD equations:

∂u
∂t

+ a · ∇u −∇ · (D∇u)− f (u) = s, (1)

where the vector of unknowns, u, is defined by u = [u1, u2]
T, a = [a1, a2] is the velocity field

associated with advection, and D represents the diffusivity matrix, which is given as:

D =

[
ϵ1 0
0 ϵ2

]
. (2)

Here, the diffusion parameters ϵ1 and ϵ2 are non-negative and typically small. The vector f
represents the reaction term, which is typically of nonlinear nature, and s is the source vector. For
the moment, the system is assumed to be equipped with an appropriate set of initial and boundary
conditions.

By multiplying both sides of system (1) by a test vector w ∈ Vu ⊂ H1
0, the classical GFEM

formulation can be obtained as follows:
find u ∈ Su such that ∀w ∈ Vu :∫
Ω

w ·
(

∂u
∂t

+ a · ∇u −∇ · (D∇u)− f (u)− s
)

dΩ = 0,
(3)

where u ∈ Su ⊂ H1
g is the solution vector, and the spaces Su and Vu are the trial and test function

spaces, respectively. The Sobolev spaces H1
0 and H1

g are defined as follows:

H1
0 =

{
Φ : Φ ∈

[
H1 (Ω)

]2
and Φ|∂Ω = 0

}
, (4)

H1
g =

{
Φ : Φ ∈

[
H1 (Ω)

]2
and Φ|∂Ω = g

}
, (5)

where

H1 =
{

Φ : ∥Φ∥L2
Ω
+ ∥∇Φ∥L2

Ω
< ∞}

. (6)
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The vector g = [g1, g2] denotes the vector of prescribed Dirichlet-type boundary conditions. Here,
the space L2

Ω = L2 (Ω) is the space of square-integrable functions defined on Ω, and is equipped
with the standard L2-norm:

∥Φ∥L2
Ω
=

√∫
Ω

Φ2dx. (7)

Employing integration-by-parts, the variational formulation given by Eq. (3) can be recast as
follows: 

find u ∈ Su such that ∀w ∈ Vu :∫
Ω

w ·
(

∂u
∂t

+ a · ∇u − s
)

dΩ +

∫
Ω
(∇w : (D∇u)) dΩ

−

∫
Ω

w · f (u) dΩ −

∫
ΓN

w · h dΓ = 0,

(8)

where h = D∇u · n is the Neumann-type boundary data, n is outward-oriented unit normal
vector, and Γ denotes the boundary of the computational domain Ω, i.e., Γ = ∂Ω. Note that
Γ = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅, where the subscripts “N” and “D” indicate that whether the
boundary is subject to Neumann- or Dirichlet-type boundary conditions.

If the computational domain Ω is divided into finite number of elements Ωe, e = 1, 2, . . . , nel,
where nel denotes the number of these elements, then the GFEM formulation associated with
system (1) reads:

find uh ∈ Sh
u such that ∀wh ∈ Vh

u :∫
Ω

wh ·
(

∂uh

∂t
+ a · ∇uh − s

)
dΩ +

∫
Ω

(
∇wh :

(
D∇uh

))
dΩ

−

∫
Ω

wh · f
(

uh
)

dΩ −

∫
ΓN

wh · hh dΓ = 0,

(9)

where the superscript “h” indicates that the functions that are the components of the associated
vectors/matrices come from a finite-dimensional space. The finite-dimensional function spaces
are defined as follows:

Sh
u = Vh

u =
{

Φh ∈
[
C
(
Ω
)]2 : Φh|∂Ω = 0, Φh|Ωe ∈ [P1 (Ωe)]2 , ∀Ωe ∈ T h

}
, (10)

where P1 (Ωe) is the space of linear polynomials over the triangular element Ωe ∈ T h, C
(
Ω
)

is
the space of continuous functions defined on the closure of the computational domain, and T h is
the triangulation of the domain Ω into triangular elements.

3 Stabilized finite element formulations

This section describes the SUPG and SUPG-YZβ formulations of the model problem given by
Eq. (1), respectively.
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The SUPG formulation associated with system (1) can be given as follows:

find uh ∈ Su such that ∀wh ∈ Vh
u :∫

Ω
wh ·

(
∂uh

∂t
+ a · ∇uh − s

)
dΩ +

∫
Ω

(
∇wh :

(
D∇uh

))
dΩ

−

∫
Ω

wh · f
(

uh
)

dΩ −

∫
ΓN

wh · hh dΓ

+

nel∑
e=1

∫
Ωe

τSUPG

(
∂wh

∂xk

)
aT ·

(
∂uh

∂t
+ a · ∇uh −∇ ·

(
D∇uh

)
− f
(

uh
)
− s

)
dΩ = 0,

(11)

where the finite-dimensional space Vh
u is defined by Eq. (10). In this formulation, e is the element

counter and τSUPG is the diagonal SUPG stabilization matrix. How these stabilization parameters
are determined directly affects the accuracy and quality of the numerical approximations.

Remark 1 In the last line of Eq. (11), by the term
(

∂wh

∂xk

)
, we refer to Einstein summation convention; i.e.,

(
∂wh

∂xk

)
=

nsd∑
k=1

∂wh
k

∂xk
, (12)

where wh
k is the k−th component of the test vector wh.

For solving stationary problems, the stabilization matrix, τSUPG, is composed of stabilization
parameters, τi

SUPG’s, which are defined as follows [44]:

τi
SUPG =

[(
2∥a∥

he

)2

+

(
4ϵi

(he)2

)2
]− 1

2

, (13)

where i = 1, 2, the norm ∥ · ∥ represents the standard Euclidean norm, and he is the cell diameter
associated with element Ωe. For unsteady problems, these parameters can be defined as

τi
SUPG =

[(
2

∆t

)2
+

(
2∥a∥

he

)2

+

(
4ϵi

(he)2

)2
]− 1

2

. (14)

For systems involving different convection vectors, e.g., ai’s, these parameters can be defined in
the following fashion:

τi
SUPG =

[(
2

∆t

)2
+

(
2∥ai∥

he

)2

+

(
4ϵi

(he)2

)2
]− 1

2

. (15)

In these definitions given by Eqs. (13)–(14), the superscript “i” in τi
SUPG indicates that the parameter

is associated with the ith equation in the system. Similarly, the subscripts in convection vectors
(i.e., ai’s) and diffusion parameters (i.e., ϵi’s) indicate that they belong to the ith equation.
For further details and a review of various definitions of the stabilization parameters and element
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length scales, we refer the interested reader to [38, 39, 45, 46] and references therein.

Remark 2 One should note that, compared to the classical GFEM formulation given by Eq. (3), the SUPG
formulation introduced by Eq. (11) involves additional element-based stabilization terms controlled by
the stabilization parameters. By adding these terms, the original system gains artificial dissipation in the
streamline direction.

Remark 3 One can also find a variation in the definition of stabilization parameters given by Eqs. (13)–(14)
based on the approach followed in [44, 47]:

τi
SUPG =

[(
2

∆t

)2
+

(
2∥ai∥

he

)2

+ 9
(

4ϵi

(he)2

)2
]− 1

2

. (16)

For stationary problems, the term associated with time is simply omitted, as done in Eq. (13).

We adopt the stabilization parameter described by Eq. (16), in our computations. Then, the
stabilization matrix, τSUPG, associated with the model problem described by Eq. (1) can be given
as follows:

τSUPG =

[
τ1

SUPG 0
0 τ2

SUPG

]
. (17)

Eventually, the SUPG-YZβ formulation associated with system (1) can be described as follows:



find uh ∈ Sh
u such that ∀wh ∈ Vh

u :∫
Ω

wh ·
(

∂uh

∂t
+ a · ∇uh − s

)
dΩ +

∫
Ω

(
∇wh :

(
D∇uh

))
dΩ

−

∫
Ω

wh · f
(

uh
)

dΩ −

∫
ΓN

wh · hh dΓ

+

nel∑
e=1

∫
Ωe

τSUPG

(
∂wh

∂xk

)
aT ·

(
∂uh

∂t
+ a · ∇uh −∇ ·

(
D∇uh

)
− f
(

uh
)
− s

)
dΩ

+

nel∑
e=1

∫
Ωe

νSHOC

(
∂wh

∂xk

)
·
(

∂uh

∂xk

)
dΩ = 0,

(18)

where the term νSHOC is the stabilization parameter associated with the YZβ shock-capturing
technology. The shock-capturing parameter is defined in light of studies by Tezduyar [30–32]. In
this work, we slightly modify the original definition of the shock-capturing parameter to solve the
model problem as follows [33]:

νi
SHOC = |Y−1Zi|

( nsd∑
i=1

∣∣∣∣Y−1 ∂uh
i

∂xi

∣∣∣∣2
) β

2−1(
hi

SHOC
2

)β

, (19)
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where

Zi =
∂ui
∂t

−∇ ·
(

ϵi∇uh
i

)
+ a · ∇uh

i − fi − si. (20)

Remark 4 Compared to the SUPG-based stabilized formulation given by Eq. (11), the SUPG-YZβ for-
mulation described by Eq. (18) involves additional element-based stabilization terms associated with the
shock-capturing mechanism. These new terms introduce additional artificial diffusion in the direction of
solution gradients, which helps to mitigate undershoots and overshoots around sharp layers.

Remark 5 As also mentioned by Remark 1, by the terms
(

∂wh

∂xk

)
and

(
∂uh

∂xk

)
in Eq. (18), we refer to Einstein

summation convention.

Remark 6 By using Eq. (20) in computations, we adopt the residual form of Zi, which is similar to that
used by Bazilevs et al. in [33] as a variation of the advective form introduced in [26, 27]:

Zi = a · ∇uh
i . (21)

In addition to that used in [33], following this way, we also include the reaction and source terms in the
definition of Zi.

Remark 7 The definition of quantity Zi can be extended to handle the case of different advection vectors
ai’s in the same way followed for describing the SUPG stabilization parameter defined by Eq. (15).

In Eq. (19), the quantity Y can be determined as follows:

Y =
√

u2
1, ref + u2

2, ref. (22)

The reference values ui, ref’s are typically determined according to the initial data given for time-
dependent problems. For steady-state problems, they can also be determined as reference values
or through numerical experiments. The local element length scales, hi

SHOC’s, are defined as

hi
SHOC = 2

( nen∑
a=1

|ji · ∇Na|

)−1

, (23)

with the unit vector in the direction of the gradient of uh
i :

ji =
∇uh

i

∥∇uh
i ∥

. (24)

Here, the term Na represents the interpolating function associated with element node a. The
indices nsd and nen stand for the number of space-dimensions and number of element nodes. The
sharpness parameter β is typically set as β = 1 for mild shocks and β = 2 for sharper shocks [30–
32]. Since the main focus of this study is problems highly dominated by convection, we set the
parameter β as β = 2 in our computations.



Süleyman Cengizci | 305

Remark 8 The finite element formulations introduced in the previous lines for a two-species model given by
Eq. (1) can be easily extended to models with more species and/or higher dimensions. Similarly, as discussed
in the previous lines, these formulations can also be modified for handling systems of RCD-type equations
with different convection fields instead of ones having the same convection vector .

4 Numerical experiments

After providing some computational details, such as the time-integration, absolute and relative
error tolerances associated with linear and nonlinear solvers, and computing platform, as the first
numerical experiment, we consider a cross-diffusion reaction-diffusion system with component-
wise analytical solutions in order to validate our GFEM solvers. Then, again for verification
purposes, we deal with a steady convection-dominated RCD system with component-wise exact
solutions. Following that, we focus on coupled systems of time-dependent RCD equations.

Further computational details

Throughout this work, for unsteady problems, the time discretization is performed with the
backward Euler scheme, i.e., the semi-discrete (spatially discretized) formulations (see Eqs. (9),
(11), and (18)) introduced in the previous sections are discretized such that as advancing from
time-step n to n + 1:

∂Uh

∂t
=

Uh
n+1 − Uh

n

∆t
= J h

n+1, (25)

where J h
n+1 represents the rest of the terms in the variational formulations computed at time

steps n + 1. The relative and absolute convergence criteria associated with the N–R algorithm
are both set to 1.0 × 10−12. All computations are carried out in serial in the FEniCS [48–50]
scientific computing environment, which is particularly dedicated to the finite element solution of
differential equations and allows the user high-level C++ and Python interfaces, on a computer
equipped with Intel i7-12650H CPU and 40GB RAM running Ubuntu 20.04.5 LTS. For further
details on the FEniCS Project, we refer the interested reader to the references provided above and
the official webpage of the project: https://fenicsproject.org/. Since the test computations,
apart from the first numerical experiment (Application 1), are of highly nonlinear nature, we set
the quadrature degree associated with the numerical integration to eleven. Besides, all the finite
element meshes are triangular and generated by using the built-in mshr component of FEniCS.

Test computations

Application 1 – Reaction-diffusion with cross-diffusion. We take this test example, which was originally
studied in [51], from [9], for comparison purposes. It is described as follows:

∂u
∂t

= D11 ∆u + D12 ∆v + D13 v,

∂v
∂t

= D21 ∆u + D22 ∆v + D23 u,
(26)

where the spatial domain is defined by Ω = (0, 2π)2, and t > 0. The component-wise initial
conditions are defined as

u (x1, x2, 0) = cos (2x1) + cos (2x2) , v (x1, x2, 0) = cos (x1) + cos (x2) . (27)

https://fenicsproject.org/
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At walls, zero-flux, i.e., homogeneous Neumann-type boundary conditions apply. Then, the
component-wise analytical solutions to the system described by Eq. (26) are given as

u (x1, x2, t) = exp (−4tβ) [cos (2x1) + cos (2x2)] , (28)

v (x1, x2, t) = exp (−tβ) [cos (x1) + cos (x2)] , (29)

where D11 = D22 = β = 0.01, D12 = 1.5β, D21 = 0.5β, D13 = D12, and D23 = 4D21. We follow
the same fashion used in [9] by setting the final time as tf = 50 and time-step size as ∆t = 0.005,
which results in 10, 000 iterations. In computations, the mesh constructed with crossed elements,
which is shown in Figure 1a, is used. We directly employ the GFEM to solve this problem since it

(a) (b)

Figure 1. Meshes: (a) constructed with nel = 10, 000 crossed elements and nen = 5, 101 nodes for solving
Application 1, (b) constructed with nel = 10, 368 elements and nen = 5, 329 nodes for solving Application 2.

does not have convective terms. Figure 2 shows the component-wise GFEM solutions of Application
1, which is described by system (26), along with the corresponding absolute errors. It is observed
that the absolute errors take their maximum values around corners of the computational domain.
In Figure 3, the absolute errors in the GFEM approximation along the line x2 = π are displayed.
It is revealed that the maximum absolute error is around 0.001. In comparison to the results
presented in [9], where the author employed B-spline basis functions of order k = 8, our results
show good agreement with them (see Figure 3).

Application 2 – Convection-diffusion with nonlinear reaction. This second example is a stationary
problem and is from [8] by Yücel et al.:{

−ϵu∆u + βu · ∇u + αuu + γuuv − fu = 0,

−ϵv∆v + βv · ∇v + αvv + γvuv − fv = 0,
(30)
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(a) (b) (c) (d)

Figure 2. GFEM approximations for solving Application 1; tf = 50 and ∆t = 0.005: (a) surface plot for u (x1, x2),
(b) surface plot for v (x1, x2), (c) elevation plot for absolute error in u (x1, x2), and (d) elevation plot for absolute
error in v (x1, x2).

Figure 3. Comparison of absolute errors for solving Application 1 along line x2 = π.

where the unknown functions, i.e., u (x) and v (x), represents the reactant concentrations, the
computational domain is taken as Ω = (0, 1), and the given functions fu (x) and fv (x) are the
source functions. The parameters are set as follows: the diffusion coefficients are ϵu = ϵv = 10−5,
the convection vectors are βu = [2, 3] and βv = [1, 0], the reaction coefficients αu = αv = 1.0, and
γu = γv = 0.1. The source functions fu and fv are determined such that the following analytical
solutions hold [8]:

u (x1, x2) =
2
π

arctan
(

1√
ϵu

[
−

1
2

x1 + x2 − 0.25
])

, (31)

v (x1, x2) = 4 exp
(

−1√
ϵv

(
(x1 − 0.5)2 + 3 (x2 − 0.5)2

))
sin (πx1) cos (πx2) . (32)

Figure 1b shows the mesh constructed with 10, 368 triangular elements used in computations
for solving Application 2. Figure 4 presents a comparison of the performances of the proposed
formulations for u (x1, x2). It is clearly seen that the GFEM approximation is completely polluted
with nonphysical oscillations. Although the SUPG formulation manages to eliminate spurious
oscillations significantly, it requires additional treatment to resolve steep gradients. As to the SUPG-
YZβ formulation, there is not any significant oscillatory behavior, and the resulting approximation
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is in good agreement with the exact solution. Since the v (x1, x2) component of the solution vector
u does not exhibit oscillatory behavior, only the exact solution and SUPG-YZβ approximations are
given in Figure 5, along with absolute errors in SUPG-YZβ approximations for solving u (x1, x2)
and v (x1, x2) components. We observe that the absolute errors almost completely vanish far from
the regions where solutions exhibit rapid changes. In other words, the SUPG-YZβ formulation
looks for a compromise between stability and accuracy. While high-quality solution profiles are
obtained similar to those reported in [8], the SUPG-YZβ formulation achieves this on a coarser
mesh without the need for any mesh refinement techniques.

(a) (b) (c) (d)

Figure 4. Comparison of approximations to u (x1, x2) obtained with various formulations for solving Application
2: (a) GFEM, (b) SUPG, (c) SUPG-YZβ, and (d) exact solution.

(a) (b) (c) (d)

Figure 5. Comparison of SUPG-YZβ approximations with exact solutions for solving Application 2: (a) SUPG-YZβ

solution for v (x1, x2), (b) exact solution to v (x1, x2), (c) absolute error in SUPG-YZβ approximation for u (x1, x2),
and (d) absolute error in SUPG-YZβ approximation for v (x1, x2).

Application 3 – Schnakenberg reaction model. Here, we deal with the Schnakenberg reaction model,
which was originally introduced by Schnakenberg in [52]. The model can be described as fol-
lows [5]: 

∂u
∂t

+ a · ∇u − ∆u − γ
(

α − u + u2v
)
= 0,

∂v
∂t

+ a · ∇v − d ∆v − γ
(

β − u2v
)
= 0,

(33)

where the diffusion constant d refers to the relationship between the species diffusivities, the
constants α and β denote the production and consumption for species u and v, respectively, and
the nonlinear term u2v is the catalysis term, which represents activation for u and consumption for
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v. We consider this problem for two different sets of parameters and initial/boundary conditions.
Case I aims to compare our results with those reported previously. Then, in Case II, the parameters
and initial/boundary conditions are determined in such a way that the solution to the Schnaken-
berg model involves sharp gradients. For both computations, we suppose that the problems are
defined on the domain Ω = (0, 1), the time-step size is taken as ∆t = 0.005, and the final time is
tf = 2.5. Note that the parameter β given in the model is not related to YZβ shock-capturing.

Case I: The set of parameters are [5]: α = 0.1, β = 0.9, γ = 230.82, and the velocity field is
a = [−ω (x2 − 0.5) , ω (x1 − 0.5)], where ω = 0.6. In computations, a mesh having the same
structure as that given in Figure 1b but constructed with 5, 408 triangular elements and 2, 809
nodes is used. Figure 6a–Figure 6b show the initial conditions for u and v, respectively. For
determining these conditions, we perturb each reactive component around the steady-states by
around 10% [53]. That is, the initial conditions are defined as follows:

u (x1, x2, t = 0) = us + εus, (34)

v (x1, x2, t = 0) = vs + εvs, (35)

where, (us, vs) =

(
α + β, β

(α+β)2

)
. Note that the reaction terms vanish for (u, v) = (us, vs).

Homogeneous Neumann-type boundary conditions apply on walls.

In Figure 6c–6d, we present SUPG-YZβ solutions to Application 3 for Case I. Compared to the results
reported in [5], the present solution profiles are in good agreement when a mesh constructed
with a similar number of elements is used. This fact indicates that the proposed formulation
does not distort the solutions by introducing unnecessary artificial diffusivity. The rotation of the
Turing patterns is due to the velocity field a, and these rotations are in the same direction as a.
On the other hand, numerical experiments reveal that when finer meshes are employed, all the
proposed formulations yield slightly different approximations than those reported in [5]. The
author believes that the slight difference in [5] is due to the coarser mesh used because of the
limited computational resources available on those days when the numerical experiments were
carried out.

(a) (b) (c) (d)

Figure 6. Application 3 – Case I: (a) initial condition for u (x1, x2, t), (b) initial condition for v (x1, x2, t), (c) SUPG-
YZβ approximation to u (x1, x2), and (d) SUPG-YZβ approximation to v (x1, x2).

Case II: In this case, we modify the original system given by Eq. (33) as follows:
∂u
∂t

+ au · ∇u − du ∆u − γ
(

α − u + u2v
)
= 0,

∂v
∂t

+ av · ∇v − dv ∆v − γ
(

β − u2v
)
= 0.

(36)
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We set the parameters as: α = 0.1, β = 0.9, γ = 0.52, the convection vectors are au = [x1, 2x2]
and av = [x1, 2x1], and the diffusion parameters are du = dv = 10−8. We use the same mesh used
for Case I. The initial conditions are set as u (x1, x2, t = 0) = 1.0 and v (x1, x2, t = 0) = 0.9. The
Dirichlet-type boundary conditions are prescribed as follows:

gu (x1, x2, t) =

{
0.7, if (x1 > 0.1 and x2 > 0.4) or x2 < 0.6,

1.0, otherwise,
(37)

gv (x1, x2, t) =

{
0.6, if x1 = 1,

0.9, otherwise.
(38)

In Figure 7, we compare the SUPG and SUPG-YZβ approximations for solving Case II of Application
3. The N–R algorithm fails to converge for the GFEM formulation. It can be observed that the
sharp gradients in solutions, particularly those obtained for u (x1, x2, t), are resolved accurately
without any significant localized oscillations by employing the SUPG-YZβ formulation.

(a) (b) (c) (d)

Figure 7. Application 3 – Case II: (a) SUPG approximation to u (x1, x2, t), (b) SUPG approximation to v (x1, x2, t),
(c) SUPG-YZβ approximation to u (x1, x2), and (d) SUPG-YZβ approximation to v (x1, x2).

Application 4 – A mussel-algae interaction model. This 1D model, which was originally introduced
in [54] by Koppel et al., is taken from [10] in its nondimensionalized form:

∂u
∂t

= D11
∂2u
∂x2

1
− q

∂u
∂x1

+ α(1 − u)− uv,

∂v
∂t

= D21
∂2v
∂x2

1
+ σuv − γv2 −

v
v + 1

,
(39)

where 0 < x1 < L = 10 and t > 0. The unknown functions u (x1, t) and v (x1, t) represent
the algae and mussel density, respectively, α is the exchange rate of mussels, and γ denotes the
competition between the mussels (intraspecific competition). One of the primary food sources
that mussels consume is algae. Following [10], it is assumed that algae constantly convects at
the rate of q, at which algae is supplied to the mussels bed by unidirectional water flow, from
the open sea toward the shore. We consider system (39) for three different sets of parameter and
boundary conditions. In the first two cases, we verify the proposed formulation and solvers by
comparing the results obtained with those reported by Wang et al. [10]. As to the third scenario,
we modify the originally introduced parameter set and conditions such that system (39) becomes
convection-dominated. For all cases, the number of elements is nel = 256 and time step-size is set



Süleyman Cengizci | 311

to ∆t = 0.1.

Case I: In the first case, system (39) is subject to homogeneous Neumann boundary condition at
x1 = L and Danckwerts-type inflow boundary condition applies at x1 = 0 (for further details,
see [10, 55]):

D11
∂u (0, t)

∂x1
= qu (0, t) , (40)

∂u (L, t)
∂x1

= 0. (41)

The parameter set is taken from [10]: D11 = 0.1, D21 = 0.3, α = 0.6, σ = 0.5, and γ = 0.2. In
numerical experiments, we study various values of the advection rate q, i.e., q = 10−4, q = 2, and
q = 6. The initial conditions are u (x1, 0) = 0.1 and v (x1, 0) = 1.0. The simulations are run for the
terminal time tf = 100.

Figure 8 shows that, for a range of convection rate constant q, the mussels die out and only the
algae remain. It implies that mussels cannot exist when the rate at which ingested algae are
converted to mussels and their production is less than the rate at which they are consumed.
Nonetheless, the algae’s biomass is affected by the water flow, i.e., the biomass of the algae
decreases as the advection rate q increases.

(a) (b) (c)

Figure 8. Comparison of SUPG-YZβ approximations for solving Application 4 – Case I: (a) q = 10−4, (b) q = 2, and (c)
q = 6.

Case II: In this case, we consider the same boundary conditions used in the first case. The initial
conditions are u (x1, 0) = 0.8 and v (x1, 0) = 0.6. As to the parameters, we only change the
conversion constant σ to σ = 2.0. The terminal time is set to tf = 100.

Figure 9 presents the SUPG-YZβ approximations for various values of the convection constant
q. These figures indicate that algae are carried downstream by the water as the advection rate
increases. Because of this, mussels have more food available downstream, which causes them to
accumulate downstream as well. In both cases (Case I and Case II), we observe that the results are
in pretty good agreement with those reported in [10]. We, in the last case, examine the system
given by Eq. (39) for convection dominance.

Case III: For this case, the initial conditions are u (x1, 0) = 0.1 and v (x1, 0) = 1.0. The parameter
set is: D11 = 10−7, D21 = 3 × 10−7, α = 1.6, γ = 1.2, σ = 2.0, and q = 10. The Dirichlet-type
boundary conditions are prescribed as follows:

gu (x1 = 0, t) = 0, gu (x1 = L, t) = 0, (42)
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(a) (b) (c)

Figure 9. Comparison of SUPG-YZβ approximations for solving Application 4 – Case II: (a) q = 10−4, (b) q = 2, and (c)
q = 6.

and

gv (x1 = 0, t) = 0, gv (x1 = L, t) = 0. (43)

The terminal time is set as tf = 10.
In Figure 10a, it is observed that the GFEM yields approximations completely polluted with
node-to-node spurious oscillations. During the numerical simulations, it was revealed that when
the number of elements was increased, the situation got even worse. On the other hand, it is seen
in Figure 10b that the SUPG formulation performs quite well, eliminating almost all nonphysical
oscillations but a very tight region near x1 = 10. Finally, we observe the effect of the shock-
capturing mechanism in Figure 10c; it helps capture the steep gradient that occurs near x1 = 10
successfully without introducing excessive dissipation.

(a) (b) (c)

Figure 10. Comparison of approximations for solving Application 4 – Case III obtained with: (a) GFEM, (b) SUPG, and (c)
SUPG-YZβ.

5 Concluding remarks

We have proposed a streamline-upwind/Petrov–Galerkin finite element formulation supple-
mented with YZβ shock-capturing, the so-called SUPG-YZβ formulation, for solving coupled
systems of reaction-convection-diffusion equations. For comparison purposes, we first tested the
accuracy of the proposed formulation and verified the solver codes for numerical experiments
available in the literature. In order to assess the genuine performance of the proposed formula-
tion and demonstrate that the standard Galerkin finite element formulation fails in convection
dominance, we have modified the original problems by making them convection-dominated.
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We have observed that the SUPG-YZβ formulation successfully eliminates spurious oscillations.
The method accomplishes this by making use of only linear interpolation functions and meshes
that are relatively coarser than those used in the majority of reported studies, without the need
for any fitted or adaptive mesh strategies. In addition to these, it is also noted that the proposed
shock-capturing mechanism does not cause the solutions to become distorted by introducing
excessive numerical dissipation. Besides that, although any adaptive mesh strategies are not
adopted, coarser meshes are used compared to the reported studies, and only linear interpolation
functions are employed, the approximations obtained do not exhibit any significant numerical
instabilities for more challenging cases.
Our future research is planned to focus on tumor growth phenomena, which can be represented
by a coupled system of partial differential equations of the reaction-convection-diffusion type.
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